Properties

Label 324.4.e.a.109.1
Level $324$
Weight $4$
Character 324.109
Analytic conductor $19.117$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(109,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 324.109
Dual form 324.4.e.a.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.00000 + 15.5885i) q^{5} +(-4.00000 - 6.92820i) q^{7} +(18.0000 + 31.1769i) q^{11} +(5.00000 - 8.66025i) q^{13} -18.0000 q^{17} -100.000 q^{19} +(36.0000 - 62.3538i) q^{23} +(-99.5000 - 172.339i) q^{25} +(-117.000 - 202.650i) q^{29} +(8.00000 - 13.8564i) q^{31} +144.000 q^{35} -226.000 q^{37} +(45.0000 - 77.9423i) q^{41} +(-226.000 - 391.443i) q^{43} +(216.000 + 374.123i) q^{47} +(139.500 - 241.621i) q^{49} -414.000 q^{53} -648.000 q^{55} +(-342.000 + 592.361i) q^{59} +(-211.000 - 365.463i) q^{61} +(90.0000 + 155.885i) q^{65} +(-166.000 + 287.520i) q^{67} +360.000 q^{71} +26.0000 q^{73} +(144.000 - 249.415i) q^{77} +(-256.000 - 443.405i) q^{79} +(-594.000 - 1028.84i) q^{83} +(162.000 - 280.592i) q^{85} +630.000 q^{89} -80.0000 q^{91} +(900.000 - 1558.85i) q^{95} +(527.000 + 912.791i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{5} - 8 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{17} - 200 q^{19} + 72 q^{23} - 199 q^{25} - 234 q^{29} + 16 q^{31} + 288 q^{35} - 452 q^{37} + 90 q^{41} - 452 q^{43} + 432 q^{47} + 279 q^{49} - 828 q^{53}+ \cdots + 1054 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.00000 + 15.5885i −0.804984 + 1.39427i 0.111317 + 0.993785i \(0.464493\pi\)
−0.916302 + 0.400489i \(0.868840\pi\)
\(6\) 0 0
\(7\) −4.00000 6.92820i −0.215980 0.374088i 0.737595 0.675243i \(-0.235961\pi\)
−0.953575 + 0.301155i \(0.902628\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 18.0000 + 31.1769i 0.493382 + 0.854563i 0.999971 0.00762479i \(-0.00242707\pi\)
−0.506589 + 0.862188i \(0.669094\pi\)
\(12\) 0 0
\(13\) 5.00000 8.66025i 0.106673 0.184763i −0.807747 0.589529i \(-0.799313\pi\)
0.914421 + 0.404765i \(0.132647\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −18.0000 −0.256802 −0.128401 0.991722i \(-0.540985\pi\)
−0.128401 + 0.991722i \(0.540985\pi\)
\(18\) 0 0
\(19\) −100.000 −1.20745 −0.603726 0.797192i \(-0.706318\pi\)
−0.603726 + 0.797192i \(0.706318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 36.0000 62.3538i 0.326370 0.565290i −0.655418 0.755266i \(-0.727508\pi\)
0.981789 + 0.189976i \(0.0608410\pi\)
\(24\) 0 0
\(25\) −99.5000 172.339i −0.796000 1.37871i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −117.000 202.650i −0.749185 1.29763i −0.948214 0.317632i \(-0.897112\pi\)
0.199029 0.979994i \(-0.436221\pi\)
\(30\) 0 0
\(31\) 8.00000 13.8564i 0.0463498 0.0802801i −0.841920 0.539603i \(-0.818574\pi\)
0.888270 + 0.459323i \(0.151908\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 144.000 0.695441
\(36\) 0 0
\(37\) −226.000 −1.00417 −0.502083 0.864819i \(-0.667433\pi\)
−0.502083 + 0.864819i \(0.667433\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 45.0000 77.9423i 0.171410 0.296891i −0.767503 0.641045i \(-0.778501\pi\)
0.938913 + 0.344154i \(0.111834\pi\)
\(42\) 0 0
\(43\) −226.000 391.443i −0.801504 1.38825i −0.918626 0.395128i \(-0.870700\pi\)
0.117122 0.993118i \(-0.462633\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 216.000 + 374.123i 0.670358 + 1.16109i 0.977803 + 0.209528i \(0.0671929\pi\)
−0.307444 + 0.951566i \(0.599474\pi\)
\(48\) 0 0
\(49\) 139.500 241.621i 0.406706 0.704435i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −414.000 −1.07297 −0.536484 0.843911i \(-0.680248\pi\)
−0.536484 + 0.843911i \(0.680248\pi\)
\(54\) 0 0
\(55\) −648.000 −1.58866
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −342.000 + 592.361i −0.754654 + 1.30710i 0.190892 + 0.981611i \(0.438862\pi\)
−0.945546 + 0.325489i \(0.894471\pi\)
\(60\) 0 0
\(61\) −211.000 365.463i −0.442882 0.767094i 0.555020 0.831837i \(-0.312710\pi\)
−0.997902 + 0.0647433i \(0.979377\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 90.0000 + 155.885i 0.171740 + 0.297463i
\(66\) 0 0
\(67\) −166.000 + 287.520i −0.302688 + 0.524272i −0.976744 0.214409i \(-0.931218\pi\)
0.674056 + 0.738681i \(0.264551\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 360.000 0.601748 0.300874 0.953664i \(-0.402722\pi\)
0.300874 + 0.953664i \(0.402722\pi\)
\(72\) 0 0
\(73\) 26.0000 0.0416859 0.0208429 0.999783i \(-0.493365\pi\)
0.0208429 + 0.999783i \(0.493365\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 144.000 249.415i 0.213121 0.369137i
\(78\) 0 0
\(79\) −256.000 443.405i −0.364585 0.631481i 0.624124 0.781325i \(-0.285456\pi\)
−0.988710 + 0.149845i \(0.952123\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −594.000 1028.84i −0.785542 1.36060i −0.928675 0.370895i \(-0.879051\pi\)
0.143133 0.989703i \(-0.454282\pi\)
\(84\) 0 0
