Properties

Label 3249.2.a.x.1.1
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3249,2,Mod(1,3249)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3249, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3249.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53209 q^{2} +0.347296 q^{4} +2.53209 q^{5} +0.532089 q^{7} +2.53209 q^{8} -3.87939 q^{10} +5.10607 q^{11} -4.06418 q^{13} -0.815207 q^{14} -4.57398 q^{16} -1.94356 q^{17} +0.879385 q^{20} -7.82295 q^{22} -3.04189 q^{23} +1.41147 q^{25} +6.22668 q^{26} +0.184793 q^{28} +1.61081 q^{29} -9.87939 q^{31} +1.94356 q^{32} +2.97771 q^{34} +1.34730 q^{35} -6.10607 q^{37} +6.41147 q^{40} -8.47565 q^{41} -0.177052 q^{43} +1.77332 q^{44} +4.66044 q^{46} -7.55943 q^{47} -6.71688 q^{49} -2.16250 q^{50} -1.41147 q^{52} -9.90167 q^{53} +12.9290 q^{55} +1.34730 q^{56} -2.46791 q^{58} -3.81521 q^{59} -13.9290 q^{61} +15.1361 q^{62} +6.17024 q^{64} -10.2909 q^{65} +10.2121 q^{67} -0.674992 q^{68} -2.06418 q^{70} +3.82295 q^{71} -1.85710 q^{73} +9.35504 q^{74} +2.71688 q^{77} -10.5175 q^{79} -11.5817 q^{80} +12.9855 q^{82} +11.4757 q^{83} -4.92127 q^{85} +0.271259 q^{86} +12.9290 q^{88} -5.92396 q^{89} -2.16250 q^{91} -1.05644 q^{92} +11.5817 q^{94} +6.80066 q^{97} +10.2909 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 3 q^{7} + 3 q^{8} - 6 q^{10} + 3 q^{11} - 3 q^{13} - 6 q^{14} - 6 q^{16} + 9 q^{17} - 3 q^{20} - 3 q^{22} - 6 q^{23} - 6 q^{25} + 12 q^{26} - 3 q^{28} + 9 q^{29} - 24 q^{31} - 9 q^{32} + 15 q^{34}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53209 −1.08335 −0.541675 0.840588i \(-0.682210\pi\)
−0.541675 + 0.840588i \(0.682210\pi\)
\(3\) 0 0
\(4\) 0.347296 0.173648
\(5\) 2.53209 1.13238 0.566192 0.824273i \(-0.308416\pi\)
0.566192 + 0.824273i \(0.308416\pi\)
\(6\) 0 0
\(7\) 0.532089 0.201111 0.100555 0.994931i \(-0.467938\pi\)
0.100555 + 0.994931i \(0.467938\pi\)
\(8\) 2.53209 0.895229
\(9\) 0 0
\(10\) −3.87939 −1.22677
\(11\) 5.10607 1.53954 0.769769 0.638323i \(-0.220372\pi\)
0.769769 + 0.638323i \(0.220372\pi\)
\(12\) 0 0
\(13\) −4.06418 −1.12720 −0.563600 0.826048i \(-0.690584\pi\)
−0.563600 + 0.826048i \(0.690584\pi\)
\(14\) −0.815207 −0.217873
\(15\) 0 0
\(16\) −4.57398 −1.14349
\(17\) −1.94356 −0.471383 −0.235692 0.971828i \(-0.575736\pi\)
−0.235692 + 0.971828i \(0.575736\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0.879385 0.196637
\(21\) 0 0
\(22\) −7.82295 −1.66786
\(23\) −3.04189 −0.634278 −0.317139 0.948379i \(-0.602722\pi\)
−0.317139 + 0.948379i \(0.602722\pi\)
