Properties

Label 768.4.d.g.385.2
Level 768768
Weight 44
Character 768.385
Analytic conductor 45.31345.313
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,4,Mod(385,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.385");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 768=283 768 = 2^{8} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 768.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 45.313466884445.3134668844
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 385.2
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 768.385
Dual form 768.4.d.g.385.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3.00000iq3+18.0000iq58.00000q79.00000q936.0000iq1110.0000iq1354.0000q15+18.0000q17100.000iq1924.0000iq2172.0000q23199.000q2527.0000iq27234.000iq2916.0000q31+108.000q33144.000iq35+226.000iq37+30.0000q3990.0000q41452.000iq43162.000iq45+432.000q47279.000q49+54.0000iq51414.000iq53+648.000q55+300.000q57+684.000iq59+422.000iq61+72.0000q63+180.000q65+332.000iq67216.000iq69+360.000q7126.0000q73597.000iq75+288.000iq77+512.000q79+81.0000q811188.00iq83+324.000iq85+702.000q87+630.000q89+80.0000iq9148.0000iq93+1800.00q951054.00q97+324.000iq99+O(q100)q+3.00000i q^{3} +18.0000i q^{5} -8.00000 q^{7} -9.00000 q^{9} -36.0000i q^{11} -10.0000i q^{13} -54.0000 q^{15} +18.0000 q^{17} -100.000i q^{19} -24.0000i q^{21} -72.0000 q^{23} -199.000 q^{25} -27.0000i q^{27} -234.000i q^{29} -16.0000 q^{31} +108.000 q^{33} -144.000i q^{35} +226.000i q^{37} +30.0000 q^{39} -90.0000 q^{41} -452.000i q^{43} -162.000i q^{45} +432.000 q^{47} -279.000 q^{49} +54.0000i q^{51} -414.000i q^{53} +648.000 q^{55} +300.000 q^{57} +684.000i q^{59} +422.000i q^{61} +72.0000 q^{63} +180.000 q^{65} +332.000i q^{67} -216.000i q^{69} +360.000 q^{71} -26.0000 q^{73} -597.000i q^{75} +288.000i q^{77} +512.000 q^{79} +81.0000 q^{81} -1188.00i q^{83} +324.000i q^{85} +702.000 q^{87} +630.000 q^{89} +80.0000i q^{91} -48.0000i q^{93} +1800.00 q^{95} -1054.00 q^{97} +324.000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q16q718q9108q15+36q17144q23398q2532q31+216q33+60q39180q41+864q47558q49+1296q55+600q57+144q63+360q65+2108q97+O(q100) 2 q - 16 q^{7} - 18 q^{9} - 108 q^{15} + 36 q^{17} - 144 q^{23} - 398 q^{25} - 32 q^{31} + 216 q^{33} + 60 q^{39} - 180 q^{41} + 864 q^{47} - 558 q^{49} + 1296 q^{55} + 600 q^{57} + 144 q^{63} + 360 q^{65}+ \cdots - 2108 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/768Z)×\left(\mathbb{Z}/768\mathbb{Z}\right)^\times.

nn 257257 511511 517517
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.00000i 0.577350i
44 0 0
55 18.0000i 1.60997i 0.593296 + 0.804984i 0.297826π0.297826\pi
−0.593296 + 0.804984i 0.702174π0.702174\pi
66 0 0
77 −8.00000 −0.431959 −0.215980 0.976398i 0.569295π-0.569295\pi
−0.215980 + 0.976398i 0.569295π0.569295\pi
88 0 0
99 −9.00000 −0.333333
1010 0 0
1111 − 36.0000i − 0.986764i −0.869813 0.493382i 0.835760π-0.835760\pi
0.869813 0.493382i 0.164240π-0.164240\pi
1212 0 0
1313 − 10.0000i − 0.213346i −0.994294 0.106673i 0.965980π-0.965980\pi
0.994294 0.106673i 0.0340198π-0.0340198\pi
1414 0 0
1515 −54.0000 −0.929516
1616 0 0
1717 18.0000 0.256802 0.128401 0.991722i 0.459015π-0.459015\pi
0.128401 + 0.991722i 0.459015π0.459015\pi
1818 0 0
1919 − 100.000i − 1.20745i −0.797192 0.603726i 0.793682π-0.793682\pi
0.797192 0.603726i 0.206318π-0.206318\pi
2020 0 0
2121 − 24.0000i − 0.249392i
2222 0 0
2323 −72.0000 −0.652741 −0.326370 0.945242i 0.605826π-0.605826\pi
−0.326370 + 0.945242i 0.605826π0.605826\pi
2424 0 0
2525 −199.000 −1.59200
2626 0 0
2727 − 27.0000i − 0.192450i
2828 0 0
2929 − 234.000i − 1.49837i −0.662361 0.749185i 0.730446π-0.730446\pi
0.662361 0.749185i 0.269554π-0.269554\pi
3030 0 0
3131 −16.0000 −0.0926995 −0.0463498 0.998925i 0.514759π-0.514759\pi
−0.0463498 + 0.998925i 0.514759π0.514759\pi
3232 0 0
3333 108.000 0.569709
3434 0 0
3535 − 144.000i − 0.695441i
3636 0 0
3737 226.000i 1.00417i 0.864819 + 0.502083i 0.167433π0.167433\pi
−0.864819 + 0.502083i 0.832567π0.832567\pi
3838 0 0
3939 30.0000 0.123176
4040 0 0
4141 −90.0000 −0.342820 −0.171410 0.985200i 0.554832π-0.554832\pi
−0.171410 + 0.985200i 0.554832π0.554832\pi
4242 0 0
4343 − 452.000i − 1.60301i −0.597989 0.801504i 0.704033π-0.704033\pi
0.597989 0.801504i 0.295967π-0.295967\pi
4444 0 0
4545 − 162.000i − 0.536656i
4646 0 0
4747 432.000 1.34072 0.670358 0.742038i 0.266140π-0.266140\pi
0.670358 + 0.742038i 0.266140π0.266140\pi
4848 0 0
4949 −279.000 −0.813411
5050 0 0
5151 54.0000i 0.148265i
5252 0 0
5353 − 414.000i − 1.07297i −0.843911 0.536484i 0.819752π-0.819752\pi
0.843911 0.536484i 0.180248π-0.180248\pi
5454 0 0
5555 648.000 1.58866
5656 0 0
5757 300.000 0.697122
5858 0 0
5959 684.000i 1.50931i 0.656123 + 0.754654i 0.272195π0.272195\pi