\(85\) 162.000 280.592i 0.206722 0.358053i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 630.000 0.750336 0.375168 0.926957i \(-0.377585\pi\)
0.375168 + 0.926957i \(0.377585\pi\)
\(90\) 0 0
\(91\) −80.0000 −0.0921569
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 900.000 1558.85i 0.971979 1.68352i
\(96\) 0 0
\(97\) 527.000 + 912.791i 0.551637 + 0.955462i 0.998157 + 0.0606889i \(0.0193298\pi\)
−0.446520 + 0.894774i \(0.647337\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 279.000 + 483.242i 0.274867 + 0.476083i 0.970101 0.242700i \(-0.0780329\pi\)
−0.695235 + 0.718783i \(0.744700\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.00382652 + 0.00662773i −0.867932 0.496682i \(-0.834551\pi\)
0.864106 + 0.503310i \(0.167885\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1764.00 −1.59376 −0.796880 0.604138i \(-0.793518\pi\)
−0.796880 + 0.604138i \(0.793518\pi\)
\(108\) 0 0
\(109\) 1622.00 1.42532 0.712658 0.701512i \(-0.247491\pi\)
0.712658 + 0.701512i \(0.247491\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −567.000 + 982.073i −0.472025 + 0.817572i −0.999488 0.0320065i \(-0.989810\pi\)
0.527462 + 0.849578i \(0.323144\pi\)
\(114\) 0 0
\(115\) 648.000 + 1122.37i 0.525446 + 0.910099i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 72.0000 + 124.708i 0.0554641 + 0.0960667i
\(120\) 0 0
\(121\) 17.5000 30.3109i 0.0131480 0.0227730i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1332.00 0.953102
\(126\) 0 0
\(127\) −592.000 −0.413634 −0.206817 0.978380i \(-0.566310\pi\)
−0.206817 + 0.978380i \(0.566310\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −954.000 + 1652.38i −0.636270 + 1.10205i 0.349975 + 0.936759i \(0.386190\pi\)
−0.986245 + 0.165293i \(0.947143\pi\)
\(132\) 0 0
\(133\) 400.000 + 692.820i 0.260785 + 0.451693i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 477.000 + 826.188i 0.297466 + 0.515226i 0.975556 0.219753i \(-0.0705251\pi\)
−0.678089 + 0.734979i \(0.737192\pi\)
\(138\) 0 0
\(139\) −1282.00 + 2220.49i −0.782286 + 1.35496i 0.148320 + 0.988939i \(0.452613\pi\)
−0.930607 + 0.366021i \(0.880720\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 360.000 0.210522
\(144\) 0 0
\(145\) 4212.00 2.41233
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −369.000 + 639.127i −0.202884 + 0.351405i −0.949456 0.313899i \(-0.898365\pi\)
0.746573 + 0.665304i \(0.231698\pi\)
\(150\) 0 0
\(151\) 1220.00 + 2113.10i 0.657498 + 1.13882i 0.981261 + 0.192682i \(0.0617185\pi\)
−0.323763 + 0.946138i \(0.604948\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 144.000 + 249.415i 0.0746217 + 0.129249i
\(156\) 0 0
\(157\) 1277.00 2211.83i 0.649145 1.12435i −0.334183 0.942508i \(-0.608460\pi\)
0.983328 0.181843i \(-0.0582063\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −576.000 −0.281958
\(162\) 0 0
\(163\) −820.000 −0.394033 −0.197016 0.980400i \(-0.563125\pi\)
−0.197016 + 0.980400i \(0.563125\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 972.000 1683.55i 0.450393 0.780103i −0.548017 0.836467i \(-0.684617\pi\)
0.998410 + 0.0563635i \(0.0179506\pi\)
\(168\) 0 0
\(169\) 1048.50 + 1816.06i 0.477242 + 0.826607i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −621.000 1075.60i −0.272912 0.472697i 0.696694 0.717368i \(-0.254653\pi\)
−0.969606 + 0.244671i \(0.921320\pi\)
\(174\) 0 0
\(175\) −796.000 + 1378.71i −0.343840 + 0.595548i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1116.00 −0.465999 −0.232999 0.972477i \(-0.574854\pi\)
−0.232999 + 0.972477i \(0.574854\pi\)
\(180\) 0 0
\(181\) 1070.00 0.439406 0.219703 0.975567i \(-0.429491\pi\)
0.219703 + 0.975567i \(0.429491\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2034.00 3522.99i 0.808339 1.40008i
\(186\) 0 0
\(187\) −324.000 561.184i −0.126702 0.219454i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −288.000 498.831i −0.109104 0.188974i 0.806303 0.591502i \(-0.201465\pi\)
−0.915408 + 0.402528i \(0.868132\pi\)
\(192\) 0 0
\(193\) 671.000 1162.21i 0.250257 0.433458i −0.713339 0.700819i \(-0.752818\pi\)
0.963597 + 0.267361i \(0.0861515\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1422.00 −0.514281 −0.257140 0.966374i \(-0.582780\pi\)
−0.257140 + 0.966374i \(0.582780\pi\)
\(198\) 0 0
\(199\) 872.000 0.310625 0.155313 0.987865i \(-0.450361\pi\)
0.155313 + 0.987865i \(0.450361\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −936.000 + 1621.20i −0.323617 + 0.560522i
\(204\) 0 0
\(205\) 810.000 + 1402.96i 0.275965 + 0.477986i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1800.00 3117.69i −0.595735 1.03184i
\(210\) 0 0
\(211\) −670.000 + 1160.47i −0.218600 + 0.378627i −0.954380 0.298594i \(-0.903482\pi\)
0.735780 + 0.677221i \(0.236816\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8136.00 2.58079
\(216\) 0 0
\(217\) −128.000 −0.0400424
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −90.0000 + 155.885i −0.0273939 + 0.0474477i
