Properties

Label 3249.2.a.w.1.3
Level 32493249
Weight 22
Character 3249.1
Self dual yes
Analytic conductor 25.94325.943
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3249,2,Mod(1,3249)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3249, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3249.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3249=32192 3249 = 3^{2} \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3249.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 25.943395616725.9433956167
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 57)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 1.53209-1.53209 of defining polynomial
Character χ\chi == 3249.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.53209q2+0.347296q4+2.53209q5+0.532089q72.53209q8+3.87939q10+5.10607q11+4.06418q13+0.815207q144.57398q161.94356q17+0.879385q20+7.82295q223.04189q23+1.41147q25+6.22668q26+0.184793q281.61081q29+9.87939q311.94356q322.97771q34+1.34730q35+6.10607q376.41147q40+8.47565q410.177052q43+1.77332q444.66044q467.55943q476.71688q49+2.16250q50+1.41147q52+9.90167q53+12.9290q551.34730q562.46791q58+3.81521q5913.9290q61+15.1361q62+6.17024q64+10.2909q6510.2121q670.674992q68+2.06418q703.82295q711.85710q73+9.35504q74+2.71688q77+10.5175q7911.5817q80+12.9855q82+11.4757q834.92127q850.271259q8612.9290q88+5.92396q89+2.16250q911.05644q9211.5817q946.80066q9710.2909q98+O(q100)q+1.53209 q^{2} +0.347296 q^{4} +2.53209 q^{5} +0.532089 q^{7} -2.53209 q^{8} +3.87939 q^{10} +5.10607 q^{11} +4.06418 q^{13} +0.815207 q^{14} -4.57398 q^{16} -1.94356 q^{17} +0.879385 q^{20} +7.82295 q^{22} -3.04189 q^{23} +1.41147 q^{25} +6.22668 q^{26} +0.184793 q^{28} -1.61081 q^{29} +9.87939 q^{31} -1.94356 q^{32} -2.97771 q^{34} +1.34730 q^{35} +6.10607 q^{37} -6.41147 q^{40} +8.47565 q^{41} -0.177052 q^{43} +1.77332 q^{44} -4.66044 q^{46} -7.55943 q^{47} -6.71688 q^{49} +2.16250 q^{50} +1.41147 q^{52} +9.90167 q^{53} +12.9290 q^{55} -1.34730 q^{56} -2.46791 q^{58} +3.81521 q^{59} -13.9290 q^{61} +15.1361 q^{62} +6.17024 q^{64} +10.2909 q^{65} -10.2121 q^{67} -0.674992 q^{68} +2.06418 q^{70} -3.82295 q^{71} -1.85710 q^{73} +9.35504 q^{74} +2.71688 q^{77} +10.5175 q^{79} -11.5817 q^{80} +12.9855 q^{82} +11.4757 q^{83} -4.92127 q^{85} -0.271259 q^{86} -12.9290 q^{88} +5.92396 q^{89} +2.16250 q^{91} -1.05644 q^{92} -11.5817 q^{94} -6.80066 q^{97} -10.2909 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q53q73q8+6q10+3q11+3q13+6q146q16+9q173q20+3q226q236q25+12q263q289q29+24q31+9q3215q34+15q98+O(q100) 3 q + 3 q^{5} - 3 q^{7} - 3 q^{8} + 6 q^{10} + 3 q^{11} + 3 q^{13} + 6 q^{14} - 6 q^{16} + 9 q^{17} - 3 q^{20} + 3 q^{22} - 6 q^{23} - 6 q^{25} + 12 q^{26} - 3 q^{28} - 9 q^{29} + 24 q^{31} + 9 q^{32} - 15 q^{34}+ \cdots - 15 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.53209 1.08335 0.541675 0.840588i 0.317790π-0.317790\pi
0.541675 + 0.840588i 0.317790π0.317790\pi
33 0 0
44 0.347296 0.173648
55 2.53209 1.13238 0.566192 0.824273i 0.308416π-0.308416\pi
0.566192 + 0.824273i 0.308416π0.308416\pi
66 0 0
77 0.532089 0.201111 0.100555 0.994931i 0.467938π-0.467938\pi
0.100555 + 0.994931i 0.467938π0.467938\pi
88 −2.53209 −0.895229
99 0 0
1010 3.87939 1.22677
1111 5.10607 1.53954 0.769769 0.638323i 0.220372π-0.220372\pi
0.769769 + 0.638323i 0.220372π0.220372\pi
1212 0 0
1313 4.06418 1.12720 0.563600 0.826048i 0.309416π-0.309416\pi
0.563600 + 0.826048i 0.309416π0.309416\pi
1414 0.815207 0.217873
1515 0 0
1616 −4.57398 −1.14349
1717 −1.94356 −0.471383 −0.235692 0.971828i 0.575736π-0.575736\pi
−0.235692 + 0.971828i 0.575736π0.575736\pi
1818 0 0
1919 0 0
2020 0.879385 0.196637
2121 0 0
2222 7.82295 1.66786
2323 −3.04189 −0.634278 −0.317139 0.948379i 0.602722π-0.602722\pi
−0.317139 + 0.948379i 0.602722π0.602722\pi
2424 0 0
2525 1.41147 0.282295
2626 6.22668 1.22115
2727 0 0
2828 0.184793 0.0349225
2929 −1.61081 −0.299121 −0.149560 0.988753i 0.547786π-0.547786\pi
−0.149560 + 0.988753i 0.547786π0.547786\pi
3030 0 0
3131 9.87939 1.77439 0.887195 0.461395i 0.152651π-0.152651\pi
0.887195 + 0.461395i 0.152651π0.152651\pi
3232 −1.94356 −0.343577
3333 0 0
3434 −2.97771 −0.510673
3535 1.34730 0.227735
3636 0 0
3737 6.10607 1.00383 0.501916 0.864917i 0.332629π-0.332629\pi
0.501916 + 0.864917i 0.332629π0.332629\pi
3838 0 0
3939 0 0
4040 −6.41147 −1.01374
4141 8.47565 1.32367 0.661837 0.749648i 0.269777π-0.269777\pi
0.661837 + 0.749648i 0.269777π0.269777\pi
4242 0 0
4343 −0.177052 −0.0270001 −0.0135001 0.999909i 0.504297π-0.504297\pi
−0.0135001 + 0.999909i 0.504297π0.504297\pi
4444 1.77332 0.267338
4545 0 0
4646 −4.66044 −0.687145
4747 −7.55943 −1.10266 −0.551328 0.834289i 0.685879π-0.685879\pi