−0.656123 + 0.754654i 0.727805π0.727805\pi
6060 0 0
6161 422.000i 0.885763i 0.896580 + 0.442882i 0.146044π0.146044\pi
−0.896580 + 0.442882i 0.853956π0.853956\pi
6262 0 0
6363 72.0000 0.143986
6464 0 0
6565 180.000 0.343481
6666 0 0
6767 332.000i 0.605377i 0.953090 + 0.302688i 0.0978842π0.0978842\pi
−0.953090 + 0.302688i 0.902116π0.902116\pi
6868 0 0
6969 − 216.000i − 0.376860i
7070 0 0
7171 360.000 0.601748 0.300874 0.953664i 0.402722π-0.402722\pi
0.300874 + 0.953664i 0.402722π0.402722\pi
7272 0 0
7373 −26.0000 −0.0416859 −0.0208429 0.999783i 0.506635π-0.506635\pi
−0.0208429 + 0.999783i 0.506635π0.506635\pi
7474 0 0
7575 − 597.000i − 0.919142i
7676 0 0
7777 288.000i 0.426242i
7878 0 0
7979 512.000 0.729171 0.364585 0.931170i 0.381211π-0.381211\pi
0.364585 + 0.931170i 0.381211π0.381211\pi
8080 0 0
8181 81.0000 0.111111
8282 0 0
8383 − 1188.00i − 1.57108i −0.618809 0.785542i 0.712384π-0.712384\pi
0.618809 0.785542i 0.287616π-0.287616\pi
8484 0 0
8585 324.000i 0.413444i
8686 0 0
8787 702.000 0.865084
8888 0 0
8989 630.000 0.750336 0.375168 0.926957i 0.377585π-0.377585\pi
0.375168 + 0.926957i 0.377585π0.377585\pi
9090 0 0
9191 80.0000i 0.0921569i
9292 0 0
9393 − 48.0000i − 0.0535201i
9494 0 0
9595 1800.00 1.94396
9696 0 0
9797 −1054.00 −1.10327 −0.551637 0.834085i 0.685996π-0.685996\pi
−0.551637 + 0.834085i 0.685996π0.685996\pi
9898 0 0
9999 324.000i 0.328921i
100100 0 0
101101 − 558.000i − 0.549733i −0.961482 0.274867i 0.911366π-0.911366\pi
0.961482 0.274867i 0.0886337π-0.0886337\pi
102102 0 0
103103 −8.00000 −0.00765304 −0.00382652 0.999993i 0.501218π-0.501218\pi
−0.00382652 + 0.999993i 0.501218π0.501218\pi
104104 0 0
105105 432.000 0.401513
106106 0 0
107107 − 1764.00i − 1.59376i −0.604138 0.796880i 0.706482π-0.706482\pi
0.604138 0.796880i 0.293518π-0.293518\pi
108108 0 0
109109 1622.00i 1.42532i 0.701512 + 0.712658i 0.252509π0.252509\pi
−0.701512 + 0.712658i 0.747491π0.747491\pi
110110 0 0
111111 −678.000 −0.579756
112112 0 0
113113 −1134.00 −0.944051 −0.472025 0.881585i 0.656477π-0.656477\pi
−0.472025 + 0.881585i 0.656477π0.656477\pi
114114 0 0
115115 − 1296.00i − 1.05089i
116116 0 0
117117 90.0000i 0.0711154i
118118 0 0
119119 −144.000 −0.110928
120120 0 0
121121 35.0000 0.0262960
122122 0 0
123123 − 270.000i − 0.197927i
124124 0 0
125125 − 1332.00i − 0.953102i
126126 0 0
127127 −592.000 −0.413634 −0.206817 0.978380i 0.566310π-0.566310\pi
−0.206817 + 0.978380i 0.566310π0.566310\pi
128128 0 0
129129 1356.00 0.925497
130130 0 0
131131 − 1908.00i − 1.27254i −0.771466 0.636270i 0.780476π-0.780476\pi
0.771466 0.636270i 0.219524π-0.219524\pi
132132 0 0
133133 800.000i 0.521570i
134134 0 0
135135 486.000 0.309839
136136 0 0
137137 −954.000 −0.594932 −0.297466 0.954732i 0.596142π-0.596142\pi
−0.297466 + 0.954732i 0.596142π0.596142\pi
138138 0 0
139139 − 2564.00i − 1.56457i −0.622919 0.782286i 0.714053π-0.714053\pi
0.622919 0.782286i 0.285947π-0.285947\pi
140140 0 0
141141 1296.00i 0.774063i
142142 0 0
143143 −360.000 −0.210522
144144 0 0
145145 4212.00 2.41233
146146 0 0
147147 − 837.000i − 0.469623i
148148 0 0
149149 738.000i 0.405767i 0.979203 + 0.202884i 0.0650313π0.0650313\pi
−0.979203 + 0.202884i 0.934969π0.934969\pi
150150 0 0
151151 2440.00 1.31500 0.657498 0.753456i 0.271615π-0.271615\pi
0.657498 + 0.753456i 0.271615π0.271615\pi
152152 0 0
153153 −162.000 −0.0856008
154154 0 0
155155 − 288.000i − 0.149243i
156156 0 0
157157 − 2554.00i − 1.29829i −0.760665 0.649145i 0.775127π-0.775127\pi
0.760665 0.649145i 0.224873π-0.224873\pi
158158 0 0
159159 1242.00 0.619478
160160 0 0
161161 576.000 0.281958
162162 0 0
163163 − 820.000i − 0.394033i −0.980400 0.197016i 0.936875π-0.936875\pi
0.980400 0.197016i 0.0631252π-0.0631252\pi
164164 0 0
165165 1944.00i 0.917213i
166166 0 0
167167 −1944.00 −0.900786 −0.450393 0.892830i 0.648716π-0.648716\pi
−0.450393 + 0.892830i 0.648716π0.648716\pi
168168 0 0
169169 2097.00 0.954483
170170 0 0
171171 900.000i 0.402484i
172172 0 0
173173 − 1242.00i − 0.545824i −0.962039 0.272912i 0.912013π-0.912013\pi
0.962039 0.272912i 0.0879867π-0.0879867\pi
174174 0 0
175175 1592.00 0.687679
176176 0 0
177177 −2052.00 −0.871400
178178 0 0
179179 1116.00i 0.465999i 0.972477 + 0.232999i 0.0748540π0.0748540\pi
−0.972477 + 0.232999i 0.925146π0.925146\pi
180180 0 0
181181 − 1070.00i − 0.439406i −0.975567 0.219703i 0.929491π-0.929491\pi
0.975567 0.219703i 0.0705088π-0.0705088\pi
182182 0 0
183183 −1266.00 −0.511396
184184 0 0
185185 −4068.00 −1.61668
186186 0 0
187187 − 648.000i − 0.253403i
188188 0 0
189189 216.000i 0.0831306i
190190 0 0
191191 −576.000 −0.218209 −0.109104 0.994030i 0.534798π-0.534798\pi
−0.109104 + 0.994030i 0.534798π0.534798\pi
192192 0 0