\(222\) 0 0
\(223\) −2440.00 4226.20i −0.732711 1.26909i −0.955720 0.294276i \(-0.904922\pi\)
0.223010 0.974816i \(-0.428412\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1350.00 + 2338.27i 0.394725 + 0.683684i 0.993066 0.117557i \(-0.0375064\pi\)
−0.598341 + 0.801242i \(0.704173\pi\)
\(228\) 0 0
\(229\) −127.000 + 219.970i −0.0366480 + 0.0634762i −0.883768 0.467926i \(-0.845001\pi\)
0.847120 + 0.531402i \(0.178335\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4410.00 −1.23995 −0.619976 0.784621i \(-0.712858\pi\)
−0.619976 + 0.784621i \(0.712858\pi\)
\(234\) 0 0
\(235\) −7776.00 −2.15851
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1944.00 + 3367.11i −0.526138 + 0.911297i 0.473399 + 0.880848i \(0.343027\pi\)
−0.999536 + 0.0304489i \(0.990306\pi\)
\(240\) 0 0
\(241\) −2569.00 4449.64i −0.686655 1.18932i −0.972914 0.231169i \(-0.925745\pi\)
0.286259 0.958152i \(-0.407588\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2511.00 + 4349.18i 0.654783 + 1.13412i
\(246\) 0 0
\(247\) −500.000 + 866.025i −0.128803 + 0.223093i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4788.00 −1.20405 −0.602024 0.798478i \(-0.705639\pi\)
−0.602024 + 0.798478i \(0.705639\pi\)
\(252\) 0 0
\(253\) 2592.00 0.644101
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2943.00 + 5097.43i −0.714316 + 1.23723i 0.248906 + 0.968528i \(0.419929\pi\)
−0.963223 + 0.268705i \(0.913404\pi\)
\(258\) 0 0
\(259\) 904.000 + 1565.77i 0.216880 + 0.375647i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1116.00 + 1932.97i 0.261656 + 0.453201i 0.966682 0.255980i \(-0.0823981\pi\)
−0.705026 + 0.709181i \(0.749065\pi\)
\(264\) 0 0
\(265\) 3726.00 6453.62i 0.863722 1.49601i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 666.000 0.150954 0.0754772 0.997148i \(-0.475952\pi\)
0.0754772 + 0.997148i \(0.475952\pi\)
\(270\) 0 0
\(271\) −5536.00 −1.24092 −0.620458 0.784240i \(-0.713053\pi\)
−0.620458 + 0.784240i \(0.713053\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3582.00 6204.21i 0.785464 1.36046i
\(276\) 0 0
\(277\) −1063.00 1841.17i −0.230576 0.399369i 0.727402 0.686212i \(-0.240728\pi\)
−0.957978 + 0.286843i \(0.907394\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1467.00 2540.92i −0.311437 0.539425i 0.667236 0.744846i \(-0.267477\pi\)
−0.978674 + 0.205421i \(0.934144\pi\)
\(282\) 0 0
\(283\) −1018.00 + 1763.23i −0.213830 + 0.370364i −0.952910 0.303253i \(-0.901927\pi\)
0.739080 + 0.673617i \(0.235260\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −720.000 −0.148085
\(288\) 0 0
\(289\) −4589.00 −0.934053
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1143.00 1979.73i 0.227900 0.394735i −0.729285 0.684210i \(-0.760147\pi\)
0.957186 + 0.289475i \(0.0934807\pi\)
\(294\) 0 0
\(295\) −6156.00 10662.5i −1.21497 2.10439i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −360.000 623.538i −0.0696299 0.120603i
\(300\) 0 0
\(301\) −1808.00 + 3131.55i −0.346217 + 0.599666i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7596.00 1.42605
\(306\) 0 0
\(307\) 1244.00 0.231267 0.115633 0.993292i \(-0.463110\pi\)
0.115633 + 0.993292i \(0.463110\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 612.000 1060.02i 0.111586 0.193273i −0.804824 0.593514i \(-0.797740\pi\)
0.916410 + 0.400241i \(0.131074\pi\)
\(312\) 0 0
\(313\) −949.000 1643.72i −0.171376 0.296832i 0.767525 0.641019i \(-0.221488\pi\)
−0.938901 + 0.344187i \(0.888155\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4581.00 7934.52i −0.811655 1.40583i −0.911705 0.410845i \(-0.865234\pi\)
0.100050 0.994982i \(-0.468100\pi\)
\(318\) 0 0
\(319\) 4212.00 7295.40i 0.739269 1.28045i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1800.00 0.310076
\(324\) 0 0
\(325\) −1990.00 −0.339647
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1728.00 2992.98i 0.289568 0.501546i
\(330\) 0 0
\(331\) 2174.00 + 3765.48i 0.361009 + 0.625285i 0.988127 0.153639i \(-0.0490992\pi\)
−0.627119 + 0.778924i \(0.715766\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2988.00 5175.37i −0.487319 0.844061i
\(336\) 0 0
\(337\) −3577.00 + 6195.55i −0.578195 + 1.00146i 0.417492 + 0.908681i \(0.362909\pi\)
−0.995686 + 0.0927819i \(0.970424\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 576.000 0.0914726
\(342\) 0 0
\(343\) −4976.00 −0.783320
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −918.000 + 1590.02i −0.142020 + 0.245985i −0.928257 0.371939i \(-0.878693\pi\)
0.786237 + 0.617925i \(0.212026\pi\)
\(348\) 0 0
\(349\) −2947.00 5104.35i −0.452004 0.782893i 0.546507 0.837455i \(-0.315957\pi\)
−0.998510 + 0.0545613i \(0.982624\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5553.00 + 9618.08i 0.837270 + 1.45019i 0.892169 + 0.451703i \(0.149183\pi\)
−0.0548984 + 0.998492i \(0.517484\pi\)
\(354\) 0 0
