Properties

Label 3240.2.q.h.2161.1
Level $3240$
Weight $2$
Character 3240.2161
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2161.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3240.2161
Dual form 3240.2.q.h.1081.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{7} +(1.00000 - 1.73205i) q^{11} +(2.50000 + 4.33013i) q^{13} -4.00000 q^{17} -5.00000 q^{19} +(1.00000 + 1.73205i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-5.00000 + 8.66025i) q^{29} +(4.00000 + 6.92820i) q^{31} -1.00000 q^{35} -3.00000 q^{37} +(-3.00000 - 5.19615i) q^{41} +(-2.00000 + 3.46410i) q^{43} +(4.00000 - 6.92820i) q^{47} +(3.00000 + 5.19615i) q^{49} +6.00000 q^{53} -2.00000 q^{55} +(2.00000 + 3.46410i) q^{59} +(2.50000 - 4.33013i) q^{61} +(2.50000 - 4.33013i) q^{65} +(3.50000 + 6.06218i) q^{67} +6.00000 q^{71} -9.00000 q^{73} +(-1.00000 - 1.73205i) q^{77} +(-1.50000 + 2.59808i) q^{79} +(-1.00000 + 1.73205i) q^{83} +(2.00000 + 3.46410i) q^{85} +5.00000 q^{91} +(2.50000 + 4.33013i) q^{95} +(-3.50000 + 6.06218i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} + q^{7} + 2 q^{11} + 5 q^{13} - 8 q^{17} - 10 q^{19} + 2 q^{23} - q^{25} - 10 q^{29} + 8 q^{31} - 2 q^{35} - 6 q^{37} - 6 q^{41} - 4 q^{43} + 8 q^{47} + 6 q^{49} + 12 q^{53} - 4 q^{55} + 4 q^{59}+ \cdots - 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 2.50000 + 4.33013i 0.693375 + 1.20096i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 + 8.66025i −0.928477 + 1.60817i −0.142605 + 0.989780i \(0.545548\pi\)
−0.785872 + 0.618389i \(0.787786\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) −2.00000 + 3.46410i −0.304997 + 0.528271i −0.977261 0.212041i \(-0.931989\pi\)
0.672264 + 0.740312i \(0.265322\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.50000 4.33013i 0.310087 0.537086i
\(66\) 0 0
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −9.00000 −1.05337 −0.526685 0.850060i \(-0.676565\pi\)
−0.526685 + 0.850060i \(0.676565\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.00000 1.73205i −0.113961 0.197386i
\(78\) 0 0
\(79\) −1.50000 + 2.59808i −0.168763 + 0.292306i −0.937985 0.346675i \(-0.887311\pi\)
0.769222 + 0.638982i \(0.220644\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.00000 + 1.73205i −0.109764 + 0.190117i −0.915675 0.401920i \(-0.868343\pi\)
0.805910 + 0.592037i \(0.201676\pi\)
\(84\) 0 0
\(85\) 2.00000 + 3.46410i 0.216930 + 0.375735i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 5.00000 0.524142
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.50000 + 4.33013i 0.256495 + 0.444262i
\(96\) 0 0
\(97\) −3.50000 + 6.06218i −0.355371 + 0.615521i −0.987181 0.159602i \(-0.948979\pi\)
0.631810 + 0.775123i \(0.282312\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 2.50000 + 4.33013i 0.246332 + 0.426660i 0.962505 0.271263i \(-0.0874412\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.00000 5.19615i −0.282216 0.488813i 0.689714 0.724082i \(-0.257736\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 0 0
\(115\) 1.00000 1.73205i 0.0932505 0.161515i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.00000 + 3.46410i −0.183340 + 0.317554i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) −2.50000 + 4.33013i −0.216777 + 0.375470i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.00000 1.73205i 0.0854358 0.147979i −0.820141 0.572161i \(-0.806105\pi\)
0.905577 + 0.424182i \(0.139438\pi\)
\(138\) 0 0
\(139\) 7.50000 + 12.9904i 0.636142 + 1.10183i 0.986272 + 0.165129i \(0.0528040\pi\)
−0.350130 + 0.936701i \(0.613863\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.0000 0.836242
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 17.3205i −0.819232 1.41895i −0.906249 0.422744i \(-0.861067\pi\)