−0.551328 + 0.834289i 0.685879π0.685879\pi
4848 0 0
4949 −6.71688 −0.959554
5050 2.16250 0.305824
5151 0 0
5252 1.41147 0.195736
5353 9.90167 1.36010 0.680050 0.733166i 0.261958π-0.261958\pi
0.680050 + 0.733166i 0.261958π0.261958\pi
5454 0 0
5555 12.9290 1.74335
5656 −1.34730 −0.180040
5757 0 0
5858 −2.46791 −0.324053
5959 3.81521 0.496698 0.248349 0.968671i 0.420112π-0.420112\pi
0.248349 + 0.968671i 0.420112π0.420112\pi
6060 0 0
6161 −13.9290 −1.78343 −0.891714 0.452600i 0.850497π-0.850497\pi
−0.891714 + 0.452600i 0.850497π0.850497\pi
6262 15.1361 1.92229
6363 0 0
6464 6.17024 0.771281
6565 10.2909 1.27642
6666 0 0
6767 −10.2121 −1.24761 −0.623805 0.781580i 0.714414π-0.714414\pi
−0.623805 + 0.781580i 0.714414π0.714414\pi
6868 −0.674992 −0.0818548
6969 0 0
7070 2.06418 0.246716
7171 −3.82295 −0.453700 −0.226850 0.973930i 0.572843π-0.572843\pi
−0.226850 + 0.973930i 0.572843π0.572843\pi
7272 0 0
7373 −1.85710 −0.217357 −0.108678 0.994077i 0.534662π-0.534662\pi
−0.108678 + 0.994077i 0.534662π0.534662\pi
7474 9.35504 1.08750
7575 0 0
7676 0 0
7777 2.71688 0.309617
7878 0 0
7979 10.5175 1.18332 0.591658 0.806189i 0.298474π-0.298474\pi
0.591658 + 0.806189i 0.298474π0.298474\pi
8080 −11.5817 −1.29488
8181 0 0
8282 12.9855 1.43400
8383 11.4757 1.25962 0.629808 0.776751i 0.283133π-0.283133\pi
0.629808 + 0.776751i 0.283133π0.283133\pi
8484 0 0
8585 −4.92127 −0.533787
8686 −0.271259 −0.0292506
8787 0 0
8888 −12.9290 −1.37824
8989 5.92396 0.627939 0.313969 0.949433i 0.398341π-0.398341\pi
0.313969 + 0.949433i 0.398341π0.398341\pi
9090 0 0
9191 2.16250 0.226692
9292 −1.05644 −0.110141
9393 0 0
9494 −11.5817 −1.19456
9595 0 0
9696 0 0
9797 −6.80066 −0.690502 −0.345251 0.938510i 0.612206π-0.612206\pi
−0.345251 + 0.938510i 0.612206π0.612206\pi
9898 −10.2909 −1.03953
9999 0 0
100100 0.490200 0.0490200
101101 8.75877 0.871530 0.435765 0.900060i 0.356478π-0.356478\pi
0.435765 + 0.900060i 0.356478π0.356478\pi
102102 0 0
103103 −3.84524 −0.378882 −0.189441 0.981892i 0.560668π-0.560668\pi
−0.189441 + 0.981892i 0.560668π0.560668\pi
104104 −10.2909 −1.00910
105105 0 0
106106 15.1702 1.47346
107107 5.67499 0.548622 0.274311 0.961641i 0.411550π-0.411550\pi
0.274311 + 0.961641i 0.411550π0.411550\pi
108108 0 0
109109 −2.08647 −0.199847 −0.0999236 0.994995i 0.531860π-0.531860\pi
−0.0999236 + 0.994995i 0.531860π0.531860\pi
110110 19.8084 1.88866
111111 0 0
112112 −2.43376 −0.229969
113113 −7.27631 −0.684498 −0.342249 0.939609i 0.611189π-0.611189\pi
−0.342249 + 0.939609i 0.611189π0.611189\pi
114114 0 0
115115 −7.70233 −0.718246
116116 −0.559430 −0.0519418
117117 0 0
118118 5.84524 0.538098
119119 −1.03415 −0.0948002
120120 0 0
121121 15.0719 1.37017
122122 −21.3405 −1.93208
123123 0 0
124124 3.43107 0.308120
125125 −9.08647 −0.812718
126126 0 0
127127 1.82976 0.162365 0.0811823 0.996699i 0.474130π-0.474130\pi
0.0811823 + 0.996699i 0.474130π0.474130\pi
128128 13.3405 1.17914
129129 0 0
130130 15.7665 1.38281
131131 8.78611 0.767646 0.383823 0.923407i 0.374607π-0.374607\pi
0.383823 + 0.923407i 0.374607π0.374607\pi
132132 0 0
133133 0 0
134134 −15.6459 −1.35160
135135 0 0
136136 4.92127 0.421996
137137 12.6304 1.07909 0.539545 0.841957i 0.318596π-0.318596\pi
0.539545 + 0.841957i 0.318596π0.318596\pi
138138 0 0
139139 −4.04963 −0.343485 −0.171743 0.985142i 0.554940π-0.554940\pi
−0.171743 + 0.985142i 0.554940π0.554940\pi
140140 0.467911 0.0395457
141141 0 0
142142 −5.85710 −0.491517
143143 20.7520 1.73537
144144 0 0
145145 −4.07873 −0.338720
146146 −2.84524 −0.235473
147147 0 0
148148 2.12061 0.174313
149149 −6.06923 −0.497211 −0.248605 0.968605i 0.579972π-0.579972\pi
−0.248605 + 0.968605i 0.579972π0.579972\pi
150150 0 0
151151 −0.162504 −0.0132244 −0.00661219 0.999978i 0.502105π-0.502105\pi
−0.00661219 + 0.999978i 0.502105π0.502105\pi
152152 0 0
153153 0 0
154154 4.16250 0.335424
155155 25.0155 2.00929
156156 0 0
157157 6.66044 0.531561 0.265781 0.964034i 0.414370π-0.414370\pi
0.265781 + 0.964034i 0.414370π0.414370\pi
158158 16.1138 1.28195
159159 0 0
160160 −4.92127 −0.389061
161161 −1.61856 −0.127560
162162 0 0
163163 −0.448311 −0.0351144 −0.0175572 0.999846i 0.505589π-0.505589\pi
−0.0175572 + 0.999846i 0.505589π0.505589\pi
164164 2.94356 0.229854
165165 0 0
166166 17.5817 1.36461
167167 −3.38919 −0.262263 −0.131132 0.991365i 0.541861π-0.541861\pi
−0.131132 + 0.991365i 0.541861π0.541861\pi
168168 0 0
169169 3.51754 0.270580
170170 −7.53983 −0.578279
171171 0 0
172172 −0.0614894 −0.00468852
173173 1.61587 0.122852 0.0614260 0.998112i 0.480435π-0.480435\pi
0.0614260 + 0.998112i 0.480435π0.480435\pi
174174 0 0
175175 0.751030 0.0567725
176176 −23.3550 −1.76045
177177 0 0