\(355\) −3240.00 + 5611.84i −0.484398 + 0.839002i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13176.0 −1.93705 −0.968527 0.248907i \(-0.919929\pi\)
−0.968527 + 0.248907i \(0.919929\pi\)
\(360\) 0 0
\(361\) 3141.00 0.457938
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −234.000 + 405.300i −0.0335565 + 0.0581216i
\(366\) 0 0
\(367\) 3056.00 + 5293.15i 0.434665 + 0.752861i 0.997268 0.0738656i \(-0.0235336\pi\)
−0.562604 + 0.826727i \(0.690200\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1656.00 + 2868.28i 0.231739 + 0.401384i
\(372\) 0 0
\(373\) 6809.00 11793.5i 0.945192 1.63712i 0.189826 0.981818i \(-0.439208\pi\)
0.755366 0.655303i \(-0.227459\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2340.00 −0.319671
\(378\) 0 0
\(379\) 692.000 0.0937880 0.0468940 0.998900i \(-0.485068\pi\)
0.0468940 + 0.998900i \(0.485068\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4032.00 + 6983.63i −0.537926 + 0.931715i 0.461090 + 0.887353i \(0.347459\pi\)
−0.999016 + 0.0443613i \(0.985875\pi\)
\(384\) 0 0
\(385\) 2592.00 + 4489.48i 0.343118 + 0.594298i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6327.00 + 10958.7i 0.824657 + 1.42835i 0.902181 + 0.431358i \(0.141965\pi\)
−0.0775239 + 0.996990i \(0.524701\pi\)
\(390\) 0 0
\(391\) −648.000 + 1122.37i −0.0838127 + 0.145168i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9216.00 1.17394
\(396\) 0 0
\(397\) −106.000 −0.0134005 −0.00670024 0.999978i \(-0.502133\pi\)
−0.00670024 + 0.999978i \(0.502133\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2007.00 + 3476.23i −0.249937 + 0.432904i −0.963508 0.267679i \(-0.913743\pi\)
0.713571 + 0.700583i \(0.247077\pi\)
\(402\) 0 0
\(403\) −80.0000 138.564i −0.00988855 0.0171275i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4068.00 7045.98i −0.495438 0.858124i
\(408\) 0 0
\(409\) −1957.00 + 3389.62i −0.236595 + 0.409795i −0.959735 0.280907i \(-0.909365\pi\)
0.723140 + 0.690702i \(0.242698\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5472.00 0.651960
\(414\) 0 0
\(415\) 21384.0 2.52940
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2214.00 3834.76i 0.258141 0.447113i −0.707603 0.706610i \(-0.750224\pi\)
0.965744 + 0.259497i \(0.0835568\pi\)
\(420\) 0 0
\(421\) 7745.00 + 13414.7i 0.896599 + 1.55296i 0.831813 + 0.555056i \(0.187303\pi\)
0.0647860 + 0.997899i \(0.479364\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1791.00 + 3102.10i 0.204415 + 0.354057i
\(426\) 0 0
\(427\) −1688.00 + 2923.70i −0.191307 + 0.331353i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6768.00 −0.756388 −0.378194 0.925726i \(-0.623455\pi\)
−0.378194 + 0.925726i \(0.623455\pi\)
\(432\) 0 0
\(433\) 1298.00 0.144060 0.0720299 0.997402i \(-0.477052\pi\)
0.0720299 + 0.997402i \(0.477052\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3600.00 + 6235.38i −0.394076 + 0.682560i
\(438\) 0 0
\(439\) 1124.00 + 1946.83i 0.122200 + 0.211656i 0.920635 0.390425i \(-0.127672\pi\)
−0.798435 + 0.602081i \(0.794339\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4806.00 8324.24i −0.515440 0.892768i −0.999839 0.0179214i \(-0.994295\pi\)
0.484399 0.874847i \(-0.339038\pi\)
\(444\) 0 0
\(445\) −5670.00 + 9820.73i −0.604008 + 1.04617i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −162.000 −0.0170273 −0.00851364 0.999964i \(-0.502710\pi\)
−0.00851364 + 0.999964i \(0.502710\pi\)
\(450\) 0 0
\(451\) 3240.00 0.338283
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 720.000 1247.08i 0.0741849 0.128492i
\(456\) 0 0
\(457\) −685.000 1186.45i −0.0701159 0.121444i 0.828836 0.559492i \(-0.189004\pi\)
−0.898952 + 0.438047i \(0.855670\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7677.00 13297.0i −0.775604 1.34339i −0.934454 0.356083i \(-0.884112\pi\)
0.158850 0.987303i \(-0.449221\pi\)
\(462\) 0 0
\(463\) 6512.00 11279.1i 0.653646 1.13215i −0.328585 0.944474i \(-0.606572\pi\)
0.982231 0.187674i \(-0.0600950\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14436.0 1.43045 0.715223 0.698896i \(-0.246325\pi\)
0.715223 + 0.698896i \(0.246325\pi\)
\(468\) 0 0
\(469\) 2656.00 0.261498
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8136.00 14092.0i 0.790896 1.36987i
\(474\) 0 0
\(475\) 9950.00 + 17233.9i 0.961131 + 1.66473i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6048.00 + 10475.4i 0.576911 + 0.999238i 0.995831 + 0.0912156i \(0.0290752\pi\)
−0.418921 + 0.908023i \(0.637591\pi\)
\(480\) 0 0
\(481\) −1130.00 + 1957.22i −0.107118 + 0.185533i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18972.0 −1.77624
\(486\) 0 0
\(487\) 6056.00 0.563498 0.281749 0.959488i \(-0.409085\pi\)
0.281749 + 0.959488i \(0.409085\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3762.00 6515.98i 0.345777 0.598904i −0.639717 0.768610i \(-0.720949\pi\)
0.985495 + 0.169706i \(0.0542819\pi\)
\(492\) 0 0