\(24\) 0 0
\(25\) 1.41147 0.282295
\(26\) 6.22668 1.22115
\(27\) 0 0
\(28\) 0.184793 0.0349225
\(29\) 1.61081 0.299121 0.149560 0.988753i \(-0.452214\pi\)
0.149560 + 0.988753i \(0.452214\pi\)
\(30\) 0 0
\(31\) −9.87939 −1.77439 −0.887195 0.461395i \(-0.847349\pi\)
−0.887195 + 0.461395i \(0.847349\pi\)
\(32\) 1.94356 0.343577
\(33\) 0 0
\(34\) 2.97771 0.510673
\(35\) 1.34730 0.227735
\(36\) 0 0
\(37\) −6.10607 −1.00383 −0.501916 0.864917i \(-0.667371\pi\)
−0.501916 + 0.864917i \(0.667371\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.41147 1.01374
\(41\) −8.47565 −1.32367 −0.661837 0.749648i \(-0.730223\pi\)
−0.661837 + 0.749648i \(0.730223\pi\)
\(42\) 0 0
\(43\) −0.177052 −0.0270001 −0.0135001 0.999909i \(-0.504297\pi\)
−0.0135001 + 0.999909i \(0.504297\pi\)
\(44\) 1.77332 0.267338
\(45\) 0 0
\(46\) 4.66044 0.687145
\(47\) −7.55943 −1.10266 −0.551328 0.834289i \(-0.685879\pi\)
−0.551328 + 0.834289i \(0.685879\pi\)
\(48\) 0 0
\(49\) −6.71688 −0.959554
\(50\) −2.16250 −0.305824
\(51\) 0 0
\(52\) −1.41147 −0.195736
\(53\) −9.90167 −1.36010 −0.680050 0.733166i \(-0.738042\pi\)
−0.680050 + 0.733166i \(0.738042\pi\)
\(54\) 0 0
\(55\) 12.9290 1.74335
\(56\) 1.34730 0.180040
\(57\) 0 0
\(58\) −2.46791 −0.324053
\(59\) −3.81521 −0.496698 −0.248349 0.968671i \(-0.579888\pi\)
−0.248349 + 0.968671i \(0.579888\pi\)
\(60\) 0 0
\(61\) −13.9290 −1.78343 −0.891714 0.452600i \(-0.850497\pi\)
−0.891714 + 0.452600i \(0.850497\pi\)
\(62\) 15.1361 1.92229
\(63\) 0 0
\(64\) 6.17024 0.771281
\(65\) −10.2909 −1.27642
\(66\) 0 0
\(67\) 10.2121 1.24761 0.623805 0.781580i \(-0.285586\pi\)
0.623805 + 0.781580i \(0.285586\pi\)
\(68\) −0.674992 −0.0818548
\(69\) 0 0
\(70\) −2.06418 −0.246716
\(71\) 3.82295 0.453700 0.226850 0.973930i \(-0.427157\pi\)
0.226850 + 0.973930i \(0.427157\pi\)
\(72\) 0 0
\(73\) −1.85710 −0.217357 −0.108678 0.994077i \(-0.534662\pi\)
−0.108678 + 0.994077i \(0.534662\pi\)
\(74\) 9.35504 1.08750
\(75\) 0 0
\(76\) 0 0
\(77\) 2.71688 0.309617
\(78\) 0 0
\(79\) −10.5175 −1.18332 −0.591658 0.806189i \(-0.701526\pi\)
−0.591658 + 0.806189i \(0.701526\pi\)
\(80\) −11.5817 −1.29488
\(81\) 0 0
\(82\) 12.9855 1.43400
\(83\) 11.4757 1.25962 0.629808 0.776751i \(-0.283133\pi\)
0.629808 + 0.776751i \(0.283133\pi\)
\(84\) 0 0
\(85\) −4.92127 −0.533787
\(86\) 0.271259 0.0292506
\(87\) 0 0
\(88\) 12.9290 1.37824
\(89\) −5.92396 −0.627939 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(90\) 0 0
\(91\) −2.16250 −0.226692
\(92\) −1.05644 −0.110141