178178 9.07604 0.680278
179179 −2.11381 −0.157993 −0.0789967 0.996875i 0.525172π-0.525172\pi
−0.0789967 + 0.996875i 0.525172π0.525172\pi
180180 0 0
181181 8.75196 0.650528 0.325264 0.945623i 0.394547π-0.394547\pi
0.325264 + 0.945623i 0.394547π0.394547\pi
182182 3.31315 0.245587
183183 0 0
184184 7.70233 0.567824
185185 15.4611 1.13672
186186 0 0
187187 −9.92396 −0.725712
188188 −2.62536 −0.191474
189189 0 0
190190 0 0
191191 19.0719 1.38000 0.689998 0.723811i 0.257611π-0.257611\pi
0.689998 + 0.723811i 0.257611π0.257611\pi
192192 0 0
193193 −23.8357 −1.71573 −0.857867 0.513872i 0.828211π-0.828211\pi
−0.857867 + 0.513872i 0.828211π0.828211\pi
194194 −10.4192 −0.748056
195195 0 0
196196 −2.33275 −0.166625
197197 4.38919 0.312717 0.156358 0.987700i 0.450025π-0.450025\pi
0.156358 + 0.987700i 0.450025π0.450025\pi
198198 0 0
199199 −20.0378 −1.42044 −0.710220 0.703980i 0.751405π-0.751405\pi
−0.710220 + 0.703980i 0.751405π0.751405\pi
200200 −3.57398 −0.252718
201201 0 0
202202 13.4192 0.944173
203203 −0.857097 −0.0601564
204204 0 0
205205 21.4611 1.49891
206206 −5.89124 −0.410462
207207 0 0
208208 −18.5895 −1.28895
209209 0 0
210210 0 0
211211 27.1925 1.87201 0.936006 0.351985i 0.114493π-0.114493\pi
0.936006 + 0.351985i 0.114493π0.114493\pi
212212 3.43882 0.236179
213213 0 0
214214 8.69459 0.594350
215215 −0.448311 −0.0305745
216216 0 0
217217 5.25671 0.356849
218218 −3.19665 −0.216505
219219 0 0
220220 4.49020 0.302729
221221 −7.89899 −0.531343
222222 0 0
223223 −12.0128 −0.804436 −0.402218 0.915544i 0.631761π-0.631761\pi
−0.402218 + 0.915544i 0.631761π0.631761\pi
224224 −1.03415 −0.0690969
225225 0 0
226226 −11.1480 −0.741551
227227 −4.34049 −0.288088 −0.144044 0.989571i 0.546011π-0.546011\pi
−0.144044 + 0.989571i 0.546011π0.546011\pi
228228 0 0
229229 3.29591 0.217800 0.108900 0.994053i 0.465267π-0.465267\pi
0.108900 + 0.994053i 0.465267π0.465267\pi
230230 −11.8007 −0.778112
231231 0 0
232232 4.07873 0.267781
233233 15.4311 1.01092 0.505462 0.862849i 0.331322π-0.331322\pi
0.505462 + 0.862849i 0.331322π0.331322\pi
234234 0 0
235235 −19.1411 −1.24863
236236 1.32501 0.0862507
237237 0 0
238238 −1.58441 −0.102702
239239 −15.8229 −1.02350 −0.511751 0.859134i 0.671003π-0.671003\pi
−0.511751 + 0.859134i 0.671003π0.671003\pi
240240 0 0
241241 −23.6459 −1.52317 −0.761583 0.648067i 0.775578π-0.775578\pi
−0.761583 + 0.648067i 0.775578π0.775578\pi
242242 23.0915 1.48438
243243 0 0
244244 −4.83750 −0.309689
245245 −17.0077 −1.08658
246246 0 0
247247 0 0
248248 −25.0155 −1.58848
249249 0 0
250250 −13.9213 −0.880459
251251 −19.4115 −1.22524 −0.612621 0.790377i 0.709885π-0.709885\pi
−0.612621 + 0.790377i 0.709885π0.709885\pi
252252 0 0
253253 −15.5321 −0.976494
254254 2.80335 0.175898
255255 0 0
256256 8.09833 0.506145
257257 −12.2959 −0.766998 −0.383499 0.923541i 0.625281π-0.625281\pi
−0.383499 + 0.923541i 0.625281π0.625281\pi
258258 0 0
259259 3.24897 0.201881
260260 3.57398 0.221649
261261 0 0
262262 13.4611 0.831630
263263 −6.34049 −0.390971 −0.195486 0.980707i 0.562628π-0.562628\pi
−0.195486 + 0.980707i 0.562628π0.562628\pi
264264 0 0
265265 25.0719 1.54016
266266 0 0
267267 0 0
268268 −3.54664 −0.216645
269269 2.32501 0.141758 0.0708791 0.997485i 0.477420π-0.477420\pi
0.0708791 + 0.997485i 0.477420π0.477420\pi
270270 0 0
271271 14.9436 0.907757 0.453878 0.891064i 0.350040π-0.350040\pi
0.453878 + 0.891064i 0.350040π0.350040\pi
272272 8.88981 0.539024
273273 0 0
274274 19.3509 1.16903
275275 7.20708 0.434603
276276 0 0
277277 −23.9659 −1.43997 −0.719984 0.693990i 0.755851π-0.755851\pi
−0.719984 + 0.693990i 0.755851π0.755851\pi
278278 −6.20439 −0.372115
279279 0 0
280280 −3.41147 −0.203875
281281 −25.5604 −1.52480 −0.762402 0.647104i 0.775980π-0.775980\pi
−0.762402 + 0.647104i 0.775980π0.775980\pi
282282 0 0
283283 −7.51073 −0.446467 −0.223233 0.974765i 0.571661π-0.571661\pi
−0.223233 + 0.974765i 0.571661π0.571661\pi
284284 −1.32770 −0.0787843
285285 0 0
286286 31.7939 1.88001
287287 4.50980 0.266205
288288 0 0
289289 −13.2226 −0.777798
290290 −6.24897 −0.366952
291291 0 0
292292 −0.644963 −0.0377436
293293 −14.7665 −0.862669 −0.431334 0.902192i 0.641957π-0.641957\pi
−0.431334 + 0.902192i 0.641957π0.641957\pi
294294 0 0
295295 9.66044 0.562453
296296 −15.4611 −0.898658
297297 0 0
298298 −9.29860 −0.538653
299299 −12.3628 −0.714958
300300 0 0
301301 −0.0942073 −0.00543002
302302 −0.248970 −0.0143266
303303 0 0
304304 0 0
305305 −35.2695 −2.01953
306306 0 0
307307 5.51249 0.314614 0.157307 0.987550i 0.449719π-0.449719\pi
0.157307 + 0.987550i 0.449719π0.449719\pi
308308 0.943563 0.0537645
309309 0 0
310310 38.3259 2.17677
311311 −17.3996 −0.986642 −0.493321 0.869847i 0.664217π-0.664217\pi