\(493\) 2106.00 + 3647.70i 0.192392 + 0.333233i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1440.00 2494.15i −0.129965 0.225107i
\(498\) 0 0
\(499\) −2638.00 + 4569.15i −0.236660 + 0.409906i −0.959754 0.280843i \(-0.909386\pi\)
0.723094 + 0.690749i \(0.242719\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4968.00 −0.440382 −0.220191 0.975457i \(-0.570668\pi\)
−0.220191 + 0.975457i \(0.570668\pi\)
\(504\) 0 0
\(505\) −10044.0 −0.885054
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5499.00 9524.55i 0.478858 0.829407i −0.520848 0.853650i \(-0.674384\pi\)
0.999706 + 0.0242426i \(0.00771742\pi\)
\(510\) 0 0
\(511\) −104.000 180.133i −0.00900331 0.0155942i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −72.0000 124.708i −0.00616058 0.0106704i
\(516\) 0 0
\(517\) −7776.00 + 13468.4i −0.661486 + 1.14573i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8838.00 0.743186 0.371593 0.928396i \(-0.378812\pi\)
0.371593 + 0.928396i \(0.378812\pi\)
\(522\) 0 0
\(523\) 22436.0 1.87583 0.937914 0.346869i \(-0.112755\pi\)
0.937914 + 0.346869i \(0.112755\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −144.000 + 249.415i −0.0119027 + 0.0206161i
\(528\) 0 0
\(529\) 3491.50 + 6047.46i 0.286965 + 0.497038i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −450.000 779.423i −0.0365697 0.0633406i
\(534\) 0 0
\(535\) 15876.0 27498.0i 1.28295 2.22214i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10044.0 0.802645
\(540\) 0 0
\(541\) −4762.00 −0.378437 −0.189218 0.981935i \(-0.560595\pi\)
−0.189218 + 0.981935i \(0.560595\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14598.0 + 25284.5i −1.14736 + 1.98728i
\(546\) 0 0
\(547\) 3002.00 + 5199.62i 0.234655 + 0.406434i 0.959172 0.282822i \(-0.0912706\pi\)
−0.724517 + 0.689257i \(0.757937\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11700.0 + 20265.0i 0.904604 + 1.56682i
\(552\) 0 0
\(553\) −2048.00 + 3547.24i −0.157486 + 0.272774i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5274.00 0.401197 0.200598 0.979674i \(-0.435711\pi\)
0.200598 + 0.979674i \(0.435711\pi\)
\(558\) 0 0
\(559\) −4520.00 −0.341996
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6210.00 + 10756.0i −0.464867 + 0.805174i −0.999196 0.0401033i \(-0.987231\pi\)
0.534328 + 0.845277i \(0.320565\pi\)
\(564\) 0 0
\(565\) −10206.0 17677.3i −0.759946 1.31627i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10683.0 18503.5i −0.787091 1.36328i −0.927742 0.373222i \(-0.878253\pi\)
0.140651 0.990059i \(-0.455080\pi\)
\(570\) 0 0
\(571\) −10570.0 + 18307.8i −0.774677 + 1.34178i 0.160298 + 0.987069i \(0.448754\pi\)
−0.934976 + 0.354712i \(0.884579\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14328.0 −1.03916
\(576\) 0 0
\(577\) 3266.00 0.235642 0.117821 0.993035i \(-0.462409\pi\)
0.117821 + 0.993035i \(0.462409\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4752.00 + 8230.71i −0.339322 + 0.587723i
\(582\) 0 0
\(583\) −7452.00 12907.2i −0.529383 0.916918i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8514.00 + 14746.7i 0.598655 + 1.03690i 0.993020 + 0.117947i \(0.0376312\pi\)
−0.394365 + 0.918954i \(0.629035\pi\)
\(588\) 0 0
\(589\) −800.000 + 1385.64i −0.0559651 + 0.0969343i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9522.00 −0.659396 −0.329698 0.944086i \(-0.606947\pi\)
−0.329698 + 0.944086i \(0.606947\pi\)
\(594\) 0 0
\(595\) −2592.00 −0.178591
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5148.00 + 8916.60i −0.351155 + 0.608218i −0.986452 0.164050i \(-0.947544\pi\)
0.635297 + 0.772268i \(0.280877\pi\)
\(600\) 0 0
\(601\) 1691.00 + 2928.90i 0.114771 + 0.198789i 0.917688 0.397301i \(-0.130053\pi\)
−0.802917 + 0.596091i \(0.796720\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 315.000 + 545.596i 0.0211679 + 0.0366639i
\(606\) 0 0
\(607\) 10328.0 17888.6i 0.690611 1.19617i −0.281028 0.959700i \(-0.590675\pi\)
0.971638 0.236473i \(-0.0759914\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4320.00 0.286037
\(612\) 0 0
\(613\) −22114.0 −1.45706 −0.728529 0.685015i \(-0.759795\pi\)
−0.728529 + 0.685015i \(0.759795\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9981.00 17287.6i 0.651248 1.12799i −0.331573 0.943430i \(-0.607579\pi\)
0.982820 0.184565i \(-0.0590875\pi\)
\(618\) 0 0
\(619\) 302.000 + 523.079i 0.0196097 + 0.0339650i 0.875664 0.482921i \(-0.160424\pi\)
−0.856054 + 0.516886i \(0.827091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2520.00 4364.77i −0.162057 0.280691i
\(624\) 0 0
\(625\) 449.500 778.557i 0.0287680 0.0498276i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4068.00 0.257872
\(630\) 0 0
\(631\) 152.000 0.00958958 0.00479479 0.999989i \(-0.498474\pi\)
0.00479479 + 0.999989i \(0.498474\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5328.00 9228.37i 0.332969 0.576719i
\(636\) 0 0