193193 −1342.00 −0.500514 −0.250257 0.968179i 0.580515π-0.580515\pi
−0.250257 + 0.968179i 0.580515π0.580515\pi
194194 0 0
195195 540.000i 0.198309i
196196 0 0
197197 − 1422.00i − 0.514281i −0.966374 0.257140i 0.917220π-0.917220\pi
0.966374 0.257140i 0.0827803π-0.0827803\pi
198198 0 0
199199 −872.000 −0.310625 −0.155313 0.987865i 0.549639π-0.549639\pi
−0.155313 + 0.987865i 0.549639π0.549639\pi
200200 0 0
201201 −996.000 −0.349515
202202 0 0
203203 1872.00i 0.647235i
204204 0 0
205205 − 1620.00i − 0.551930i
206206 0 0
207207 648.000 0.217580
208208 0 0
209209 −3600.00 −1.19147
210210 0 0
211211 1340.00i 0.437201i 0.975814 + 0.218600i 0.0701491π0.0701491\pi
−0.975814 + 0.218600i 0.929851π0.929851\pi
212212 0 0
213213 1080.00i 0.347420i
214214 0 0
215215 8136.00 2.58079
216216 0 0
217217 128.000 0.0400424
218218 0 0
219219 − 78.0000i − 0.0240674i
220220 0 0
221221 − 180.000i − 0.0547878i
222222 0 0
223223 4880.00 1.46542 0.732711 0.680540i 0.238255π-0.238255\pi
0.732711 + 0.680540i 0.238255π0.238255\pi
224224 0 0
225225 1791.00 0.530667
226226 0 0
227227 2700.00i 0.789451i 0.918799 + 0.394725i 0.129160π0.129160\pi
−0.918799 + 0.394725i 0.870840π0.870840\pi
228228 0 0
229229 − 254.000i − 0.0732960i −0.999328 0.0366480i 0.988332π-0.988332\pi
0.999328 0.0366480i 0.0116680π-0.0116680\pi
230230 0 0
231231 −864.000 −0.246091
232232 0 0
233233 −4410.00 −1.23995 −0.619976 0.784621i 0.712858π-0.712858\pi
−0.619976 + 0.784621i 0.712858π0.712858\pi
234234 0 0
235235 7776.00i 2.15851i
236236 0 0
237237 1536.00i 0.420987i
238238 0 0
239239 −3888.00 −1.05228 −0.526138 0.850399i 0.676360π-0.676360\pi
−0.526138 + 0.850399i 0.676360π0.676360\pi
240240 0 0
241241 5138.00 1.37331 0.686655 0.726984i 0.259078π-0.259078\pi
0.686655 + 0.726984i 0.259078π0.259078\pi
242242 0 0
243243 243.000i 0.0641500i
244244 0 0
245245 − 5022.00i − 1.30957i
246246 0 0
247247 −1000.00 −0.257605
248248 0 0
249249 3564.00 0.907066
250250 0 0
251251 − 4788.00i − 1.20405i −0.798478 0.602024i 0.794361π-0.794361\pi
0.798478 0.602024i 0.205639π-0.205639\pi
252252 0 0
253253 2592.00i 0.644101i
254254 0 0
255255 −972.000 −0.238702
256256 0 0
257257 −5886.00 −1.42863 −0.714316 0.699823i 0.753262π-0.753262\pi
−0.714316 + 0.699823i 0.753262π0.753262\pi
258258 0 0
259259 − 1808.00i − 0.433759i
260260 0 0
261261 2106.00i 0.499456i
262262 0 0
263263 −2232.00 −0.523312 −0.261656 0.965161i 0.584269π-0.584269\pi
−0.261656 + 0.965161i 0.584269π0.584269\pi
264264 0 0
265265 7452.00 1.72744
266266 0 0
267267 1890.00i 0.433206i
268268 0 0
269269 − 666.000i − 0.150954i −0.997148 0.0754772i 0.975952π-0.975952\pi
0.997148 0.0754772i 0.0240480π-0.0240480\pi
270270 0 0
271271 −5536.00 −1.24092 −0.620458 0.784240i 0.713053π-0.713053\pi
−0.620458 + 0.784240i 0.713053π0.713053\pi
272272 0 0
273273 −240.000 −0.0532068
274274 0 0
275275 7164.00i 1.57093i
276276 0 0
277277 − 2126.00i − 0.461151i −0.973054 0.230576i 0.925939π-0.925939\pi
0.973054 0.230576i 0.0740609π-0.0740609\pi
278278 0 0
279279 144.000 0.0308998
280280 0 0
281281 2934.00 0.622875 0.311437 0.950267i 0.399190π-0.399190\pi
0.311437 + 0.950267i 0.399190π0.399190\pi
282282 0 0
283283 − 2036.00i − 0.427659i −0.976871 0.213830i 0.931406π-0.931406\pi
0.976871 0.213830i 0.0685938π-0.0685938\pi
284284 0 0
285285 5400.00i 1.12235i
286286 0 0
287287 720.000 0.148085
288288 0 0
289289 −4589.00 −0.934053
290290 0 0
291291 − 3162.00i − 0.636975i
292292 0 0
293293 − 2286.00i − 0.455800i −0.973684 0.227900i 0.926814π-0.926814\pi
0.973684 0.227900i 0.0731860π-0.0731860\pi
294294 0 0
295295 −12312.0 −2.42994
296296 0 0
297297 −972.000 −0.189903
298298 0 0
299299 720.000i 0.139260i
300300 0 0
301301 3616.00i 0.692434i
302302 0 0
303303 1674.00 0.317389
304304 0 0
305305 −7596.00 −1.42605
306306 0 0
307307 1244.00i 0.231267i 0.993292 + 0.115633i 0.0368897π0.0368897\pi
−0.993292 + 0.115633i 0.963110π0.963110\pi
308308 0 0
309309 − 24.0000i − 0.00441849i
310310 0 0
311311 −1224.00 −0.223173 −0.111586 0.993755i 0.535593π-0.535593\pi
−0.111586 + 0.993755i 0.535593π0.535593\pi
312312 0 0
313313 −1898.00 −0.342752 −0.171376 0.985206i 0.554821π-0.554821\pi
−0.171376 + 0.985206i 0.554821π0.554821\pi
314314 0 0
315315 1296.00i 0.231814i
316316 0 0
317317 − 9162.00i − 1.62331i −0.584137 0.811655i 0.698567π-0.698567\pi
0.584137 0.811655i 0.301433π-0.301433\pi
318318 0 0
319319 −8424.00 −1.47854
320320 0 0
321321 5292.00 0.920158
322322 0 0
323323 − 1800.00i − 0.310076i
324324 0 0
325325 1990.00i 0.339647i
326326 0 0
327327 −4866.00 −0.822906
328328 0 0
329329 −3456.00 −0.579135
330330 0 0
331331 4348.00i 0.722017i 0.932562 + 0.361009i 0.117568π0.117568\pi
−0.932562 + 0.361009i 0.882432π0.882432\pi
332332 0 0
333333 − 2034.00i − 0.334722i
334334 0 0
335335 −5976.00 −0.974638
336336 0 0