\(93\) 0 0
\(94\) 11.5817 1.19456
\(95\) 0 0
\(96\) 0 0
\(97\) 6.80066 0.690502 0.345251 0.938510i \(-0.387794\pi\)
0.345251 + 0.938510i \(0.387794\pi\)
\(98\) 10.2909 1.03953
\(99\) 0 0
\(100\) 0.490200 0.0490200
\(101\) 8.75877 0.871530 0.435765 0.900060i \(-0.356478\pi\)
0.435765 + 0.900060i \(0.356478\pi\)
\(102\) 0 0
\(103\) 3.84524 0.378882 0.189441 0.981892i \(-0.439332\pi\)
0.189441 + 0.981892i \(0.439332\pi\)
\(104\) −10.2909 −1.00910
\(105\) 0 0
\(106\) 15.1702 1.47346
\(107\) −5.67499 −0.548622 −0.274311 0.961641i \(-0.588450\pi\)
−0.274311 + 0.961641i \(0.588450\pi\)
\(108\) 0 0
\(109\) 2.08647 0.199847 0.0999236 0.994995i \(-0.468140\pi\)
0.0999236 + 0.994995i \(0.468140\pi\)
\(110\) −19.8084 −1.88866
\(111\) 0 0
\(112\) −2.43376 −0.229969
\(113\) 7.27631 0.684498 0.342249 0.939609i \(-0.388811\pi\)
0.342249 + 0.939609i \(0.388811\pi\)
\(114\) 0 0
\(115\) −7.70233 −0.718246
\(116\) 0.559430 0.0519418
\(117\) 0 0
\(118\) 5.84524 0.538098
\(119\) −1.03415 −0.0948002
\(120\) 0 0
\(121\) 15.0719 1.37017
\(122\) 21.3405 1.93208
\(123\) 0 0
\(124\) −3.43107 −0.308120
\(125\) −9.08647 −0.812718
\(126\) 0 0
\(127\) −1.82976 −0.162365 −0.0811823 0.996699i \(-0.525870\pi\)
−0.0811823 + 0.996699i \(0.525870\pi\)
\(128\) −13.3405 −1.17914
\(129\) 0 0
\(130\) 15.7665 1.38281
\(131\) 8.78611 0.767646 0.383823 0.923407i \(-0.374607\pi\)
0.383823 + 0.923407i \(0.374607\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −15.6459 −1.35160
\(135\) 0 0
\(136\) −4.92127 −0.421996
\(137\) 12.6304 1.07909 0.539545 0.841957i \(-0.318596\pi\)
0.539545 + 0.841957i \(0.318596\pi\)
\(138\) 0 0
\(139\) −4.04963 −0.343485 −0.171743 0.985142i \(-0.554940\pi\)
−0.171743 + 0.985142i \(0.554940\pi\)
\(140\) 0.467911 0.0395457
\(141\) 0 0
\(142\) −5.85710 −0.491517
\(143\) −20.7520 −1.73537
\(144\) 0 0
\(145\) 4.07873 0.338720
\(146\) 2.84524 0.235473
\(147\) 0 0
\(148\) −2.12061 −0.174313
\(149\) −6.06923 −0.497211 −0.248605 0.968605i \(-0.579972\pi\)
−0.248605 + 0.968605i \(0.579972\pi\)
\(150\) 0 0
\(151\) 0.162504 0.0132244 0.00661219 0.999978i \(-0.497895\pi\)
0.00661219 + 0.999978i \(0.497895\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −4.16250 −0.335424
\(155\) −25.0155 −2.00929
\(156\) 0 0
\(157\) 6.66044 0.531561 0.265781 0.964034i \(-0.414370\pi\)
0.265781 + 0.964034i \(0.414370\pi\)
\(158\) 16.1138 1.28195
\(159\) 0 0
\(160\) 4.92127 0.389061
\(161\) −1.61856 −0.127560
\(162\) 0 0
\(163\) −0.448311 −0.0351144 −0.0175572 0.999846i \(-0.505589\pi\)