0.0870170 0.996207i \(-0.472267\pi\)
\(150\) 0 0
\(151\) −11.5000 + 19.9186i −0.935857 + 1.62095i −0.162758 + 0.986666i \(0.552039\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.00000 6.92820i 0.321288 0.556487i
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 + 20.7846i 0.928588 + 1.60836i 0.785687 + 0.618624i \(0.212310\pi\)
0.142901 + 0.989737i \(0.454357\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.0000 + 17.3205i −0.760286 + 1.31685i 0.182417 + 0.983221i \(0.441608\pi\)
−0.942703 + 0.333633i \(0.891725\pi\)
\(174\) 0 0
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 26.0000 1.94333 0.971666 0.236360i \(-0.0759544\pi\)
0.971666 + 0.236360i \(0.0759544\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.50000 + 2.59808i 0.110282 + 0.191014i
\(186\) 0 0
\(187\) −4.00000 + 6.92820i −0.292509 + 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 13.8564i 0.578860 1.00261i −0.416751 0.909021i \(-0.636831\pi\)
0.995610 0.0935936i \(-0.0298354\pi\)
\(192\) 0 0
\(193\) −0.500000 0.866025i −0.0359908 0.0623379i 0.847469 0.530845i \(-0.178125\pi\)
−0.883460 + 0.468507i \(0.844792\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −20.0000 −1.42494 −0.712470 0.701702i \(-0.752424\pi\)
−0.712470 + 0.701702i \(0.752424\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.00000 + 8.66025i 0.350931 + 0.607831i
\(204\) 0 0
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.00000 + 8.66025i −0.345857 + 0.599042i
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.0000 17.3205i −0.672673 1.16510i
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) −11.0000 19.0526i −0.726900 1.25903i −0.958187 0.286143i \(-0.907627\pi\)
0.231287 0.972886i \(-0.425707\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.00000 15.5885i −0.582162 1.00833i −0.995223 0.0976302i \(-0.968874\pi\)
0.413061 0.910703i \(-0.364460\pi\)
\(240\) 0 0
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.00000 5.19615i 0.191663 0.331970i
\(246\) 0 0
\(247\) −12.5000 21.6506i −0.795356 1.37760i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000 + 20.7846i 0.748539 + 1.29651i 0.948523 + 0.316709i \(0.102578\pi\)
−0.199983 + 0.979799i \(0.564089\pi\)
\(258\) 0 0
\(259\) −1.50000 + 2.59808i −0.0932055 + 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) −3.00000 5.19615i −0.184289 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 0 0
\(271\) 3.00000 0.182237 0.0911185 0.995840i \(-0.470956\pi\)
0.0911185 + 0.995840i \(0.470956\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 + 1.73205i 0.0603023 + 0.104447i
\(276\) 0 0
\(277\) −13.0000 + 22.5167i −0.781094 + 1.35290i 0.150210 + 0.988654i \(0.452005\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0000 27.7128i 0.954480 1.65321i 0.218926 0.975741i \(-0.429745\pi\)
0.735554 0.677466i \(-0.236922\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.0000 19.0526i −0.642627 1.11306i −0.984844 0.173442i \(-0.944511\pi\)
0.342217 0.939621i \(-0.388822\pi\)
\(294\) 0 0
\(295\) 2.00000 3.46410i 0.116445 0.201688i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.00000 + 8.66025i −0.289157 + 0.500835i
\(300\) 0 0
\(301\) 2.00000 + 3.46410i 0.115278 + 0.199667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.00000 −0.286299
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.0000 17.3205i −0.567048 0.982156i −0.996856 0.0792356i \(-0.974752\pi\)
0.429808 0.902920i \(-0.358581\pi\)
\(312\) 0 0
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 + 10.3923i −0.336994 + 0.583690i −0.983866 0.178908i \(-0.942743\pi\)
0.646872 + 0.762598i \(0.276077\pi\)
\(318\) 0 0
\(319\) 10.0000 + 17.3205i 0.559893 + 0.969762i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.0000 1.11283