−0.493321 + 0.869847i 0.664217π0.664217\pi
312312 0 0
313313 15.9436 0.901183 0.450592 0.892730i 0.351213π-0.351213\pi
0.450592 + 0.892730i 0.351213π0.351213\pi
314314 10.2044 0.575867
315315 0 0
316316 3.65270 0.205481
317317 −1.97359 −0.110848 −0.0554240 0.998463i 0.517651π-0.517651\pi
−0.0554240 + 0.998463i 0.517651π0.517651\pi
318318 0 0
319319 −8.22493 −0.460507
320320 15.6236 0.873386
321321 0 0
322322 −2.47977 −0.138192
323323 0 0
324324 0 0
325325 5.73648 0.318203
326326 −0.686852 −0.0380412
327327 0 0
328328 −21.4611 −1.18499
329329 −4.02229 −0.221756
330330 0 0
331331 −0.837496 −0.0460330 −0.0230165 0.999735i 0.507327π-0.507327\pi
−0.0230165 + 0.999735i 0.507327π0.507327\pi
332332 3.98545 0.218730
333333 0 0
334334 −5.19253 −0.284123
335335 −25.8580 −1.41278
336336 0 0
337337 −3.32770 −0.181271 −0.0906356 0.995884i 0.528890π-0.528890\pi
−0.0906356 + 0.995884i 0.528890π0.528890\pi
338338 5.38919 0.293133
339339 0 0
340340 −1.70914 −0.0926912
341341 50.4448 2.73174
342342 0 0
343343 −7.29860 −0.394087
344344 0.448311 0.0241713
345345 0 0
346346 2.47565 0.133092
347347 −4.00774 −0.215147 −0.107573 0.994197i 0.534308π-0.534308\pi
−0.107573 + 0.994197i 0.534308π0.534308\pi
348348 0 0
349349 −27.9026 −1.49359 −0.746796 0.665053i 0.768409π-0.768409\pi
−0.746796 + 0.665053i 0.768409π0.768409\pi
350350 1.15064 0.0615045
351351 0 0
352352 −9.92396 −0.528949
353353 −12.9436 −0.688916 −0.344458 0.938802i 0.611937π-0.611937\pi
−0.344458 + 0.938802i 0.611937π0.611937\pi
354354 0 0
355355 −9.68004 −0.513763
356356 2.05737 0.109040
357357 0 0
358358 −3.23854 −0.171162
359359 −11.4466 −0.604126 −0.302063 0.953288i 0.597675π-0.597675\pi
−0.302063 + 0.953288i 0.597675π0.597675\pi
360360 0 0
361361 0 0
362362 13.4088 0.704750
363363 0 0
364364 0.751030 0.0393647
365365 −4.70233 −0.246131
366366 0 0
367367 −28.6013 −1.49298 −0.746488 0.665398i 0.768262π-0.768262\pi
−0.746488 + 0.665398i 0.768262π0.768262\pi
368368 13.9135 0.725293
369369 0 0
370370 23.6878 1.23147
371371 5.26857 0.273531
372372 0 0
373373 −12.5662 −0.650655 −0.325328 0.945601i 0.605475π-0.605475\pi
−0.325328 + 0.945601i 0.605475π0.605475\pi
374374 −15.2044 −0.786200
375375 0 0
376376 19.1411 0.987129
377377 −6.54664 −0.337169
378378 0 0
379379 −2.19934 −0.112973 −0.0564863 0.998403i 0.517990π-0.517990\pi
−0.0564863 + 0.998403i 0.517990π0.517990\pi
380380 0 0
381381 0 0
382382 29.2199 1.49502
383383 5.92808 0.302911 0.151455 0.988464i 0.451604π-0.451604\pi
0.151455 + 0.988464i 0.451604π0.451604\pi
384384 0 0
385385 6.87939 0.350606
386386 −36.5185 −1.85874
387387 0 0
388388 −2.36184 −0.119904
389389 33.1189 1.67919 0.839596 0.543211i 0.182792π-0.182792\pi
0.839596 + 0.543211i 0.182792π0.182792\pi
390390 0 0
391391 5.91210 0.298988
392392 17.0077 0.859021
393393 0 0
394394 6.72462 0.338782
395395 26.6313 1.33997
396396 0 0
397397 −26.0496 −1.30739 −0.653697 0.756757i 0.726783π-0.726783\pi
−0.653697 + 0.756757i 0.726783π0.726783\pi
398398 −30.6996 −1.53883
399399 0 0
400400 −6.45605 −0.322803
401401 15.9682 0.797415 0.398707 0.917078i 0.369459π-0.369459\pi
0.398707 + 0.917078i 0.369459π0.369459\pi
402402 0 0
403403 40.1516 2.00009
404404 3.04189 0.151340
405405 0 0
406406 −1.31315 −0.0651704
407407 31.1780 1.54544
408408 0 0
409409 −2.94862 −0.145800 −0.0728998 0.997339i 0.523225π-0.523225\pi
−0.0728998 + 0.997339i 0.523225π0.523225\pi
410410 32.8803 1.62384
411411 0 0
412412 −1.33544 −0.0657922
413413 2.03003 0.0998912
414414 0 0
415415 29.0574 1.42637
416416 −7.89899 −0.387280
417417 0 0
418418 0 0
419419 33.4962 1.63640 0.818198 0.574937i 0.194973π-0.194973\pi
0.818198 + 0.574937i 0.194973π0.194973\pi
420420 0 0
421421 18.0178 0.878136 0.439068 0.898454i 0.355309π-0.355309\pi
0.439068 + 0.898454i 0.355309π0.355309\pi
422422 41.6614 2.02804
423423 0 0
424424 −25.0719 −1.21760
425425 −2.74329 −0.133069
426426 0 0
427427 −7.41147 −0.358666
428428 1.97090 0.0952672
429429 0 0
430430 −0.686852 −0.0331229
431431 −21.3209 −1.02699 −0.513496 0.858092i 0.671650π-0.671650\pi
−0.513496 + 0.858092i 0.671650π0.671650\pi
432432 0 0
433433 −22.0523 −1.05977 −0.529883 0.848071i 0.677764π-0.677764\pi
−0.529883 + 0.848071i 0.677764π0.677764\pi
434434 8.05375 0.386592
435435 0 0
436436 −0.724622 −0.0347031
437437 0 0
438438 0 0
439439 −3.38682 −0.161644 −0.0808221 0.996729i 0.525755π-0.525755\pi
−0.0808221 + 0.996729i 0.525755π0.525755\pi
440440 −32.7374 −1.56070
441441 0 0
442442 −12.1019 −0.575631
443443 30.1644 1.43315 0.716576 0.697509i 0.245708π-0.245708\pi
0.716576 + 0.697509i 0.245708π0.245708\pi
444444 0 0
445445 15.0000 0.711068
446446 −18.4047 −0.871486
447447 0 0
448448 3.28312 0.155113