\(637\) −1395.00 2416.21i −0.0867691 0.150288i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2097.00 + 3632.11i 0.129215 + 0.223806i 0.923372 0.383905i \(-0.125421\pi\)
−0.794158 + 0.607711i \(0.792088\pi\)
\(642\) 0 0
\(643\) 3626.00 6280.42i 0.222388 0.385187i −0.733145 0.680073i \(-0.761948\pi\)
0.955533 + 0.294885i \(0.0952815\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6696.00 0.406873 0.203437 0.979088i \(-0.434789\pi\)
0.203437 + 0.979088i \(0.434789\pi\)
\(648\) 0 0
\(649\) −24624.0 −1.48933
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14211.0 24614.2i 0.851638 1.47508i −0.0280919 0.999605i \(-0.508943\pi\)
0.879730 0.475474i \(-0.157724\pi\)
\(654\) 0 0
\(655\) −17172.0 29742.8i −1.02437 1.77427i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9954.00 17240.8i −0.588396 1.01913i −0.994443 0.105279i \(-0.966426\pi\)
0.406047 0.913852i \(-0.366907\pi\)
\(660\) 0 0
\(661\) −7159.00 + 12399.8i −0.421260 + 0.729644i −0.996063 0.0886482i \(-0.971745\pi\)
0.574803 + 0.818292i \(0.305079\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14400.0 −0.839711
\(666\) 0 0
\(667\) −16848.0 −0.978047
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7596.00 13156.7i 0.437020 0.756941i
\(672\) 0 0
\(673\) −15025.0 26024.1i −0.860581 1.49057i −0.871369 0.490629i \(-0.836767\pi\)
0.0107875 0.999942i \(-0.496566\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11079.0 + 19189.4i 0.628952 + 1.08938i 0.987762 + 0.155966i \(0.0498492\pi\)
−0.358810 + 0.933411i \(0.616817\pi\)
\(678\) 0 0
\(679\) 4216.00 7302.33i 0.238285 0.412721i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3132.00 0.175465 0.0877325 0.996144i \(-0.472038\pi\)
0.0877325 + 0.996144i \(0.472038\pi\)
\(684\) 0 0
\(685\) −17172.0 −0.957822
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2070.00 + 3585.35i −0.114457 + 0.198245i
\(690\) 0 0
\(691\) 10466.0 + 18127.6i 0.576187 + 0.997986i 0.995912 + 0.0903340i \(0.0287934\pi\)
−0.419724 + 0.907652i \(0.637873\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23076.0 39968.8i −1.25946 2.18144i
\(696\) 0 0
\(697\) −810.000 + 1402.96i −0.0440186 + 0.0762424i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21834.0 1.17640 0.588202 0.808714i \(-0.299836\pi\)
0.588202 + 0.808714i \(0.299836\pi\)
\(702\) 0 0
\(703\) 22600.0 1.21248
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2232.00 3865.94i 0.118731 0.205649i
\(708\) 0 0
\(709\) −6223.00 10778.6i −0.329633 0.570941i 0.652806 0.757525i \(-0.273592\pi\)
−0.982439 + 0.186584i \(0.940258\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −576.000 997.661i −0.0302544 0.0524021i
\(714\) 0 0
\(715\) −3240.00 + 5611.84i −0.169467 + 0.293526i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12528.0 0.649813 0.324907 0.945746i \(-0.394667\pi\)
0.324907 + 0.945746i \(0.394667\pi\)
\(720\) 0 0
\(721\) 64.0000 0.00330580
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −23283.0 + 40327.3i −1.19270 + 2.06582i
\(726\) 0 0
\(727\) −5788.00 10025.1i −0.295275 0.511432i 0.679774 0.733422i \(-0.262078\pi\)
−0.975049 + 0.221990i \(0.928745\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4068.00 + 7045.98i 0.205828 + 0.356505i
\(732\) 0 0
\(733\) 14669.0 25407.5i 0.739170 1.28028i −0.213699 0.976900i \(-0.568551\pi\)
0.952869 0.303381i \(-0.0981155\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11952.0 −0.597364
\(738\) 0 0
\(739\) 2540.00 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9396.00 + 16274.3i −0.463938 + 0.803564i −0.999153 0.0411519i \(-0.986897\pi\)
0.535215 + 0.844716i \(0.320231\pi\)
\(744\) 0 0
\(745\) −6642.00 11504.3i −0.326636 0.565751i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7056.00 + 12221.4i 0.344220 + 0.596206i
\(750\) 0 0
\(751\) −2416.00 + 4184.63i −0.117392 + 0.203328i −0.918733 0.394879i \(-0.870787\pi\)
0.801342 + 0.598207i \(0.204120\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −43920.0 −2.11710
\(756\) 0 0
\(757\) −20818.0 −0.999529 −0.499764 0.866161i \(-0.666580\pi\)
−0.499764 + 0.866161i \(0.666580\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6021.00 10428.7i 0.286808 0.496766i −0.686238 0.727377i \(-0.740739\pi\)
0.973046 + 0.230611i \(0.0740724\pi\)
\(762\) 0 0
\(763\) −6488.00 11237.5i −0.307839 0.533193i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3420.00 + 5923.61i 0.161003 + 0.278865i
\(768\) 0 0
\(769\) −6529.00 + 11308.6i −0.306166 + 0.530295i −0.977520 0.210841i \(-0.932380\pi\)
0.671354 + 0.741137i \(0.265713\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11826.0 0.550261 0.275130 0.961407i \(-0.411279\pi\)
0.275130 + 0.961407i \(0.411279\pi\)
\(774\) 0 0
\(775\) −3184.00 −0.147578
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4500.00 + 7794.23i −0.206969 + 0.358482i
\(780\) 0 0
\(781\) 6480.00 + 11223.7i 0.296892 + 0.514232i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22986.0 + 39812.9i 1.04510 + 1.81017i