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.00000 6.92820i −0.220527 0.381964i
\(330\) 0 0
\(331\) 7.50000 12.9904i 0.412237 0.714016i −0.582897 0.812546i \(-0.698081\pi\)
0.995134 + 0.0985303i \(0.0314141\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.50000 6.06218i 0.191225 0.331212i
\(336\) 0 0
\(337\) 14.5000 + 25.1147i 0.789865 + 1.36809i 0.926049 + 0.377403i \(0.123183\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.0000 + 29.4449i 0.912608 + 1.58068i 0.810366 + 0.585923i \(0.199268\pi\)
0.102241 + 0.994760i \(0.467399\pi\)
\(348\) 0 0
\(349\) −7.50000 + 12.9904i −0.401466 + 0.695359i −0.993903 0.110257i \(-0.964832\pi\)
0.592437 + 0.805617i \(0.298166\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.00000 3.46410i 0.106449 0.184376i −0.807880 0.589347i \(-0.799385\pi\)
0.914329 + 0.404971i \(0.132718\pi\)
\(354\) 0 0
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.50000 + 7.79423i 0.235541 + 0.407969i
\(366\) 0 0
\(367\) 12.5000 21.6506i 0.652495 1.13015i −0.330021 0.943974i \(-0.607056\pi\)
0.982516 0.186180i \(-0.0596109\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 5.50000 + 9.52628i 0.284779 + 0.493252i 0.972556 0.232671i \(-0.0747464\pi\)
−0.687776 + 0.725923i \(0.741413\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −50.0000 −2.57513
\(378\) 0 0
\(379\) 7.00000 0.359566 0.179783 0.983706i \(-0.442460\pi\)
0.179783 + 0.983706i \(0.442460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 20.7846i −0.613171 1.06204i −0.990702 0.136047i \(-0.956560\pi\)
0.377531 0.925997i \(-0.376773\pi\)
\(384\) 0 0
\(385\) −1.00000 + 1.73205i −0.0509647 + 0.0882735i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.00000 + 10.3923i −0.304212 + 0.526911i −0.977086 0.212847i \(-0.931726\pi\)
0.672874 + 0.739758i \(0.265060\pi\)
\(390\) 0 0
\(391\) −4.00000 6.92820i −0.202289 0.350374i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.00000 0.150946
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.00000 + 15.5885i 0.449439 + 0.778450i 0.998350 0.0574304i \(-0.0182907\pi\)
−0.548911 + 0.835881i \(0.684957\pi\)
\(402\) 0 0
\(403\) −20.0000 + 34.6410i −0.996271 + 1.72559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) 0 0
\(409\) −12.5000 21.6506i −0.618085 1.07056i −0.989835 0.142222i \(-0.954575\pi\)
0.371750 0.928333i \(-0.378758\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) 2.00000 0.0981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 13.5000 23.3827i 0.657950 1.13960i −0.323196 0.946332i \(-0.604757\pi\)
0.981146 0.193270i \(-0.0619094\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.00000 3.46410i 0.0970143 0.168034i
\(426\) 0 0
\(427\) −2.50000 4.33013i −0.120983 0.209550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 38.0000 1.83040 0.915198 0.403005i \(-0.132034\pi\)
0.915198 + 0.403005i \(0.132034\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.00000 8.66025i −0.239182 0.414276i
\(438\) 0 0
\(439\) 16.0000 27.7128i 0.763638 1.32266i −0.177325 0.984152i \(-0.556744\pi\)
0.940963 0.338508i \(-0.109922\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.0000 + 31.1769i −0.855206 + 1.48126i 0.0212481 + 0.999774i \(0.493236\pi\)
−0.876454 + 0.481486i \(0.840097\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.50000 4.33013i −0.117202 0.202999i
\(456\) 0 0
\(457\) 13.0000 22.5167i 0.608114 1.05328i −0.383437 0.923567i \(-0.625260\pi\)
0.991551 0.129718i \(-0.0414071\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) −13.5000 23.3827i −0.627398 1.08669i −0.988072 0.153993i \(-0.950787\pi\)
0.360674 0.932692i \(-0.382547\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 + 6.92820i 0.183920 + 0.318559i
\(474\) 0 0