449449 30.9118 1.45882 0.729409 0.684078i 0.239795π-0.239795\pi
0.729409 + 0.684078i 0.239795π0.239795\pi
450450 0 0
451451 43.2772 2.03785
452452 −2.52704 −0.118862
453453 0 0
454454 −6.65002 −0.312101
455455 5.47565 0.256703
456456 0 0
457457 −39.0479 −1.82658 −0.913291 0.407307i 0.866468π-0.866468\pi
−0.913291 + 0.407307i 0.866468π0.866468\pi
458458 5.04963 0.235954
459459 0 0
460460 −2.67499 −0.124722
461461 1.50744 0.0702083 0.0351041 0.999384i 0.488824π-0.488824\pi
0.0351041 + 0.999384i 0.488824π0.488824\pi
462462 0 0
463463 −3.28312 −0.152579 −0.0762897 0.997086i 0.524307π-0.524307\pi
−0.0762897 + 0.997086i 0.524307π0.524307\pi
464464 7.36783 0.342043
465465 0 0
466466 23.6418 1.09518
467467 22.8871 1.05909 0.529545 0.848282i 0.322363π-0.322363\pi
0.529545 + 0.848282i 0.322363π0.322363\pi
468468 0 0
469469 −5.43376 −0.250908
470470 −29.3259 −1.35270
471471 0 0
472472 −9.66044 −0.444658
473473 −0.904038 −0.0415677
474474 0 0
475475 0 0
476476 −0.359156 −0.0164619
477477 0 0
478478 −24.2422 −1.10881
479479 9.65776 0.441274 0.220637 0.975356i 0.429186π-0.429186\pi
0.220637 + 0.975356i 0.429186π0.429186\pi
480480 0 0
481481 24.8161 1.13152
482482 −36.2276 −1.65012
483483 0 0
484484 5.23442 0.237928
485485 −17.2199 −0.781914
486486 0 0
487487 −22.5107 −1.02006 −0.510029 0.860157i 0.670365π-0.670365\pi
−0.510029 + 0.860157i 0.670365π0.670365\pi
488488 35.2695 1.59658
489489 0 0
490490 −26.0574 −1.17715
491491 −7.27126 −0.328147 −0.164074 0.986448i 0.552463π-0.552463\pi
−0.164074 + 0.986448i 0.552463π0.552463\pi
492492 0 0
493493 3.13072 0.141001
494494 0 0
495495 0 0
496496 −45.1881 −2.02901
497497 −2.03415 −0.0912440
498498 0 0
499499 −12.8111 −0.573503 −0.286752 0.958005i 0.592575π-0.592575\pi
−0.286752 + 0.958005i 0.592575π0.592575\pi
500500 −3.15570 −0.141127
501501 0 0
502502 −29.7401 −1.32737
503503 −8.37052 −0.373223 −0.186611 0.982434i 0.559751π-0.559751\pi
−0.186611 + 0.982434i 0.559751π0.559751\pi
504504 0 0
505505 22.1780 0.986907
506506 −23.7965 −1.05789
507507 0 0
508508 0.635467 0.0281943
509509 −13.6827 −0.606476 −0.303238 0.952915i 0.598068π-0.598068\pi
−0.303238 + 0.952915i 0.598068π0.598068\pi
510510 0 0
511511 −0.988140 −0.0437128
512512 −14.2736 −0.630811
513513 0 0
514514 −18.8384 −0.830928
515515 −9.73648 −0.429041
516516 0 0
517517 −38.5990 −1.69758
518518 4.97771 0.218708
519519 0 0
520520 −26.0574 −1.14269
521521 16.9641 0.743211 0.371605 0.928391i 0.378807π-0.378807\pi
0.371605 + 0.928391i 0.378807π0.378807\pi
522522 0 0
523523 −3.90673 −0.170829 −0.0854146 0.996345i 0.527221π-0.527221\pi
−0.0854146 + 0.996345i 0.527221π0.527221\pi
524524 3.05138 0.133300
525525 0 0
526526 −9.71419 −0.423559
527527 −19.2012 −0.836418
528528 0 0
529529 −13.7469 −0.597692
530530 38.4124 1.66853
531531 0 0
532532 0 0
533533 34.4466 1.49205
534534 0 0
535535 14.3696 0.621251
536536 25.8580 1.11690
537537 0 0
538538 3.56212 0.153574
539539 −34.2968 −1.47727
540540 0 0
541541 13.1976 0.567409 0.283704 0.958912i 0.408437π-0.408437\pi
0.283704 + 0.958912i 0.408437π0.408437\pi
542542 22.8949 0.983419
543543 0 0
544544 3.77744 0.161956
545545 −5.28312 −0.226304
546546 0 0
547547 −31.5749 −1.35005 −0.675023 0.737797i 0.735866π-0.735866\pi
−0.675023 + 0.737797i 0.735866π0.735866\pi
548548 4.38650 0.187382
549549 0 0
550550 11.0419 0.470828
551551 0 0
552552 0 0
553553 5.59627 0.237977
554554 −36.7178 −1.55999
555555 0 0
556556 −1.40642 −0.0596456
557557 −35.6323 −1.50979 −0.754894 0.655847i 0.772312π-0.772312\pi
−0.754894 + 0.655847i 0.772312π0.772312\pi
558558 0 0
559559 −0.719570 −0.0304346
560560 −6.16250 −0.260413
561561 0 0
562562 −39.1607 −1.65190
563563 21.9914 0.926829 0.463414 0.886142i 0.346624π-0.346624\pi
0.463414 + 0.886142i 0.346624π0.346624\pi
564564 0 0
565565 −18.4243 −0.775115
566566 −11.5071 −0.483680
567567 0 0
568568 9.68004 0.406166
569569 −28.7588 −1.20563 −0.602815 0.797881i 0.705954π-0.705954\pi
−0.602815 + 0.797881i 0.705954π0.705954\pi
570570 0 0
571571 7.30365 0.305648 0.152824 0.988253i 0.451163π-0.451163\pi
0.152824 + 0.988253i 0.451163π0.451163\pi
572572 7.20708 0.301343
573573 0 0
574574 6.90941 0.288393
575575 −4.29355 −0.179053
576576 0 0
577577 31.5090 1.31174 0.655868 0.754876i 0.272303π-0.272303\pi
0.655868 + 0.754876i 0.272303π0.272303\pi
578578 −20.2581 −0.842628
579579 0 0
580580 −1.41653 −0.0588181
581581 6.10607 0.253322
582582 0 0
583583 50.5586 2.09392
584584 4.70233 0.194584
585585 0 0
586586 −22.6236 −0.934573
587587 −27.2891 −1.12634 −0.563171 0.826340i 0.690419π-0.690419\pi
−0.563171 + 0.826340i 0.690419π0.690419\pi
588588 0 0
589589 0 0
590590 14.8007 0.609334
591591 0 0
592592 −27.9290 −1.14788