\(786\) 0 0
\(787\) −5998.00 + 10388.8i −0.271672 + 0.470549i −0.969290 0.245920i \(-0.920910\pi\)
0.697618 + 0.716470i \(0.254243\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9072.00 0.407792
\(792\) 0 0
\(793\) −4220.00 −0.188974
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3483.00 6032.73i 0.154798 0.268118i −0.778187 0.628032i \(-0.783861\pi\)
0.932986 + 0.359914i \(0.117194\pi\)
\(798\) 0 0
\(799\) −3888.00 6734.21i −0.172150 0.298172i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 468.000 + 810.600i 0.0205671 + 0.0356232i
\(804\) 0 0
\(805\) 5184.00 8978.95i 0.226971 0.393126i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40806.0 1.77338 0.886689 0.462367i \(-0.153000\pi\)
0.886689 + 0.462367i \(0.153000\pi\)
\(810\) 0 0
\(811\) −17980.0 −0.778500 −0.389250 0.921132i \(-0.627266\pi\)
−0.389250 + 0.921132i \(0.627266\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7380.00 12782.5i 0.317190 0.549390i
\(816\) 0 0
\(817\) 22600.0 + 39144.3i 0.967777 + 1.67624i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6417.00 11114.6i −0.272783 0.472474i 0.696790 0.717275i \(-0.254611\pi\)
−0.969573 + 0.244801i \(0.921277\pi\)
\(822\) 0 0
\(823\) 18932.0 32791.2i 0.801857 1.38886i −0.116536 0.993186i \(-0.537179\pi\)
0.918393 0.395670i \(-0.129488\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42516.0 −1.78770 −0.893849 0.448368i \(-0.852005\pi\)
−0.893849 + 0.448368i \(0.852005\pi\)
\(828\) 0 0
\(829\) 45638.0 1.91203 0.956015 0.293317i \(-0.0947591\pi\)
0.956015 + 0.293317i \(0.0947591\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2511.00 + 4349.18i −0.104443 + 0.180901i
\(834\) 0 0
\(835\) 17496.0 + 30304.0i 0.725119 + 1.25594i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8748.00 + 15152.0i 0.359970 + 0.623486i 0.987955 0.154739i \(-0.0494537\pi\)
−0.627986 + 0.778225i \(0.716120\pi\)
\(840\) 0 0
\(841\) −15183.5 + 26298.6i −0.622555 + 1.07830i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −37746.0 −1.53669
\(846\) 0 0
\(847\) −280.000 −0.0113588
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8136.00 + 14092.0i −0.327730 + 0.567646i
\(852\) 0 0
\(853\) −16087.0 27863.5i −0.645731 1.11844i −0.984132 0.177437i \(-0.943219\pi\)
0.338401 0.941002i \(-0.390114\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19467.0 33717.8i −0.775939 1.34397i −0.934265 0.356579i \(-0.883943\pi\)
0.158326 0.987387i \(-0.449390\pi\)
\(858\) 0 0
\(859\) −14890.0 + 25790.2i −0.591432 + 1.02439i 0.402608 + 0.915373i \(0.368104\pi\)
−0.994040 + 0.109018i \(0.965229\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48096.0 1.89711 0.948556 0.316611i \(-0.102545\pi\)
0.948556 + 0.316611i \(0.102545\pi\)
\(864\) 0 0
\(865\) 22356.0 0.878759
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9216.00 15962.6i 0.359760 0.623122i
\(870\) 0 0
\(871\) 1660.00 + 2875.20i 0.0645774 + 0.111851i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5328.00 9228.37i −0.205851 0.356544i
\(876\) 0 0
\(877\) −10651.0 + 18448.1i −0.410101 + 0.710316i −0.994900 0.100862i \(-0.967840\pi\)
0.584799 + 0.811178i \(0.301173\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7470.00 0.285665 0.142832 0.989747i \(-0.454379\pi\)
0.142832 + 0.989747i \(0.454379\pi\)
\(882\) 0 0
\(883\) 764.000 0.0291174 0.0145587 0.999894i \(-0.495366\pi\)
0.0145587 + 0.999894i \(0.495366\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16164.0 27996.9i 0.611876 1.05980i −0.379048 0.925377i \(-0.623748\pi\)
0.990924 0.134423i \(-0.0429182\pi\)
\(888\) 0 0
\(889\) 2368.00 + 4101.50i 0.0893365 + 0.154735i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −21600.0 37412.3i −0.809425 1.40197i
\(894\) 0 0
\(895\) 10044.0 17396.7i 0.375122 0.649730i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3744.00 −0.138898
\(900\) 0 0
\(901\) 7452.00 0.275541
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9630.00 + 16679.6i −0.353715 + 0.612652i
\(906\) 0 0
\(907\) 18158.0 + 31450.6i 0.664748 + 1.15138i 0.979354 + 0.202155i \(0.0647944\pi\)
−0.314605 + 0.949223i \(0.601872\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6696.00 11597.8i −0.243522 0.421792i 0.718193 0.695844i \(-0.244969\pi\)
−0.961715 + 0.274052i \(0.911636\pi\)
\(912\) 0 0
\(913\) 21384.0 37038.2i 0.775145 1.34259i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15264.0 0.549686
\(918\) 0 0
\(919\) 38072.0 1.36657 0.683286 0.730151i \(-0.260550\pi\)
0.683286 + 0.730151i \(0.260550\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1800.00 3117.69i 0.0641904 0.111181i
\(924\) 0 0
\(925\) 22487.0 + 38948.6i 0.799317 + 1.38446i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6399.00 11083.4i −0.225990 0.391426i 0.730626 0.682778i \(-0.239228\pi\)
−0.956616 + 0.291352i \(0.905895\pi\)