\(475\) 2.50000 4.33013i 0.114708 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.0000 + 29.4449i −0.776750 + 1.34537i 0.157056 + 0.987590i \(0.449800\pi\)
−0.933806 + 0.357780i \(0.883534\pi\)
\(480\) 0 0
\(481\) −7.50000 12.9904i −0.341971 0.592310i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.00000 0.317854
\(486\) 0 0
\(487\) −17.0000 −0.770344 −0.385172 0.922845i \(-0.625858\pi\)
−0.385172 + 0.922845i \(0.625858\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 20.0000 34.6410i 0.900755 1.56015i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) 0 0
\(499\) 20.0000 + 34.6410i 0.895323 + 1.55074i 0.833404 + 0.552664i \(0.186389\pi\)
0.0619186 + 0.998081i \(0.480278\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.00000 + 1.73205i 0.0443242 + 0.0767718i 0.887336 0.461123i \(-0.152553\pi\)
−0.843012 + 0.537895i \(0.819220\pi\)
\(510\) 0 0
\(511\) −4.50000 + 7.79423i −0.199068 + 0.344796i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.50000 4.33013i 0.110163 0.190808i
\(516\) 0 0
\(517\) −8.00000 13.8564i −0.351840 0.609404i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −35.0000 −1.53044 −0.765222 0.643767i \(-0.777371\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.0000 27.7128i −0.696971 1.20719i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15.0000 25.9808i 0.649722 1.12535i
\(534\) 0 0
\(535\) 9.00000 + 15.5885i 0.389104 + 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −11.0000 −0.472927 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.00000 12.1244i −0.299847 0.519350i
\(546\) 0 0
\(547\) 18.5000 32.0429i 0.791003 1.37006i −0.134344 0.990935i \(-0.542893\pi\)
0.925347 0.379122i \(-0.123774\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.0000 43.3013i 1.06504 1.84470i
\(552\) 0 0
\(553\) 1.50000 + 2.59808i 0.0637865 + 0.110481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.0000 −0.677942 −0.338971 0.940797i \(-0.610079\pi\)
−0.338971 + 0.940797i \(0.610079\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0000 + 17.3205i 0.421450 + 0.729972i 0.996082 0.0884397i \(-0.0281881\pi\)
−0.574632 + 0.818412i \(0.694855\pi\)
\(564\) 0 0
\(565\) −3.00000 + 5.19615i −0.126211 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.00000 3.46410i 0.0838444 0.145223i −0.821054 0.570851i \(-0.806613\pi\)
0.904898 + 0.425628i \(0.139947\pi\)
\(570\) 0 0
\(571\) −15.5000 26.8468i −0.648655 1.12350i −0.983444 0.181210i \(-0.941999\pi\)
0.334790 0.942293i \(-0.391335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.00000 −0.0834058
\(576\) 0 0
\(577\) −19.0000 −0.790980 −0.395490 0.918470i \(-0.629425\pi\)
−0.395490 + 0.918470i \(0.629425\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.00000 + 1.73205i 0.0414870 + 0.0718576i
\(582\) 0 0
\(583\) 6.00000 10.3923i 0.248495 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.00000 + 5.19615i −0.123823 + 0.214468i −0.921272 0.388918i \(-0.872849\pi\)
0.797449 + 0.603386i \(0.206182\pi\)
\(588\) 0 0
\(589\) −20.0000 34.6410i −0.824086 1.42736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.00000 + 5.19615i 0.122577 + 0.212309i 0.920783 0.390075i \(-0.127551\pi\)
−0.798206 + 0.602384i \(0.794218\pi\)
\(600\) 0 0
\(601\) 13.0000 22.5167i 0.530281 0.918474i −0.469095 0.883148i \(-0.655420\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) −13.5000 23.3827i −0.547948 0.949074i −0.998415 0.0562808i \(-0.982076\pi\)
0.450467 0.892793i \(-0.351258\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 40.0000 1.61823
\(612\) 0 0
\(613\) −15.0000 −0.605844 −0.302922 0.953015i \(-0.597962\pi\)
−0.302922 + 0.953015i \(0.597962\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 5.19615i −0.120775 0.209189i 0.799298 0.600935i \(-0.205205\pi\)