593593 −34.7716 −1.42790 −0.713948 0.700198i 0.753095π-0.753095\pi
−0.713948 + 0.700198i 0.753095π0.753095\pi
594594 0 0
595595 −2.61856 −0.107350
596596 −2.10782 −0.0863397
597597 0 0
598598 −18.9409 −0.774550
599599 −15.8990 −0.649615 −0.324807 0.945780i 0.605300π-0.605300\pi
−0.324807 + 0.945780i 0.605300π0.605300\pi
600600 0 0
601601 −24.6928 −1.00724 −0.503621 0.863925i 0.667999π-0.667999\pi
−0.503621 + 0.863925i 0.667999π0.667999\pi
602602 −0.144334 −0.00588261
603603 0 0
604604 −0.0564370 −0.00229639
605605 38.1634 1.55156
606606 0 0
607607 4.01455 0.162945 0.0814727 0.996676i 0.474038π-0.474038\pi
0.0814727 + 0.996676i 0.474038π0.474038\pi
608608 0 0
609609 0 0
610610 −54.0360 −2.18785
611611 −30.7229 −1.24291
612612 0 0
613613 −40.2172 −1.62436 −0.812178 0.583409i 0.801718π-0.801718\pi
−0.812178 + 0.583409i 0.801718π0.801718\pi
614614 8.44562 0.340838
615615 0 0
616616 −6.87939 −0.277178
617617 22.1803 0.892947 0.446474 0.894797i 0.352680π-0.352680\pi
0.446474 + 0.894797i 0.352680π0.352680\pi
618618 0 0
619619 −23.2354 −0.933908 −0.466954 0.884282i 0.654649π-0.654649\pi
−0.466954 + 0.884282i 0.654649π0.654649\pi
620620 8.68779 0.348910
621621 0 0
622622 −26.6578 −1.06888
623623 3.15207 0.126285
624624 0 0
625625 −30.0651 −1.20260
626626 24.4270 0.976298
627627 0 0
628628 2.31315 0.0923047
629629 −11.8675 −0.473189
630630 0 0
631631 28.0523 1.11675 0.558373 0.829590i 0.311426π-0.311426\pi
0.558373 + 0.829590i 0.311426π0.311426\pi
632632 −26.6313 −1.05934
633633 0 0
634634 −3.02372 −0.120087
635635 4.63310 0.183859
636636 0 0
637637 −27.2986 −1.08161
638638 −12.6013 −0.498891
639639 0 0
640640 33.7793 1.33524
641641 −43.4789 −1.71732 −0.858658 0.512550i 0.828701π-0.828701\pi
−0.858658 + 0.512550i 0.828701π0.828701\pi
642642 0 0
643643 39.3509 1.55185 0.775924 0.630826i 0.217284π-0.217284\pi
0.775924 + 0.630826i 0.217284π0.217284\pi
644644 −0.562118 −0.0221506
645645 0 0
646646 0 0
647647 −18.8862 −0.742493 −0.371246 0.928534i 0.621069π-0.621069\pi
−0.371246 + 0.928534i 0.621069π0.621069\pi
648648 0 0
649649 19.4807 0.764685
650650 8.78880 0.344725
651651 0 0
652652 −0.155697 −0.00609755
653653 46.7428 1.82919 0.914593 0.404375i 0.132511π-0.132511\pi
0.914593 + 0.404375i 0.132511π0.132511\pi
654654 0 0
655655 22.2472 0.869271
656656 −38.7674 −1.51361
657657 0 0
658658 −6.16250 −0.240239
659659 −2.08915 −0.0813819 −0.0406910 0.999172i 0.512956π-0.512956\pi
−0.0406910 + 0.999172i 0.512956π0.512956\pi
660660 0 0
661661 −12.4483 −0.484183 −0.242092 0.970253i 0.577833π-0.577833\pi
−0.242092 + 0.970253i 0.577833π0.577833\pi
662662 −1.28312 −0.0498698
663663 0 0
664664 −29.0574 −1.12764
665665 0 0
666666 0 0
667667 4.89992 0.189726
668668 −1.17705 −0.0455415
669669 0 0
670670 −39.6168 −1.53053
671671 −71.1225 −2.74565
672672 0 0
673673 −10.8212 −0.417126 −0.208563 0.978009i 0.566879π-0.566879\pi
−0.208563 + 0.978009i 0.566879π0.566879\pi
674674 −5.09833 −0.196380
675675 0 0
676676 1.22163 0.0469857
677677 −4.36184 −0.167639 −0.0838196 0.996481i 0.526712π-0.526712\pi
−0.0838196 + 0.996481i 0.526712π0.526712\pi
678678 0 0
679679 −3.61856 −0.138867
680680 12.4611 0.477862
681681 0 0
682682 77.2859 2.95943
683683 44.6441 1.70826 0.854130 0.520059i 0.174090π-0.174090\pi
0.854130 + 0.520059i 0.174090π0.174090\pi
684684 0 0
685685 31.9813 1.22194
686686 −11.1821 −0.426935
687687 0 0
688688 0.809831 0.0308745
689689 40.2422 1.53310
690690 0 0
691691 24.3209 0.925210 0.462605 0.886564i 0.346915π-0.346915\pi
0.462605 + 0.886564i 0.346915π0.346915\pi
692692 0.561185 0.0213330
693693 0 0
694694 −6.14022 −0.233079
695695 −10.2540 −0.388957
696696 0 0
697697 −16.4730 −0.623958
698698 −42.7493 −1.61808
699699 0 0
700700 0.260830 0.00985844
701701 23.5594 0.889827 0.444914 0.895573i 0.353234π-0.353234\pi
0.444914 + 0.895573i 0.353234π0.353234\pi
702702 0 0
703703 0 0
704704 31.5057 1.18742
705705 0 0
706706 −19.8307 −0.746338
707707 4.66044 0.175274
708708 0 0
709709 −6.15333 −0.231093 −0.115547 0.993302i 0.536862π-0.536862\pi
−0.115547 + 0.993302i 0.536862π0.536862\pi
710710 −14.8307 −0.556586
711711 0 0
712712 −15.0000 −0.562149
713713 −30.0520 −1.12546
714714 0 0
715715 52.5458 1.96510
716716 −0.734118 −0.0274353
717717 0 0
718718 −17.5371 −0.654480
719719 −32.5749 −1.21484 −0.607420 0.794381i 0.707795π-0.707795\pi
−0.607420 + 0.794381i 0.707795π0.707795\pi
720720 0 0
721721 −2.04601 −0.0761973
722722 0 0
723723 0 0
724724 3.03952 0.112963
725725 −2.27362 −0.0844402
726726 0 0
727727 32.2300 1.19534 0.597672 0.801741i 0.296093π-0.296093\pi
0.597672 + 0.801741i 0.296093π0.296093\pi
728728 −5.47565 −0.202941
729729 0 0
730730 −7.20439 −0.266647
731731 0.344111 0.0127274
