Properties

Label 3240.1.bn.a
Level 32403240
Weight 11
Character orbit 3240.bn
Analytic conductor 1.6171.617
Analytic rank 00
Dimension 88
Projective image S4S_{4}
CM/RM no
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(1889,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1889");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3240.bn (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.616970640931.61697064093
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1080)
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.10800.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ247q5ζ242q7+(ζ2411+ζ245)q11ζ2410q13+q19+(ζ247+ζ24)q23ζ242q25+(ζ2411ζ245)q29++ζ242q97+O(q100) q - \zeta_{24}^{7} q^{5} - \zeta_{24}^{2} q^{7} + ( - \zeta_{24}^{11} + \zeta_{24}^{5}) q^{11} - \zeta_{24}^{10} q^{13} + q^{19} + (\zeta_{24}^{7} + \zeta_{24}) q^{23} - \zeta_{24}^{2} q^{25} + (\zeta_{24}^{11} - \zeta_{24}^{5}) q^{29} + \cdots + \zeta_{24}^{2} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q19+8q55+4q61+4q798q91+O(q100) 8 q + 8 q^{19} + 8 q^{55} + 4 q^{61} + 4 q^{79} - 8 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) 1-1 11 11 ζ244\zeta_{24}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1889.1
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
0 0 0 −0.965926 0.258819i 0 0.866025 + 0.500000i 0 0 0
1889.2 0 0 0 −0.258819 + 0.965926i 0 −0.866025 0.500000i 0 0 0
1889.3 0 0 0 0.258819 0.965926i 0 −0.866025 0.500000i 0 0 0
1889.4 0 0 0 0.965926 + 0.258819i 0 0.866025 + 0.500000i 0 0 0
2969.1 0 0 0 −0.965926 + 0.258819i 0 0.866025 0.500000i 0 0 0
2969.2 0 0 0 −0.258819 0.965926i 0 −0.866025 + 0.500000i 0 0 0
2969.3 0 0 0 0.258819 + 0.965926i 0 −0.866025 + 0.500000i 0 0 0
2969.4 0 0 0 0.965926 0.258819i 0 0.866025 0.500000i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1889.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
15.d odd 2 1 inner
45.h odd 6 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.bn.a 8
3.b odd 2 1 inner 3240.1.bn.a 8
5.b even 2 1 inner 3240.1.bn.a 8
9.c even 3 1 1080.1.c.a 4
9.c even 3 1 inner 3240.1.bn.a 8
9.d odd 6 1 1080.1.c.a 4
9.d odd 6 1 inner 3240.1.bn.a 8
15.d odd 2 1 inner 3240.1.bn.a 8
36.f odd 6 1 2160.1.c.c 4
36.h even 6 1 2160.1.c.c 4
45.h odd 6 1 1080.1.c.a 4
45.h odd 6 1 inner 3240.1.bn.a 8
45.j even 6 1 1080.1.c.a 4
45.j even 6 1 inner 3240.1.bn.a 8
180.n even 6 1 2160.1.c.c 4
180.p odd 6 1 2160.1.c.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.1.c.a 4 9.c even 3 1
1080.1.c.a 4 9.d odd 6 1
1080.1.c.a 4 45.h odd 6 1
1080.1.c.a 4 45.j even 6 1
2160.1.c.c 4 36.f odd 6 1
2160.1.c.c 4 36.h even 6 1
2160.1.c.c 4 180.n even 6 1
2160.1.c.c 4 180.p odd 6 1
3240.1.bn.a 8 1.a even 1 1 trivial
3240.1.bn.a 8 3.b odd 2 1 inner
3240.1.bn.a 8 5.b even 2 1 inner
3240.1.bn.a 8 9.c even 3 1 inner
3240.1.bn.a 8 9.d odd 6 1 inner
3240.1.bn.a 8 15.d odd 2 1 inner
3240.1.bn.a 8 45.h odd 6 1 inner
3240.1.bn.a 8 45.j even 6 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(3240,[χ])S_{1}^{\mathrm{new}}(3240, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
77 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
1111 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
1313 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 (T1)8 (T - 1)^{8} Copy content Toggle raw display
2323 (T4+2T2+4)2 (T^{4} + 2 T^{2} + 4)^{2} Copy content Toggle raw display
2929 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
4141 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 (T22)4 (T^{2} - 2)^{4} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
6767 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
7171 (T2+2)4 (T^{2} + 2)^{4} Copy content Toggle raw display
7373 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
7979 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
8383 (T4+2T2+4)2 (T^{4} + 2 T^{2} + 4)^{2} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
show more
show less