337337 7154.00 1.15639 0.578195 0.815899i 0.303757π-0.303757\pi
0.578195 + 0.815899i 0.303757π0.303757\pi
338338 0 0
339339 − 3402.00i − 0.545048i
340340 0 0
341341 576.000i 0.0914726i
342342 0 0
343343 4976.00 0.783320
344344 0 0
345345 3888.00 0.606733
346346 0 0
347347 1836.00i 0.284039i 0.989864 + 0.142020i 0.0453596π0.0453596\pi
−0.989864 + 0.142020i 0.954640π0.954640\pi
348348 0 0
349349 5894.00i 0.904007i 0.892016 + 0.452004i 0.149291π0.149291\pi
−0.892016 + 0.452004i 0.850709π0.850709\pi
350350 0 0
351351 −270.000 −0.0410585
352352 0 0
353353 11106.0 1.67454 0.837270 0.546789i 0.184150π-0.184150\pi
0.837270 + 0.546789i 0.184150π0.184150\pi
354354 0 0
355355 6480.00i 0.968796i
356356 0 0
357357 − 432.000i − 0.0640444i
358358 0 0
359359 −13176.0 −1.93705 −0.968527 0.248907i 0.919929π-0.919929\pi
−0.968527 + 0.248907i 0.919929π0.919929\pi
360360 0 0
361361 −3141.00 −0.457938
362362 0 0
363363 105.000i 0.0151820i
364364 0 0
365365 − 468.000i − 0.0671130i
366366 0 0
367367 −6112.00 −0.869329 −0.434665 0.900592i 0.643133π-0.643133\pi
−0.434665 + 0.900592i 0.643133π0.643133\pi
368368 0 0
369369 810.000 0.114273
370370 0 0
371371 3312.00i 0.463478i
372372 0 0
373373 13618.0i 1.89038i 0.326515 + 0.945192i 0.394126π0.394126\pi
−0.326515 + 0.945192i 0.605874π0.605874\pi
374374 0 0
375375 3996.00 0.550273
376376 0 0
377377 −2340.00 −0.319671
378378 0 0
379379 − 692.000i − 0.0937880i −0.998900 0.0468940i 0.985068π-0.985068\pi
0.998900 0.0468940i 0.0149323π-0.0149323\pi
380380 0 0
381381 − 1776.00i − 0.238812i
382382 0 0
383383 −8064.00 −1.07585 −0.537926 0.842992i 0.680792π-0.680792\pi
−0.537926 + 0.842992i 0.680792π0.680792\pi
384384 0 0
385385 −5184.00 −0.686237
386386 0 0
387387 4068.00i 0.534336i
388388 0 0
389389 − 12654.0i − 1.64931i −0.565633 0.824657i 0.691368π-0.691368\pi
0.565633 0.824657i 0.308632π-0.308632\pi
390390 0 0
391391 −1296.00 −0.167625
392392 0 0
393393 5724.00 0.734701
394394 0 0
395395 9216.00i 1.17394i
396396 0 0
397397 − 106.000i − 0.0134005i −0.999978 0.00670024i 0.997867π-0.997867\pi
0.999978 0.00670024i 0.00213277π-0.00213277\pi
398398 0 0
399399 −2400.00 −0.301129
400400 0 0
401401 −4014.00 −0.499874 −0.249937 0.968262i 0.580410π-0.580410\pi
−0.249937 + 0.968262i 0.580410π0.580410\pi
402402 0 0
403403 160.000i 0.0197771i
404404 0 0
405405 1458.00i 0.178885i
406406 0 0
407407 8136.00 0.990876
408408 0 0
409409 −3914.00 −0.473190 −0.236595 0.971608i 0.576032π-0.576032\pi
−0.236595 + 0.971608i 0.576032π0.576032\pi
410410 0 0
411411 − 2862.00i − 0.343484i
412412 0 0
413413 − 5472.00i − 0.651960i
414414 0 0
415415 21384.0 2.52940
416416 0 0
417417 7692.00 0.903307
418418 0 0
419419 4428.00i 0.516282i 0.966107 + 0.258141i 0.0831098π0.0831098\pi
−0.966107 + 0.258141i 0.916890π0.916890\pi
420420 0 0
421421 15490.0i 1.79320i 0.442843 + 0.896599i 0.353970π0.353970\pi
−0.442843 + 0.896599i 0.646030π0.646030\pi
422422 0 0
423423 −3888.00 −0.446906
424424 0 0
425425 −3582.00 −0.408829
426426 0 0
427427 − 3376.00i − 0.382614i
428428 0 0
429429 − 1080.00i − 0.121545i
430430 0 0
431431 6768.00 0.756388 0.378194 0.925726i 0.376545π-0.376545\pi
0.378194 + 0.925726i 0.376545π0.376545\pi
432432 0 0
433433 1298.00 0.144060 0.0720299 0.997402i 0.477052π-0.477052\pi
0.0720299 + 0.997402i 0.477052π0.477052\pi
434434 0 0
435435 12636.0i 1.39276i
436436 0 0
437437 7200.00i 0.788153i
438438 0 0
439439 2248.00 0.244399 0.122200 0.992506i 0.461005π-0.461005\pi
0.122200 + 0.992506i 0.461005π0.461005\pi
440440 0 0
441441 2511.00 0.271137
442442 0 0
443443 9612.00i 1.03088i 0.856926 + 0.515440i 0.172372π0.172372\pi
−0.856926 + 0.515440i 0.827628π0.827628\pi
444444 0 0
445445 11340.0i 1.20802i
446446 0 0
447447 −2214.00 −0.234270
448448 0 0
449449 162.000 0.0170273 0.00851364 0.999964i 0.497290π-0.497290\pi
0.00851364 + 0.999964i 0.497290π0.497290\pi
450450 0 0
451451 3240.00i 0.338283i
452452 0 0
453453 7320.00i 0.759213i
454454 0 0
455455 −1440.00 −0.148370
456456 0 0
457457 −1370.00 −0.140232 −0.0701159 0.997539i 0.522337π-0.522337\pi
−0.0701159 + 0.997539i 0.522337π0.522337\pi
458458 0 0
459459 − 486.000i − 0.0494217i
460460 0 0
461461 − 15354.0i − 1.55121i −0.631220 0.775604i 0.717445π-0.717445\pi
0.631220 0.775604i 0.282555π-0.282555\pi
462462 0 0
463463 −13024.0 −1.30729 −0.653646 0.756800i 0.726762π-0.726762\pi
−0.653646 + 0.756800i 0.726762π0.726762\pi
464464 0 0
465465 864.000 0.0861657
466466 0 0
467467 − 14436.0i − 1.43045i −0.698896 0.715223i 0.746325π-0.746325\pi
0.698896 0.715223i 0.253675π-0.253675\pi
468468 0 0
469469 − 2656.00i − 0.261498i
470470 0 0
471471 7662.00 0.749568
472472 0 0
473473 −16272.0 −1.58179
474474 0 0
475475 19900.0i 1.92226i
476476 0 0
477477 3726.00i 0.357656i
478478 0 0