732732 0 0
733733 9.78106 0.361272 0.180636 0.983550i 0.442184π-0.442184\pi
0.180636 + 0.983550i 0.442184π0.442184\pi
734734 −43.8198 −1.61742
735735 0 0
736736 5.91210 0.217923
737737 −52.1438 −1.92074
738738 0 0
739739 27.7743 1.02169 0.510846 0.859672i 0.329332π-0.329332\pi
0.510846 + 0.859672i 0.329332π0.329332\pi
740740 5.36959 0.197390
741741 0 0
742742 8.07192 0.296329
743743 32.3022 1.18505 0.592527 0.805551i 0.298130π-0.298130\pi
0.592527 + 0.805551i 0.298130π0.298130\pi
744744 0 0
745745 −15.3678 −0.563034
746746 −19.2526 −0.704887
747747 0 0
748748 −3.44656 −0.126019
749749 3.01960 0.110334
750750 0 0
751751 3.48515 0.127175 0.0635874 0.997976i 0.479746π-0.479746\pi
0.0635874 + 0.997976i 0.479746π0.479746\pi
752752 34.5767 1.26088
753753 0 0
754754 −10.0300 −0.365272
755755 −0.411474 −0.0149751
756756 0 0
757757 −36.9341 −1.34239 −0.671196 0.741280i 0.734219π-0.734219\pi
−0.671196 + 0.741280i 0.734219π0.734219\pi
758758 −3.36959 −0.122389
759759 0 0
760760 0 0
761761 −31.3429 −1.13618 −0.568089 0.822967i 0.692317π-0.692317\pi
−0.568089 + 0.822967i 0.692317π0.692317\pi
762762 0 0
763763 −1.11019 −0.0401914
764764 6.62361 0.239634
765765 0 0
766766 9.08235 0.328159
767767 15.5057 0.559878
768768 0 0
769769 −31.7425 −1.14466 −0.572331 0.820022i 0.693961π-0.693961\pi
−0.572331 + 0.820022i 0.693961π0.693961\pi
770770 10.5398 0.379829
771771 0 0
772772 −8.27807 −0.297934
773773 −10.9572 −0.394102 −0.197051 0.980393i 0.563137π-0.563137\pi
−0.197051 + 0.980393i 0.563137π0.563137\pi
774774 0 0
775775 13.9445 0.500901
776776 17.2199 0.618157
777777 0 0
778778 50.7410 1.81915
779779 0 0
780780 0 0
781781 −19.5202 −0.698489
782782 9.05787 0.323909
783783 0 0
784784 30.7229 1.09725
785785 16.8648 0.601932
786786 0 0
787787 46.3542 1.65235 0.826175 0.563414i 0.190512π-0.190512\pi
0.826175 + 0.563414i 0.190512π0.190512\pi
788788 1.52435 0.0543027
789789 0 0
790790 40.8016 1.45166
791791 −3.87164 −0.137660
792792 0 0
793793 −56.6100 −2.01028
794794 −39.9103 −1.41637
795795 0 0
796796 −6.95904 −0.246657
797797 3.47296 0.123019 0.0615093 0.998107i 0.480409π-0.480409\pi
0.0615093 + 0.998107i 0.480409π0.480409\pi
798798 0 0
799799 14.6922 0.519774
800800 −2.74329 −0.0969899
801801 0 0
802802 24.4647 0.863880
803803 −9.48246 −0.334629
804804 0 0
805805 −4.09833 −0.144447
806806 61.5158 2.16680
807807 0 0
808808 −22.1780 −0.780219
809809 51.9495 1.82645 0.913224 0.407457i 0.133584π-0.133584\pi
0.913224 + 0.407457i 0.133584π0.133584\pi
810810 0 0
811811 16.7769 0.589118 0.294559 0.955633i 0.404827π-0.404827\pi
0.294559 + 0.955633i 0.404827π0.404827\pi
812812 −0.297667 −0.0104460
813813 0 0
814814 47.7674 1.67425
815815 −1.13516 −0.0397630
816816 0 0
817817 0 0
818818 −4.51754 −0.157952
819819 0 0
820820 7.45336 0.260283
821821 37.2472 1.29994 0.649968 0.759961i 0.274782π-0.274782\pi
0.649968 + 0.759961i 0.274782π0.274782\pi
822822 0 0
823823 −4.39961 −0.153361 −0.0766805 0.997056i 0.524432π-0.524432\pi
−0.0766805 + 0.997056i 0.524432π0.524432\pi
824824 9.73648 0.339186
825825 0 0
826826 3.11019 0.108217
827827 13.8625 0.482045 0.241023 0.970519i 0.422517π-0.422517\pi
0.241023 + 0.970519i 0.422517π0.422517\pi
828828 0 0
829829 16.3770 0.568797 0.284398 0.958706i 0.408206π-0.408206\pi
0.284398 + 0.958706i 0.408206π0.408206\pi
830830 44.5185 1.54526
831831 0 0
832832 25.0770 0.869388
833833 13.0547 0.452318
834834 0 0
835835 −8.58172 −0.296983
836836 0 0
837837 0 0
838838 51.3191 1.77279
839839 38.2891 1.32189 0.660943 0.750436i 0.270156π-0.270156\pi
0.660943 + 0.750436i 0.270156π0.270156\pi
840840 0 0
841841 −26.4053 −0.910527
842842 27.6049 0.951329
843843 0 0
844844 9.44387 0.325071
845845 8.90673 0.306401
846846 0 0
847847 8.01960 0.275557
848848 −45.2900 −1.55527
849849 0 0
850850 −4.20296 −0.144160
851851 −18.5740 −0.636708
852852 0 0
853853 22.0901 0.756350 0.378175 0.925734i 0.376552π-0.376552\pi
0.378175 + 0.925734i 0.376552π0.376552\pi
854854 −11.3550 −0.388561
855855 0 0
856856 −14.3696 −0.491142
857857 −45.0077 −1.53744 −0.768718 0.639588i 0.779105π-0.779105\pi
−0.768718 + 0.639588i 0.779105π0.779105\pi
858858 0 0
859859 −15.9727 −0.544980 −0.272490 0.962159i 0.587847π-0.587847\pi
−0.272490 + 0.962159i 0.587847π0.587847\pi
860860 −0.155697 −0.00530921
861861 0 0
862862 −32.6655 −1.11259
863863 −41.2576 −1.40443 −0.702213 0.711967i 0.747805π-0.747805\pi
−0.702213 + 0.711967i 0.747805π0.747805\pi
864864 0 0
865865 4.09152 0.139116
866866 −33.7861 −1.14810
867867 0 0
868868 1.82564 0.0619661
869869 53.7033 1.82176
870870 0 0
871871 −41.5039 −1.40631
872872 5.28312 0.178909
873873 0 0
874874 0 0
875875 −4.83481 −0.163446
876876 0 0