−0.920074 + 0.391745i \(0.871871\pi\)
\(618\) 0 0
\(619\) 0.500000 0.866025i 0.0200967 0.0348085i −0.855802 0.517303i \(-0.826936\pi\)
0.875899 + 0.482495i \(0.160269\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.0000 + 25.9808i −0.594322 + 1.02940i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0000 20.7846i 0.473972 0.820943i −0.525584 0.850741i \(-0.676153\pi\)
0.999556 + 0.0297987i \(0.00948663\pi\)
\(642\) 0 0
\(643\) −6.00000 10.3923i −0.236617 0.409832i 0.723124 0.690718i \(-0.242705\pi\)
−0.959741 + 0.280885i \(0.909372\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.0000 + 24.2487i 0.547862 + 0.948925i 0.998421 + 0.0561784i \(0.0178916\pi\)
−0.450558 + 0.892747i \(0.648775\pi\)
\(654\) 0 0
\(655\) 6.00000 10.3923i 0.234439 0.406061i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 + 20.7846i −0.467454 + 0.809653i −0.999309 0.0371821i \(-0.988162\pi\)
0.531855 + 0.846836i \(0.321495\pi\)
\(660\) 0 0
\(661\) 22.5000 + 38.9711i 0.875149 + 1.51580i 0.856604 + 0.515974i \(0.172570\pi\)
0.0185442 + 0.999828i \(0.494097\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.00000 0.193892
\(666\) 0 0
\(667\) −20.0000 −0.774403
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.00000 8.66025i −0.193023 0.334325i
\(672\) 0 0
\(673\) 1.50000 2.59808i 0.0578208 0.100148i −0.835666 0.549238i \(-0.814918\pi\)
0.893487 + 0.449089i \(0.148251\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.0000 + 34.6410i −0.768662 + 1.33136i 0.169626 + 0.985509i \(0.445744\pi\)
−0.938288 + 0.345854i \(0.887589\pi\)
\(678\) 0 0
\(679\) 3.50000 + 6.06218i 0.134318 + 0.232645i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.0000 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.0000 + 25.9808i 0.571454 + 0.989788i
\(690\) 0 0
\(691\) 14.0000 24.2487i 0.532585 0.922464i −0.466691 0.884420i \(-0.654554\pi\)
0.999276 0.0380440i \(-0.0121127\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.50000 12.9904i 0.284491 0.492753i
\(696\) 0 0
\(697\) 12.0000 + 20.7846i 0.454532 + 0.787273i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 15.0000 0.565736
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 21.5000 37.2391i 0.807449 1.39854i −0.107176 0.994240i \(-0.534181\pi\)
0.914625 0.404303i \(-0.132486\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.00000 + 13.8564i −0.299602 + 0.518927i
\(714\) 0 0
\(715\) −5.00000 8.66025i −0.186989 0.323875i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.0000 0.372937 0.186469 0.982461i \(-0.440296\pi\)
0.186469 + 0.982461i \(0.440296\pi\)
\(720\) 0 0
\(721\) 5.00000 0.186210
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.00000 8.66025i −0.185695 0.321634i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.00000 13.8564i 0.295891 0.512498i
\(732\) 0 0
\(733\) −9.00000 15.5885i −0.332423 0.575773i 0.650564 0.759452i \(-0.274533\pi\)
−0.982986 + 0.183679i \(0.941199\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.0000 0.515697
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 10.3923i −0.220119 0.381257i 0.734725 0.678365i \(-0.237311\pi\)
−0.954844 + 0.297108i \(0.903978\pi\)
\(744\) 0 0
\(745\) −10.0000 + 17.3205i −0.366372 + 0.634574i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.00000 + 15.5885i −0.328853 + 0.569590i
\(750\) 0 0
\(751\) 16.5000 + 28.5788i 0.602094 + 1.04286i 0.992504 + 0.122216i \(0.0389999\pi\)
−0.390410 + 0.920641i \(0.627667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23.0000 0.837056
\(756\) 0 0
\(757\) 35.0000 1.27210 0.636048 0.771649i \(-0.280568\pi\)
0.636048 + 0.771649i \(0.280568\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.00000 + 5.19615i 0.108750 + 0.188360i 0.915264 0.402854i \(-0.131982\pi\)