479479 12096.0 1.15382 0.576911 0.816807i 0.304258π-0.304258\pi
0.576911 + 0.816807i 0.304258π0.304258\pi
480480 0 0
481481 2260.00 0.214235
482482 0 0
483483 1728.00i 0.162788i
484484 0 0
485485 − 18972.0i − 1.77624i
486486 0 0
487487 −6056.00 −0.563498 −0.281749 0.959488i 0.590915π-0.590915\pi
−0.281749 + 0.959488i 0.590915π0.590915\pi
488488 0 0
489489 2460.00 0.227495
490490 0 0
491491 − 7524.00i − 0.691555i −0.938317 0.345777i 0.887615π-0.887615\pi
0.938317 0.345777i 0.112385π-0.112385\pi
492492 0 0
493493 − 4212.00i − 0.384785i
494494 0 0
495495 −5832.00 −0.529553
496496 0 0
497497 −2880.00 −0.259931
498498 0 0
499499 5276.00i 0.473319i 0.971593 + 0.236660i 0.0760526π0.0760526\pi
−0.971593 + 0.236660i 0.923947π0.923947\pi
500500 0 0
501501 − 5832.00i − 0.520069i
502502 0 0
503503 −4968.00 −0.440382 −0.220191 0.975457i 0.570668π-0.570668\pi
−0.220191 + 0.975457i 0.570668π0.570668\pi
504504 0 0
505505 10044.0 0.885054
506506 0 0
507507 6291.00i 0.551071i
508508 0 0
509509 10998.0i 0.957717i 0.877892 + 0.478858i 0.158949π0.158949\pi
−0.877892 + 0.478858i 0.841051π0.841051\pi
510510 0 0
511511 208.000 0.0180066
512512 0 0
513513 −2700.00 −0.232374
514514 0 0
515515 − 144.000i − 0.0123212i
516516 0 0
517517 − 15552.0i − 1.32297i
518518 0 0
519519 3726.00 0.315131
520520 0 0
521521 8838.00 0.743186 0.371593 0.928396i 0.378812π-0.378812\pi
0.371593 + 0.928396i 0.378812π0.378812\pi
522522 0 0
523523 − 22436.0i − 1.87583i −0.346869 0.937914i 0.612755π-0.612755\pi
0.346869 0.937914i 0.387245π-0.387245\pi
524524 0 0
525525 4776.00i 0.397032i
526526 0 0
527527 −288.000 −0.0238055
528528 0 0
529529 −6983.00 −0.573929
530530 0 0
531531 − 6156.00i − 0.503103i
532532 0 0
533533 900.000i 0.0731395i
534534 0 0
535535 31752.0 2.56590
536536 0 0
537537 −3348.00 −0.269044
538538 0 0
539539 10044.0i 0.802645i
540540 0 0
541541 − 4762.00i − 0.378437i −0.981935 0.189218i 0.939405π-0.939405\pi
0.981935 0.189218i 0.0605954π-0.0605954\pi
542542 0 0
543543 3210.00 0.253691
544544 0 0
545545 −29196.0 −2.29471
546546 0 0
547547 − 6004.00i − 0.469310i −0.972079 0.234655i 0.924604π-0.924604\pi
0.972079 0.234655i 0.0753960π-0.0753960\pi
548548 0 0
549549 − 3798.00i − 0.295254i
550550 0 0
551551 −23400.0 −1.80921
552552 0 0
553553 −4096.00 −0.314972
554554 0 0
555555 − 12204.0i − 0.933389i
556556 0 0
557557 − 5274.00i − 0.401197i −0.979674 0.200598i 0.935711π-0.935711\pi
0.979674 0.200598i 0.0642886π-0.0642886\pi
558558 0 0
559559 −4520.00 −0.341996
560560 0 0
561561 1944.00 0.146303
562562 0 0
563563 − 12420.0i − 0.929735i −0.885380 0.464867i 0.846102π-0.846102\pi
0.885380 0.464867i 0.153898π-0.153898\pi
564564 0 0
565565 − 20412.0i − 1.51989i
566566 0 0
567567 −648.000 −0.0479955
568568 0 0
569569 21366.0 1.57418 0.787091 0.616837i 0.211586π-0.211586\pi
0.787091 + 0.616837i 0.211586π0.211586\pi
570570 0 0
571571 − 21140.0i − 1.54935i −0.632357 0.774677i 0.717912π-0.717912\pi
0.632357 0.774677i 0.282088π-0.282088\pi
572572 0 0
573573 − 1728.00i − 0.125983i
574574 0 0
575575 14328.0 1.03916
576576 0 0
577577 3266.00 0.235642 0.117821 0.993035i 0.462409π-0.462409\pi
0.117821 + 0.993035i 0.462409π0.462409\pi
578578 0 0
579579 − 4026.00i − 0.288972i
580580 0 0
581581 9504.00i 0.678644i
582582 0 0
583583 −14904.0 −1.05877
584584 0 0
585585 −1620.00 −0.114494
586586 0 0
587587 − 17028.0i − 1.19731i −0.801007 0.598655i 0.795702π-0.795702\pi
0.801007 0.598655i 0.204298π-0.204298\pi
588588 0 0
589589 1600.00i 0.111930i
590590 0 0
591591 4266.00 0.296920
592592 0 0
593593 9522.00 0.659396 0.329698 0.944086i 0.393053π-0.393053\pi
0.329698 + 0.944086i 0.393053π0.393053\pi
594594 0 0
595595 − 2592.00i − 0.178591i
596596 0 0
597597 − 2616.00i − 0.179340i
598598 0 0
599599 10296.0 0.702309 0.351155 0.936318i 0.385789π-0.385789\pi
0.351155 + 0.936318i 0.385789π0.385789\pi
600600 0 0
601601 3382.00 0.229542 0.114771 0.993392i 0.463387π-0.463387\pi
0.114771 + 0.993392i 0.463387π0.463387\pi
602602 0 0
603603 − 2988.00i − 0.201792i
604604 0 0
605605 630.000i 0.0423358i
606606 0 0
607607 −20656.0 −1.38122 −0.690611 0.723227i 0.742658π-0.742658\pi
−0.690611 + 0.723227i 0.742658π0.742658\pi
608608 0 0
609609 −5616.00 −0.373681
610610 0 0
611611 − 4320.00i − 0.286037i
612612 0 0
613613 22114.0i 1.45706i 0.685015 + 0.728529i 0.259795π0.259795\pi
−0.685015 + 0.728529i 0.740205π0.740205\pi
614614 0 0
615615 4860.00 0.318657
616616 0 0
617617 −19962.0 −1.30250 −0.651248 0.758865i 0.725754π-0.725754\pi
−0.651248 + 0.758865i 0.725754π0.725754\pi
618618 0 0
619619 604.000i 0.0392194i 0.999808 + 0.0196097i 0.00624236π0.00624236\pi
−0.999808 + 0.0196097i 0.993758π0.993758\pi
620620 0 0
621621 1944.00i 0.125620i
622622 0 0
623623 −5040.00 −0.324115
624624 0 0
625625 −899.000 −0.0575360
626626 0 0