877877 46.1652 1.55889 0.779444 0.626472i 0.215502π-0.215502\pi
0.779444 + 0.626472i 0.215502π0.215502\pi
878878 −5.18891 −0.175117
879879 0 0
880880 −59.1370 −1.99351
881881 −18.9581 −0.638715 −0.319357 0.947634i 0.603467π-0.603467\pi
−0.319357 + 0.947634i 0.603467π0.603467\pi
882882 0 0
883883 35.0496 1.17951 0.589757 0.807581i 0.299224π-0.299224\pi
0.589757 + 0.807581i 0.299224π0.299224\pi
884884 −2.74329 −0.0922668
885885 0 0
886886 46.2145 1.55261
887887 17.8375 0.598925 0.299462 0.954108i 0.403193π-0.403193\pi
0.299462 + 0.954108i 0.403193π0.403193\pi
888888 0 0
889889 0.973593 0.0326532
890890 22.9813 0.770336
891891 0 0
892892 −4.17200 −0.139689
893893 0 0
894894 0 0
895895 −5.35235 −0.178909
896896 7.09833 0.237138
897897 0 0
898898 47.3596 1.58041
899899 −15.9139 −0.530757
900900 0 0
901901 −19.2445 −0.641128
902902 66.3046 2.20770
903903 0 0
904904 18.4243 0.612782
905905 22.1607 0.736648
906906 0 0
907907 −14.2513 −0.473208 −0.236604 0.971606i 0.576034π-0.576034\pi
−0.236604 + 0.971606i 0.576034π0.576034\pi
908908 −1.50744 −0.0500260
909909 0 0
910910 8.38919 0.278099
911911 16.4466 0.544899 0.272449 0.962170i 0.412166π-0.412166\pi
0.272449 + 0.962170i 0.412166π0.412166\pi
912912 0 0
913913 58.5954 1.93923
914914 −59.8248 −1.97883
915915 0 0
916916 1.14466 0.0378206
917917 4.67499 0.154382
918918 0 0
919919 −33.8999 −1.11826 −0.559128 0.829082i 0.688864π-0.688864\pi
−0.559128 + 0.829082i 0.688864π0.688864\pi
920920 19.5030 0.642995
921921 0 0
922922 2.30953 0.0760602
923923 −15.5371 −0.511411
924924 0 0
925925 8.61856 0.283376
926926 −5.03003 −0.165297
927927 0 0
928928 3.13072 0.102771
929929 −21.5345 −0.706522 −0.353261 0.935525i 0.614927π-0.614927\pi
−0.353261 + 0.935525i 0.614927π0.614927\pi
930930 0 0
931931 0 0
932932 5.35916 0.175545
933933 0 0
934934 35.0651 1.14737
935935 −25.1284 −0.821785
936936 0 0
937937 7.56624 0.247178 0.123589 0.992333i 0.460560π-0.460560\pi
0.123589 + 0.992333i 0.460560π0.460560\pi
938938 −8.32501 −0.271821
939939 0 0
940940 −6.64765 −0.216822
941941 −19.1275 −0.623540 −0.311770 0.950158i 0.600922π-0.600922\pi
−0.311770 + 0.950158i 0.600922π0.600922\pi
942942 0 0
943943 −25.7820 −0.839577
944944 −17.4507 −0.567971
945945 0 0
946946 −1.38507 −0.0450324
947947 −60.2072 −1.95647 −0.978235 0.207498i 0.933468π-0.933468\pi
−0.978235 + 0.207498i 0.933468π0.933468\pi
948948 0 0
949949 −7.54757 −0.245005
950950 0 0
951951 0 0
952952 2.61856 0.0848679
953953 19.7478 0.639695 0.319848 0.947469i 0.396368π-0.396368\pi
0.319848 + 0.947469i 0.396368π0.396368\pi
954954 0 0
955955 48.2918 1.56269
956956 −5.49525 −0.177729
957957 0 0
958958 14.7965 0.478055
959959 6.72050 0.217016
960960 0 0
961961 66.6023 2.14846
962962 38.0205 1.22583
963963 0 0
964964 −8.21213 −0.264495
965965 −60.3542 −1.94287
966966 0 0
967967 −5.16849 −0.166207 −0.0831037 0.996541i 0.526483π-0.526483\pi
−0.0831037 + 0.996541i 0.526483π0.526483\pi
968968 −38.1634 −1.22662
969969 0 0
970970 −26.3824 −0.847087
971971 8.75784 0.281052 0.140526 0.990077i 0.455121π-0.455121\pi
0.140526 + 0.990077i 0.455121π0.455121\pi
972972 0 0
973973 −2.15476 −0.0690785
974974 −34.4884 −1.10508
975975 0 0
976976 63.7110 2.03934
977977 −40.7279 −1.30300 −0.651501 0.758648i 0.725860π-0.725860\pi
−0.651501 + 0.758648i 0.725860π0.725860\pi
978978 0 0
979979 30.2481 0.966735
980980 −5.90673 −0.188683
981981 0 0
982982 −11.1402 −0.355499
983983 −3.95037 −0.125997 −0.0629986 0.998014i 0.520066π-0.520066\pi
−0.0629986 + 0.998014i 0.520066π0.520066\pi
984984 0 0
985985 11.1138 0.354115
986986 4.79654 0.152753
987987 0 0
988988 0 0
989989 0.538572 0.0171256
990990 0 0
991991 −18.5621 −0.589645 −0.294823 0.955552i 0.595261π-0.595261\pi
−0.294823 + 0.955552i 0.595261π0.595261\pi
992992 −19.2012 −0.609639
993993 0 0
994994 −3.11650 −0.0988492
995995 −50.7374 −1.60848
996996 0 0
997997 2.73917 0.0867504 0.0433752 0.999059i 0.486189π-0.486189\pi
0.0433752 + 0.999059i 0.486189π0.486189\pi
998998 −19.6277 −0.621305
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.w.1.3 3
3.2 odd 2 1083.2.a.m.1.1 3
19.9 even 9 171.2.u.a.100.1 6
19.17 even 9 171.2.u.a.118.1 6
19.18 odd 2 3249.2.a.x.1.1 3
57.17 odd 18 57.2.i.a.4.1 6
57.47 odd 18 57.2.i.a.43.1 yes 6
57.56 even 2 1083.2.a.n.1.3 3
228.47 even 18 912.2.bo.b.385.1 6
228.131 even 18 912.2.bo.b.289.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.a.4.1 6 57.17 odd 18
57.2.i.a.43.1 yes 6 57.47 odd 18
171.2.u.a.100.1 6 19.9 even 9
171.2.u.a.118.1 6 19.17 even 9
912.2.bo.b.289.1 6 228.131 even 18
912.2.bo.b.385.1 6 228.47 even 18
1083.2.a.m.1.1 3 3.2 odd 2
1083.2.a.n.1.3 3 57.56 even 2
3249.2.a.w.1.3 3 1.1 even 1 trivial
3249.2.a.x.1.1 3 19.18 odd 2