\(930\) 0 0
\(931\) −13950.0 + 24162.1i −0.491077 + 0.850570i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11664.0 0.407972
\(936\) 0 0
\(937\) 34874.0 1.21588 0.607942 0.793981i \(-0.291995\pi\)
0.607942 + 0.793981i \(0.291995\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8595.00 14887.0i 0.297757 0.515730i −0.677866 0.735186i \(-0.737095\pi\)
0.975622 + 0.219456i \(0.0704283\pi\)
\(942\) 0 0
\(943\) −3240.00 5611.84i −0.111886 0.193793i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20142.0 + 34887.0i 0.691158 + 1.19712i 0.971459 + 0.237209i \(0.0762327\pi\)
−0.280300 + 0.959912i \(0.590434\pi\)
\(948\) 0 0
\(949\) 130.000 225.167i 0.00444676 0.00770202i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15498.0 −0.526789 −0.263394 0.964688i \(-0.584842\pi\)
−0.263394 + 0.964688i \(0.584842\pi\)
\(954\) 0 0
\(955\) 10368.0 0.351310
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3816.00 6609.51i 0.128493 0.222557i
\(960\) 0 0
\(961\) 14767.5 + 25578.1i 0.495703 + 0.858583i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12078.0 + 20919.7i 0.402906 + 0.697854i
\(966\) 0 0
\(967\) −18580.0 + 32181.5i −0.617883 + 1.07020i 0.371989 + 0.928237i \(0.378676\pi\)
−0.989871 + 0.141967i \(0.954657\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18468.0 −0.610367 −0.305183 0.952294i \(-0.598718\pi\)
−0.305183 + 0.952294i \(0.598718\pi\)
\(972\) 0 0
\(973\) 20512.0 0.675832
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5193.00 8994.54i 0.170050 0.294535i −0.768387 0.639985i \(-0.778940\pi\)
0.938437 + 0.345450i \(0.112274\pi\)
\(978\) 0 0
\(979\) 11340.0 + 19641.5i 0.370202 + 0.641209i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22068.0 + 38222.9i 0.716032 + 1.24020i 0.962560 + 0.271069i \(0.0873771\pi\)
−0.246528 + 0.969136i \(0.579290\pi\)
\(984\) 0 0
\(985\) 12798.0 22166.8i 0.413988 0.717048i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32544.0 −1.04635
\(990\) 0 0
\(991\) −28432.0 −0.911375 −0.455687 0.890140i \(-0.650606\pi\)
−0.455687 + 0.890140i \(0.650606\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7848.00 + 13593.1i −0.250049 + 0.433097i
\(996\) 0 0
\(997\) 19889.0 + 34448.8i 0.631786 + 1.09429i 0.987186 + 0.159572i \(0.0510113\pi\)
−0.355400 + 0.934714i \(0.615655\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.e.a.109.1 2
3.2 odd 2 324.4.e.h.109.1 2
9.2 odd 6 324.4.e.h.217.1 2
9.4 even 3 36.4.a.a.1.1 1
9.5 odd 6 12.4.a.a.1.1 1
9.7 even 3 inner 324.4.e.a.217.1 2
36.23 even 6 48.4.a.a.1.1 1
36.31 odd 6 144.4.a.g.1.1 1
45.4 even 6 900.4.a.g.1.1 1
45.13 odd 12 900.4.d.c.649.1 2
45.14 odd 6 300.4.a.b.1.1 1
45.22 odd 12 900.4.d.c.649.2 2
45.23 even 12 300.4.d.e.49.2 2
45.32 even 12 300.4.d.e.49.1 2
63.4 even 3 1764.4.k.b.1549.1 2
63.5 even 6 588.4.i.e.361.1 2
63.13 odd 6 1764.4.a.b.1.1 1
63.23 odd 6 588.4.i.d.361.1 2
63.31 odd 6 1764.4.k.o.1549.1 2
63.32 odd 6 588.4.i.d.373.1 2
63.40 odd 6 1764.4.k.o.361.1 2
63.41 even 6 588.4.a.c.1.1 1
63.58 even 3 1764.4.k.b.361.1 2
63.59 even 6 588.4.i.e.373.1 2
72.5 odd 6 192.4.a.f.1.1 1
72.13 even 6 576.4.a.b.1.1 1
72.59 even 6 192.4.a.l.1.1 1
72.67 odd 6 576.4.a.a.1.1 1
99.32 even 6 1452.4.a.d.1.1 1
117.5 even 12 2028.4.b.c.337.2 2
117.77 odd 6 2028.4.a.c.1.1 1
117.86 even 12 2028.4.b.c.337.1 2
144.5 odd 12 768.4.d.g.385.1 2
144.59 even 12 768.4.d.j.385.2 2
144.77 odd 12 768.4.d.g.385.2 2
144.131 even 12 768.4.d.j.385.1 2
180.23 odd 12 1200.4.f.d.49.1 2
180.59 even 6 1200.4.a.be.1.1 1
180.167 odd 12 1200.4.f.d.49.2 2
252.167 odd 6 2352.4.a.bk.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
12.4.a.a.1.1 1 9.5 odd 6
36.4.a.a.1.1 1 9.4 even 3
48.4.a.a.1.1 1 36.23 even 6
144.4.a.g.1.1 1 36.31 odd 6
192.4.a.f.1.1 1 72.5 odd 6
192.4.a.l.1.1 1 72.59 even 6
300.4.a.b.1.1 1 45.14 odd 6
300.4.d.e.49.1 2 45.32 even 12
300.4.d.e.49.2 2 45.23 even 12
324.4.e.a.109.1 2 1.1 even 1 trivial
324.4.e.a.217.1 2 9.7 even 3 inner
324.4.e.h.109.1 2 3.2 odd 2
324.4.e.h.217.1 2 9.2 odd 6
576.4.a.a.1.1 1 72.67 odd 6
576.4.a.b.1.1 1 72.13 even 6
588.4.a.c.1.1 1 63.41 even 6
588.4.i.d.361.1 2 63.23 odd 6
588.4.i.d.373.1 2 63.32 odd 6
588.4.i.e.361.1 2 63.5 even 6
588.4.i.e.373.1 2 63.59 even 6
768.4.d.g.385.1 2 144.5 odd 12
768.4.d.g.385.2 2 144.77 odd 12
768.4.d.j.385.1 2 144.131 even 12
768.4.d.j.385.2 2 144.59 even 12
900.4.a.g.1.1 1 45.4 even 6
900.4.d.c.649.1 2 45.13 odd 12
900.4.d.c.649.2 2 45.22 odd 12
1200.4.a.be.1.1 1 180.59 even 6
1200.4.f.d.49.1 2 180.23 odd 12
1200.4.f.d.49.2 2 180.167 odd 12
1452.4.a.d.1.1 1 99.32 even 6
1764.4.a.b.1.1 1 63.13 odd 6
1764.4.k.b.361.1 2 63.58 even 3
1764.4.k.b.1549.1 2 63.4 even 3
1764.4.k.o.361.1 2 63.40 odd 6
1764.4.k.o.1549.1 2 63.31 odd 6
2028.4.a.c.1.1 1 117.77 odd 6
2028.4.b.c.337.1 2 117.86 even 12
2028.4.b.c.337.2 2 117.5 even 12
2352.4.a.bk.1.1 1 252.167 odd 6