627627 − 10800.0i − 0.687895i
628628 0 0
629629 4068.00i 0.257872i
630630 0 0
631631 −152.000 −0.00958958 −0.00479479 0.999989i 0.501526π-0.501526\pi
−0.00479479 + 0.999989i 0.501526π0.501526\pi
632632 0 0
633633 −4020.00 −0.252418
634634 0 0
635635 − 10656.0i − 0.665938i
636636 0 0
637637 2790.00i 0.173538i
638638 0 0
639639 −3240.00 −0.200583
640640 0 0
641641 4194.00 0.258429 0.129215 0.991617i 0.458754π-0.458754\pi
0.129215 + 0.991617i 0.458754π0.458754\pi
642642 0 0
643643 − 7252.00i − 0.444776i −0.974958 0.222388i 0.928615π-0.928615\pi
0.974958 0.222388i 0.0713852π-0.0713852\pi
644644 0 0
645645 24408.0i 1.49002i
646646 0 0
647647 6696.00 0.406873 0.203437 0.979088i 0.434789π-0.434789\pi
0.203437 + 0.979088i 0.434789π0.434789\pi
648648 0 0
649649 24624.0 1.48933
650650 0 0
651651 384.000i 0.0231185i
652652 0 0
653653 28422.0i 1.70328i 0.524131 + 0.851638i 0.324390π0.324390\pi
−0.524131 + 0.851638i 0.675610π0.675610\pi
654654 0 0
655655 34344.0 2.04875
656656 0 0
657657 234.000 0.0138953
658658 0 0
659659 − 19908.0i − 1.17679i −0.808573 0.588396i 0.799760π-0.799760\pi
0.808573 0.588396i 0.200240π-0.200240\pi
660660 0 0
661661 − 14318.0i − 0.842520i −0.906940 0.421260i 0.861588π-0.861588\pi
0.906940 0.421260i 0.138412π-0.138412\pi
662662 0 0
663663 540.000 0.0316318
664664 0 0
665665 −14400.0 −0.839711
666666 0 0
667667 16848.0i 0.978047i
668668 0 0
669669 14640.0i 0.846061i
670670 0 0
671671 15192.0 0.874040
672672 0 0
673673 30050.0 1.72116 0.860581 0.509313i 0.170101π-0.170101\pi
0.860581 + 0.509313i 0.170101π0.170101\pi
674674 0 0
675675 5373.00i 0.306381i
676676 0 0
677677 − 22158.0i − 1.25790i −0.777444 0.628952i 0.783484π-0.783484\pi
0.777444 0.628952i 0.216516π-0.216516\pi
678678 0 0
679679 8432.00 0.476569
680680 0 0
681681 −8100.00 −0.455790
682682 0 0
683683 3132.00i 0.175465i 0.996144 + 0.0877325i 0.0279621π0.0279621\pi
−0.996144 + 0.0877325i 0.972038π0.972038\pi
684684 0 0
685685 − 17172.0i − 0.957822i
686686 0 0
687687 762.000 0.0423175
688688 0 0
689689 −4140.00 −0.228914
690690 0 0
691691 − 20932.0i − 1.15237i −0.817318 0.576187i 0.804540π-0.804540\pi
0.817318 0.576187i 0.195460π-0.195460\pi
692692 0 0
693693 − 2592.00i − 0.142081i
694694 0 0
695695 46152.0 2.51891
696696 0 0
697697 −1620.00 −0.0880371
698698 0 0
699699 − 13230.0i − 0.715886i
700700 0 0
701701 − 21834.0i − 1.17640i −0.808714 0.588202i 0.799836π-0.799836\pi
0.808714 0.588202i 0.200164π-0.200164\pi
702702 0 0
703703 22600.0 1.21248
704704 0 0
705705 −23328.0 −1.24622
706706 0 0
707707 4464.00i 0.237463i
708708 0 0
709709 − 12446.0i − 0.659266i −0.944109 0.329633i 0.893075π-0.893075\pi
0.944109 0.329633i 0.106925π-0.106925\pi
710710 0 0
711711 −4608.00 −0.243057
712712 0 0
713713 1152.00 0.0605088
714714 0 0
715715 − 6480.00i − 0.338935i
716716 0 0
717717 − 11664.0i − 0.607531i
718718 0 0
719719 −12528.0 −0.649813 −0.324907 0.945746i 0.605333π-0.605333\pi
−0.324907 + 0.945746i 0.605333π0.605333\pi
720720 0 0
721721 64.0000 0.00330580
722722 0 0
723723 15414.0i 0.792881i
724724 0 0
725725 46566.0i 2.38540i
726726 0 0
727727 −11576.0 −0.590550 −0.295275 0.955412i 0.595411π-0.595411\pi
−0.295275 + 0.955412i 0.595411π0.595411\pi
728728 0 0
729729 −729.000 −0.0370370
730730 0 0
731731 − 8136.00i − 0.411656i
732732 0 0
733733 − 29338.0i − 1.47834i −0.673519 0.739170i 0.735218π-0.735218\pi
0.673519 0.739170i 0.264782π-0.264782\pi
734734 0 0
735735 15066.0 0.756079
736736 0 0
737737 11952.0 0.597364
738738 0 0
739739 2540.00i 0.126435i 0.998000 + 0.0632175i 0.0201362π0.0201362\pi
−0.998000 + 0.0632175i 0.979864π0.979864\pi
740740 0 0
741741 − 3000.00i − 0.148728i
742742 0 0
743743 18792.0 0.927876 0.463938 0.885868i 0.346436π-0.346436\pi
0.463938 + 0.885868i 0.346436π0.346436\pi
744744 0 0
745745 −13284.0 −0.653273
746746 0 0
747747 10692.0i 0.523695i
748748 0 0
749749 14112.0i 0.688440i
750750 0 0
751751 4832.00 0.234783 0.117392 0.993086i 0.462547π-0.462547\pi
0.117392 + 0.993086i 0.462547π0.462547\pi
752752 0 0
753753 14364.0 0.695157
754754 0 0
755755 43920.0i 2.11710i
756756 0 0
757757 20818.0i 0.999529i 0.866161 + 0.499764i 0.166580π0.166580\pi
−0.866161 + 0.499764i 0.833420π0.833420\pi
758758 0 0
759759 −7776.00 −0.371872
760760 0 0
761761 −12042.0 −0.573617 −0.286808 0.957988i 0.592594π-0.592594\pi
−0.286808 + 0.957988i 0.592594π0.592594\pi
762762 0 0
763763 − 12976.0i − 0.615679i
764764 0 0
765765 − 2916.00i − 0.137815i
766766 0 0
767767 6840.00 0.322005
768768 0 0
769769 13058.0 0.612332 0.306166 0.951978i 0.400954π-0.400954\pi
0.306166 + 0.951978i 0.400954π0.400954\pi
770770 0 0
771771 − 17658.0i − 0.824821i
772772 0 0
773773 11826.0i 0.550261i 0.961407 + 0.275130i 0.0887210π0.0887210\pi
−0.961407 + 0.275130i 0.911279π0.911279\pi