−0.806514 + 0.591215i \(0.798649\pi\)
\(762\) 0 0
\(763\) 7.00000 12.1244i 0.253417 0.438931i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0000 + 17.3205i −0.361079 + 0.625407i
\(768\) 0 0
\(769\) −21.5000 37.2391i −0.775310 1.34288i −0.934620 0.355647i \(-0.884260\pi\)
0.159310 0.987229i \(-0.449073\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.0000 + 25.9808i 0.537431 + 0.930857i
\(780\) 0 0
\(781\) 6.00000 10.3923i 0.214697 0.371866i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.00000 12.1244i 0.249841 0.432737i
\(786\) 0 0
\(787\) −20.5000 35.5070i −0.730746 1.26569i −0.956565 0.291520i \(-0.905839\pi\)
0.225819 0.974169i \(-0.427494\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 25.0000 0.887776
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) −16.0000 + 27.7128i −0.566039 + 0.980409i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.00000 + 15.5885i −0.317603 + 0.550105i
\(804\) 0 0
\(805\) −1.00000 1.73205i −0.0352454 0.0610468i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.50000 16.4545i −0.332770 0.576375i
\(816\) 0 0
\(817\) 10.0000 17.3205i 0.349856 0.605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.0000 38.1051i 0.767805 1.32988i −0.170945 0.985281i \(-0.554682\pi\)
0.938751 0.344597i \(-0.111985\pi\)
\(822\) 0 0
\(823\) −0.500000 0.866025i −0.0174289 0.0301877i 0.857179 0.515018i \(-0.172215\pi\)
−0.874608 + 0.484830i \(0.838881\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −47.0000 −1.63238 −0.816189 0.577785i \(-0.803917\pi\)
−0.816189 + 0.577785i \(0.803917\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.0000 20.7846i −0.415775 0.720144i
\(834\) 0 0
\(835\) 12.0000 20.7846i 0.415277 0.719281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.0000 45.0333i 0.897620 1.55472i 0.0670911 0.997747i \(-0.478628\pi\)
0.830529 0.556976i \(-0.188038\pi\)
\(840\) 0 0
\(841\) −35.5000 61.4878i −1.22414 2.12027i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.00000 5.19615i −0.102839 0.178122i
\(852\) 0 0
\(853\) 9.50000 16.4545i 0.325274 0.563391i −0.656294 0.754505i \(-0.727877\pi\)
0.981568 + 0.191115i \(0.0612102\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27.0000 + 46.7654i −0.922302 + 1.59747i −0.126459 + 0.991972i \(0.540361\pi\)
−0.795843 + 0.605503i \(0.792972\pi\)
\(858\) 0 0
\(859\) −2.50000 4.33013i −0.0852989 0.147742i 0.820220 0.572049i \(-0.193851\pi\)
−0.905519 + 0.424307i \(0.860518\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 20.0000 0.680020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.00000 + 5.19615i 0.101768 + 0.176267i
\(870\) 0 0
\(871\) −17.5000 + 30.3109i −0.592965 + 1.02705i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.500000 0.866025i 0.0169031 0.0292770i
\(876\) 0 0
\(877\) −0.500000 0.866025i −0.0168838 0.0292436i 0.857460 0.514551i \(-0.172041\pi\)
−0.874344 + 0.485307i \(0.838708\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 11.0000 0.370179 0.185090 0.982722i \(-0.440742\pi\)
0.185090 + 0.982722i \(0.440742\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.0000 34.6410i −0.671534 1.16313i −0.977469 0.211079i \(-0.932302\pi\)
0.305935 0.952052i \(-0.401031\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.0000 + 34.6410i −0.669274 + 1.15922i
\(894\) 0 0
\(895\) −13.0000 22.5167i −0.434542 0.752649i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −80.0000 −2.66815
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.50000 + 6.06218i 0.116344 + 0.201514i
\(906\) 0 0
\(907\) 1.50000 2.59808i 0.0498067 0.0862677i −0.840047 0.542513i \(-0.817473\pi\)
0.889854 + 0.456246i \(0.150806\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.00000 6.92820i 0.132526 0.229542i −0.792124 0.610361i \(-0.791025\pi\)
