Properties

Label 3240.1.v.a
Level 32403240
Weight 11
Character orbit 3240.v
Analytic conductor 1.6171.617
Analytic rank 00
Dimension 22
Projective image S4S_{4}
CM/RM no
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(1297,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1297");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3240.v (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.616970640931.61697064093
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.0.162000.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qq5+q11+iq19+(i1)q23+q25+iq29+q31+(i+1)q37q41+(i+1)q43+(i+1)q47+iq49q55+iq59+(i+1)q67++(i1)q97+O(q100) q - q^{5} + q^{11} + i q^{19} + ( - i - 1) q^{23} + q^{25} + i q^{29} + q^{31} + ( - i + 1) q^{37} - q^{41} + (i + 1) q^{43} + ( - i + 1) q^{47} + i q^{49} - q^{55} + i q^{59} + ( - i + 1) q^{67}+ \cdots + (i - 1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q5+2q112q23+2q25+2q31+2q372q41+2q43+2q472q55+2q67+2q71+2q832q97+O(q100) 2 q - 2 q^{5} + 2 q^{11} - 2 q^{23} + 2 q^{25} + 2 q^{31} + 2 q^{37} - 2 q^{41} + 2 q^{43} + 2 q^{47} - 2 q^{55} + 2 q^{67} + 2 q^{71} + 2 q^{83} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) i-i 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1297.1
1.00000i
1.00000i
0 0 0 −1.00000 0 0 0 0 0
2593.1 0 0 0 −1.00000 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.v.a 2
3.b odd 2 1 3240.1.v.b yes 2
5.c odd 4 1 inner 3240.1.v.a 2
9.c even 3 2 3240.1.bq.b 4
9.d odd 6 2 3240.1.bq.a 4
15.e even 4 1 3240.1.v.b yes 2
45.k odd 12 2 3240.1.bq.b 4
45.l even 12 2 3240.1.bq.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3240.1.v.a 2 1.a even 1 1 trivial
3240.1.v.a 2 5.c odd 4 1 inner
3240.1.v.b yes 2 3.b odd 2 1
3240.1.v.b yes 2 15.e even 4 1
3240.1.bq.a 4 9.d odd 6 2
3240.1.bq.a 4 45.l even 12 2
3240.1.bq.b 4 9.c even 3 2
3240.1.bq.b 4 45.k odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T111 T_{11} - 1 acting on S1new(3240,[χ])S_{1}^{\mathrm{new}}(3240, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+1 T^{2} + 1 Copy content Toggle raw display
2323 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
2929 T2+1 T^{2} + 1 Copy content Toggle raw display
3131 (T1)2 (T - 1)^{2} Copy content Toggle raw display
3737 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4141 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
4343 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4747 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+1 T^{2} + 1 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
7171 (T1)2 (T - 1)^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2+4 T^{2} + 4 Copy content Toggle raw display
8383 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
8989 T2+1 T^{2} + 1 Copy content Toggle raw display
9797 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
show more
show less