774774 0 0
775775 3184.00 0.147578
776776 0 0
777777 5424.00 0.250431
778778 0 0
779779 9000.00i 0.413939i
780780 0 0
781781 − 12960.0i − 0.593784i
782782 0 0
783783 −6318.00 −0.288361
784784 0 0
785785 45972.0 2.09021
786786 0 0
787787 11996.0i 0.543343i 0.962390 + 0.271672i 0.0875765π0.0875765\pi
−0.962390 + 0.271672i 0.912424π0.912424\pi
788788 0 0
789789 − 6696.00i − 0.302134i
790790 0 0
791791 9072.00 0.407792
792792 0 0
793793 4220.00 0.188974
794794 0 0
795795 22356.0i 0.997340i
796796 0 0
797797 6966.00i 0.309596i 0.987946 + 0.154798i 0.0494727π0.0494727\pi
−0.987946 + 0.154798i 0.950527π0.950527\pi
798798 0 0
799799 7776.00 0.344299
800800 0 0
801801 −5670.00 −0.250112
802802 0 0
803803 936.000i 0.0411342i
804804 0 0
805805 10368.0i 0.453943i
806806 0 0
807807 1998.00 0.0871536
808808 0 0
809809 40806.0 1.77338 0.886689 0.462367i 0.153000π-0.153000\pi
0.886689 + 0.462367i 0.153000π0.153000\pi
810810 0 0
811811 17980.0i 0.778500i 0.921132 + 0.389250i 0.127266π0.127266\pi
−0.921132 + 0.389250i 0.872734π0.872734\pi
812812 0 0
813813 − 16608.0i − 0.716443i
814814 0 0
815815 14760.0 0.634381
816816 0 0
817817 −45200.0 −1.93555
818818 0 0
819819 − 720.000i − 0.0307190i
820820 0 0
821821 12834.0i 0.545566i 0.962076 + 0.272783i 0.0879441π0.0879441\pi
−0.962076 + 0.272783i 0.912056π0.912056\pi
822822 0 0
823823 37864.0 1.60371 0.801857 0.597516i 0.203846π-0.203846\pi
0.801857 + 0.597516i 0.203846π0.203846\pi
824824 0 0
825825 −21492.0 −0.906976
826826 0 0
827827 − 42516.0i − 1.78770i −0.448368 0.893849i 0.647995π-0.647995\pi
0.448368 0.893849i 0.352005π-0.352005\pi
828828 0 0
829829 45638.0i 1.91203i 0.293317 + 0.956015i 0.405241π0.405241\pi
−0.293317 + 0.956015i 0.594759π0.594759\pi
830830 0 0
831831 6378.00 0.266246
832832 0 0
833833 −5022.00 −0.208886
834834 0 0
835835 − 34992.0i − 1.45024i
836836 0 0
837837 432.000i 0.0178400i
838838 0 0
839839 −17496.0 −0.719939 −0.359970 0.932964i 0.617213π-0.617213\pi
−0.359970 + 0.932964i 0.617213π0.617213\pi
840840 0 0
841841 −30367.0 −1.24511
842842 0 0
843843 8802.00i 0.359617i
844844 0 0
845845 37746.0i 1.53669i
846846 0 0
847847 −280.000 −0.0113588
848848 0 0
849849 6108.00 0.246909
850850 0 0
851851 − 16272.0i − 0.655461i
852852 0 0
853853 − 32174.0i − 1.29146i −0.763565 0.645731i 0.776553π-0.776553\pi
0.763565 0.645731i 0.223447π-0.223447\pi
854854 0 0
855855 −16200.0 −0.647986
856856 0 0
857857 38934.0 1.55188 0.775939 0.630807i 0.217276π-0.217276\pi
0.775939 + 0.630807i 0.217276π0.217276\pi
858858 0 0
859859 − 29780.0i − 1.18286i −0.806355 0.591432i 0.798563π-0.798563\pi
0.806355 0.591432i 0.201437π-0.201437\pi
860860 0 0
861861 2160.00i 0.0854966i
862862 0 0
863863 −48096.0 −1.89711 −0.948556 0.316611i 0.897455π-0.897455\pi
−0.948556 + 0.316611i 0.897455π0.897455\pi
864864 0 0
865865 22356.0 0.878759
866866 0 0
867867 − 13767.0i − 0.539275i
868868 0 0
869869 − 18432.0i − 0.719520i
870870 0 0
871871 3320.00 0.129155
872872 0 0
873873 9486.00 0.367758
874874 0 0
875875 10656.0i 0.411701i
876876 0 0
877877 21302.0i 0.820202i 0.912040 + 0.410101i 0.134507π0.134507\pi
−0.912040 + 0.410101i 0.865493π0.865493\pi
878878 0 0
879879 6858.00 0.263157
880880 0 0
881881 −7470.00 −0.285665 −0.142832 0.989747i 0.545621π-0.545621\pi
−0.142832 + 0.989747i 0.545621π0.545621\pi
882882 0 0
883883 764.000i 0.0291174i 0.999894 + 0.0145587i 0.00463434π0.00463434\pi
−0.999894 + 0.0145587i 0.995366π0.995366\pi
884884 0 0
885885 − 36936.0i − 1.40293i
886886 0 0
887887 −32328.0 −1.22375 −0.611876 0.790954i 0.709585π-0.709585\pi
−0.611876 + 0.790954i 0.709585π0.709585\pi
888888 0 0
889889 4736.00 0.178673
890890 0 0
891891 − 2916.00i − 0.109640i
892892 0 0
893893 − 43200.0i − 1.61885i
894894 0 0
895895 −20088.0 −0.750243
896896 0 0
897897 −2160.00 −0.0804017
898898 0 0
899899 3744.00i 0.138898i
900900 0 0
901901 − 7452.00i − 0.275541i
902902 0 0
903903 −10848.0 −0.399777
904904 0 0
905905 19260.0 0.707430
906906 0 0
907907 36316.0i 1.32950i 0.747068 + 0.664748i 0.231461π0.231461\pi
−0.747068 + 0.664748i 0.768539π0.768539\pi
908908 0 0
909909 5022.00i 0.183244i
910910 0 0
911911 −13392.0 −0.487044 −0.243522 0.969895i 0.578303π-0.578303\pi
−0.243522 + 0.969895i 0.578303π0.578303\pi
912912 0 0
913913 −42768.0 −1.55029
914914 0 0
915915 − 22788.0i − 0.823331i
916916 0 0
917917 15264.0i 0.549686i
918918 0 0
919919 −38072.0 −1.36657 −0.683286 0.730151i 0.739450π-0.739450\pi
−0.683286 + 0.730151i 0.739450π0.739450\pi
920920 0 0
921921 −3732.00 −0.133522
922922 0 0
923923 − 3600.00i − 0.128381i
924924 0 0
925925 − 44974.0i − 1.59863i
926926 0 0
927927 72.0000 0.00255101
928928 0 0
929929 −12798.0 −0.451979 −0.225990 0.974130i 0.572562π-0.572562\pi
−0.225990 + 0.974130i 0.572562π0.572562\pi
930930 0 0