0.924650 + 0.380819i \(0.124358\pi\)
\(912\) 0 0
\(913\) 2.00000 + 3.46410i 0.0661903 + 0.114645i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.0000 0.396275
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.0000 + 25.9808i 0.493731 + 0.855167i
\(924\) 0 0
\(925\) 1.50000 2.59808i 0.0493197 0.0854242i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13.0000 22.5167i 0.426516 0.738748i −0.570045 0.821614i \(-0.693074\pi\)
0.996561 + 0.0828661i \(0.0264074\pi\)
\(930\) 0 0
\(931\) −15.0000 25.9808i −0.491605 0.851485i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) −35.0000 −1.14340 −0.571700 0.820463i \(-0.693716\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.0000 39.8372i −0.749779 1.29865i −0.947929 0.318483i \(-0.896827\pi\)
0.198150 0.980172i \(-0.436507\pi\)
\(942\) 0 0
\(943\) 6.00000 10.3923i 0.195387 0.338420i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.0000 + 45.0333i −0.844886 + 1.46339i 0.0408333 + 0.999166i \(0.486999\pi\)
−0.885720 + 0.464220i \(0.846335\pi\)
\(948\) 0 0
\(949\) −22.5000 38.9711i −0.730381 1.26506i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.0000 0.388718 0.194359 0.980930i \(-0.437737\pi\)
0.194359 + 0.980930i \(0.437737\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.00000 1.73205i −0.0322917 0.0559308i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.500000 + 0.866025i −0.0160956 + 0.0278783i
\(966\) 0 0
\(967\) −16.5000 28.5788i −0.530604 0.919033i −0.999362 0.0357069i \(-0.988632\pi\)
0.468758 0.883327i \(-0.344702\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −40.0000 −1.28366 −0.641831 0.766846i \(-0.721825\pi\)
−0.641831 + 0.766846i \(0.721825\pi\)
\(972\) 0 0
\(973\) 15.0000 0.480878
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.00000 1.73205i −0.0319928 0.0554132i 0.849586 0.527451i \(-0.176852\pi\)
−0.881579 + 0.472037i \(0.843519\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.0000 36.3731i 0.669796 1.16012i −0.308165 0.951333i \(-0.599715\pi\)
0.977961 0.208788i \(-0.0669518\pi\)
\(984\) 0 0
\(985\) 10.0000 + 17.3205i 0.318626 + 0.551877i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −7.00000 −0.222362 −0.111181 0.993800i \(-0.535463\pi\)
−0.111181 + 0.993800i \(0.535463\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.50000 + 6.06218i 0.110957 + 0.192184i
\(996\) 0 0
\(997\) −15.0000 + 25.9808i −0.475055 + 0.822819i −0.999592 0.0285686i \(-0.990905\pi\)
0.524537 + 0.851388i \(0.324238\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3240.2.q.h.2161.1 2
3.2 odd 2 3240.2.q.t.2161.1 2
9.2 odd 6 1080.2.a.c.1.1 1
9.4 even 3 inner 3240.2.q.h.1081.1 2
9.5 odd 6 3240.2.q.t.1081.1 2
9.7 even 3 1080.2.a.i.1.1 yes 1
36.7 odd 6 2160.2.a.t.1.1 1
36.11 even 6 2160.2.a.g.1.1 1
45.2 even 12 5400.2.f.t.649.1 2
45.7 odd 12 5400.2.f.k.649.1 2
45.29 odd 6 5400.2.a.bc.1.1 1
45.34 even 6 5400.2.a.ba.1.1 1
45.38 even 12 5400.2.f.t.649.2 2
45.43 odd 12 5400.2.f.k.649.2 2
72.11 even 6 8640.2.a.bw.1.1 1
72.29 odd 6 8640.2.a.bp.1.1 1
72.43 odd 6 8640.2.a.q.1.1 1
72.61 even 6 8640.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.a.c.1.1 1 9.2 odd 6
1080.2.a.i.1.1 yes 1 9.7 even 3
2160.2.a.g.1.1 1 36.11 even 6
2160.2.a.t.1.1 1 36.7 odd 6
3240.2.q.h.1081.1 2 9.4 even 3 inner
3240.2.q.h.2161.1 2 1.1 even 1 trivial
3240.2.q.t.1081.1 2 9.5 odd 6
3240.2.q.t.2161.1 2 3.2 odd 2
5400.2.a.ba.1.1 1 45.34 even 6
5400.2.a.bc.1.1 1 45.29 odd 6
5400.2.f.k.649.1 2 45.7 odd 12
5400.2.f.k.649.2 2 45.43 odd 12
5400.2.f.t.649.1 2 45.2 even 12
5400.2.f.t.649.2 2 45.38 even 12
8640.2.a.n.1.1 1 72.61 even 6
8640.2.a.q.1.1 1 72.43 odd 6
8640.2.a.bp.1.1 1 72.29 odd 6
8640.2.a.bw.1.1 1 72.11 even 6