931931 27900.0i 0.982154i
932932 0 0
933933 − 3672.00i − 0.128849i
934934 0 0
935935 11664.0 0.407972
936936 0 0
937937 −34874.0 −1.21588 −0.607942 0.793981i 0.708005π-0.708005\pi
−0.607942 + 0.793981i 0.708005π0.708005\pi
938938 0 0
939939 − 5694.00i − 0.197888i
940940 0 0
941941 17190.0i 0.595513i 0.954642 + 0.297757i 0.0962384π0.0962384\pi
−0.954642 + 0.297757i 0.903762π0.903762\pi
942942 0 0
943943 6480.00 0.223773
944944 0 0
945945 −3888.00 −0.133838
946946 0 0
947947 40284.0i 1.38232i 0.722703 + 0.691158i 0.242899π0.242899\pi
−0.722703 + 0.691158i 0.757101π0.757101\pi
948948 0 0
949949 260.000i 0.00889353i
950950 0 0
951951 27486.0 0.937218
952952 0 0
953953 −15498.0 −0.526789 −0.263394 0.964688i 0.584842π-0.584842\pi
−0.263394 + 0.964688i 0.584842π0.584842\pi
954954 0 0
955955 − 10368.0i − 0.351310i
956956 0 0
957957 − 25272.0i − 0.853634i
958958 0 0
959959 7632.00 0.256987
960960 0 0
961961 −29535.0 −0.991407
962962 0 0
963963 15876.0i 0.531253i
964964 0 0
965965 − 24156.0i − 0.805813i
966966 0 0
967967 −37160.0 −1.23577 −0.617883 0.786270i 0.712009π-0.712009\pi
−0.617883 + 0.786270i 0.712009π0.712009\pi
968968 0 0
969969 5400.00 0.179023
970970 0 0
971971 − 18468.0i − 0.610367i −0.952294 0.305183i 0.901282π-0.901282\pi
0.952294 0.305183i 0.0987178π-0.0987178\pi
972972 0 0
973973 20512.0i 0.675832i
974974 0 0
975975 −5970.00 −0.196095
976976 0 0
977977 10386.0 0.340100 0.170050 0.985435i 0.445607π-0.445607\pi
0.170050 + 0.985435i 0.445607π0.445607\pi
978978 0 0
979979 − 22680.0i − 0.740404i
980980 0 0
981981 − 14598.0i − 0.475105i
982982 0 0
983983 −44136.0 −1.43206 −0.716032 0.698067i 0.754044π-0.754044\pi
−0.716032 + 0.698067i 0.754044π0.754044\pi
984984 0 0
985985 25596.0 0.827976
986986 0 0
987987 − 10368.0i − 0.334364i
988988 0 0
989989 32544.0i 1.04635i
990990 0 0
991991 −28432.0 −0.911375 −0.455687 0.890140i 0.650606π-0.650606\pi
−0.455687 + 0.890140i 0.650606π0.650606\pi
992992 0 0
993993 −13044.0 −0.416857
994994 0 0
995995 − 15696.0i − 0.500097i
996996 0 0
997997 39778.0i 1.26357i 0.775143 + 0.631786i 0.217678π0.217678\pi
−0.775143 + 0.631786i 0.782322π0.782322\pi
998998 0 0
999999 6102.00 0.193252
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.4.d.g.385.2 2
4.3 odd 2 768.4.d.j.385.1 2
8.3 odd 2 768.4.d.j.385.2 2
8.5 even 2 inner 768.4.d.g.385.1 2
16.3 odd 4 192.4.a.l.1.1 1
16.5 even 4 12.4.a.a.1.1 1
16.11 odd 4 48.4.a.a.1.1 1
16.13 even 4 192.4.a.f.1.1 1
48.5 odd 4 36.4.a.a.1.1 1
48.11 even 4 144.4.a.g.1.1 1
48.29 odd 4 576.4.a.b.1.1 1
48.35 even 4 576.4.a.a.1.1 1
80.27 even 4 1200.4.f.d.49.2 2
80.37 odd 4 300.4.d.e.49.1 2
80.43 even 4 1200.4.f.d.49.1 2
80.53 odd 4 300.4.d.e.49.2 2
80.59 odd 4 1200.4.a.be.1.1 1
80.69 even 4 300.4.a.b.1.1 1
112.5 odd 12 588.4.i.e.361.1 2
112.27 even 4 2352.4.a.bk.1.1 1
112.37 even 12 588.4.i.d.361.1 2
112.53 even 12 588.4.i.d.373.1 2
112.69 odd 4 588.4.a.c.1.1 1
112.101 odd 12 588.4.i.e.373.1 2
144.5 odd 12 324.4.e.a.217.1 2
144.85 even 12 324.4.e.h.217.1 2
144.101 odd 12 324.4.e.a.109.1 2
144.133 even 12 324.4.e.h.109.1 2
176.21 odd 4 1452.4.a.d.1.1 1
208.5 odd 4 2028.4.b.c.337.2 2
208.21 odd 4 2028.4.b.c.337.1 2
208.181 even 4 2028.4.a.c.1.1 1
240.53 even 4 900.4.d.c.649.1 2
240.149 odd 4 900.4.a.g.1.1 1
240.197 even 4 900.4.d.c.649.2 2
336.5 even 12 1764.4.k.o.361.1 2
336.53 odd 12 1764.4.k.b.1549.1 2
336.101 even 12 1764.4.k.o.1549.1 2
336.149 odd 12 1764.4.k.b.361.1 2
336.293 even 4 1764.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
12.4.a.a.1.1 1 16.5 even 4
36.4.a.a.1.1 1 48.5 odd 4
48.4.a.a.1.1 1 16.11 odd 4
144.4.a.g.1.1 1 48.11 even 4
192.4.a.f.1.1 1 16.13 even 4
192.4.a.l.1.1 1 16.3 odd 4
300.4.a.b.1.1 1 80.69 even 4
300.4.d.e.49.1 2 80.37 odd 4
300.4.d.e.49.2 2 80.53 odd 4
324.4.e.a.109.1 2 144.101 odd 12
324.4.e.a.217.1 2 144.5 odd 12
324.4.e.h.109.1 2 144.133 even 12
324.4.e.h.217.1 2 144.85 even 12
576.4.a.a.1.1 1 48.35 even 4
576.4.a.b.1.1 1 48.29 odd 4
588.4.a.c.1.1 1 112.69 odd 4
588.4.i.d.361.1 2 112.37 even 12
588.4.i.d.373.1 2 112.53 even 12
588.4.i.e.361.1 2 112.5 odd 12
588.4.i.e.373.1 2 112.101 odd 12
768.4.d.g.385.1 2 8.5 even 2 inner
768.4.d.g.385.2 2 1.1 even 1 trivial
768.4.d.j.385.1 2 4.3 odd 2
768.4.d.j.385.2 2 8.3 odd 2
900.4.a.g.1.1 1 240.149 odd 4
900.4.d.c.649.1 2 240.53 even 4
900.4.d.c.649.2 2 240.197 even 4
1200.4.a.be.1.1 1 80.59 odd 4
1200.4.f.d.49.1 2 80.43 even 4
1200.4.f.d.49.2 2 80.27 even 4
1452.4.a.d.1.1 1 176.21 odd 4
1764.4.a.b.1.1 1 336.293 even 4
1764.4.k.b.361.1 2 336.149 odd 12
1764.4.k.b.1549.1 2 336.53 odd 12
1764.4.k.o.361.1 2 336.5 even 12
1764.4.k.o.1549.1 2 336.101 even 12
2028.4.a.c.1.1 1 208.181 even 4
2028.4.b.c.337.1 2 208.21 odd 4
2028.4.b.c.337.2 2 208.5 odd 4
2352.4.a.bk.1.1 1 112.27 even 4