−0.0175572 + 0.999846i \(0.505589\pi\)
\(164\) −2.94356 −0.229854
\(165\) 0 0
\(166\) −17.5817 −1.36461
\(167\) 3.38919 0.262263 0.131132 0.991365i \(-0.458139\pi\)
0.131132 + 0.991365i \(0.458139\pi\)
\(168\) 0 0
\(169\) 3.51754 0.270580
\(170\) 7.53983 0.578279
\(171\) 0 0
\(172\) −0.0614894 −0.00468852
\(173\) −1.61587 −0.122852 −0.0614260 0.998112i \(-0.519565\pi\)
−0.0614260 + 0.998112i \(0.519565\pi\)
\(174\) 0 0
\(175\) 0.751030 0.0567725
\(176\) −23.3550 −1.76045
\(177\) 0 0
\(178\) 9.07604 0.680278
\(179\) 2.11381 0.157993 0.0789967 0.996875i \(-0.474828\pi\)
0.0789967 + 0.996875i \(0.474828\pi\)
\(180\) 0 0
\(181\) −8.75196 −0.650528 −0.325264 0.945623i \(-0.605453\pi\)
−0.325264 + 0.945623i \(0.605453\pi\)
\(182\) 3.31315 0.245587
\(183\) 0 0
\(184\) −7.70233 −0.567824
\(185\) −15.4611 −1.13672
\(186\) 0 0
\(187\) −9.92396 −0.725712
\(188\) −2.62536 −0.191474
\(189\) 0 0
\(190\) 0 0
\(191\) 19.0719 1.38000 0.689998 0.723811i \(-0.257611\pi\)
0.689998 + 0.723811i \(0.257611\pi\)
\(192\) 0 0
\(193\) 23.8357 1.71573 0.857867 0.513872i \(-0.171789\pi\)
0.857867 + 0.513872i \(0.171789\pi\)
\(194\) −10.4192 −0.748056
\(195\) 0 0
\(196\) −2.33275 −0.166625
\(197\) 4.38919 0.312717 0.156358 0.987700i \(-0.450025\pi\)
0.156358 + 0.987700i \(0.450025\pi\)
\(198\) 0 0
\(199\) −20.0378 −1.42044 −0.710220 0.703980i \(-0.751405\pi\)
−0.710220 + 0.703980i \(0.751405\pi\)
\(200\) 3.57398 0.252718
\(201\) 0 0
\(202\) −13.4192 −0.944173
\(203\) 0.857097 0.0601564
\(204\) 0 0
\(205\) −21.4611 −1.49891
\(206\) −5.89124 −0.410462
\(207\) 0 0
\(208\) 18.5895 1.28895
\(209\) 0 0
\(210\) 0 0
\(211\) −27.1925 −1.87201 −0.936006 0.351985i \(-0.885507\pi\)
−0.936006 + 0.351985i \(0.885507\pi\)
\(212\) −3.43882 −0.236179
\(213\) 0 0
\(214\) 8.69459 0.594350
\(215\) −0.448311 −0.0305745
\(216\) 0 0
\(217\) −5.25671 −0.356849
\(218\) −3.19665 −0.216505
\(219\) 0 0
\(220\) 4.49020 0.302729
\(221\) 7.89899 0.531343
\(222\) 0 0
\(223\) 12.0128 0.804436 0.402218 0.915544i \(-0.368239\pi\)
0.402218 + 0.915544i \(0.368239\pi\)
\(224\) 1.03415 0.0690969
\(225\) 0 0
\(226\) −11.1480 −0.741551
\(227\) 4.34049 0.288088 0.144044 0.989571i \(-0.453989\pi\)
0.144044 + 0.989571i \(0.453989\pi\)
\(228\) 0 0
\(229\) 3.29591 0.217800 0.108900 0.994053i \(-0.465267\pi\)
0.108900 + 0.994053i \(0.465267\pi\)
\(230\) 11.8007 0.778112
\(231\) 0 0
\(232\) 4.07873 0.267781
\(233\) 15.4311 1.01092 0.505462 0.862849i \(-0.331322\pi\)
0.505462 + 0.862849i \(0.331322\pi\)
\(234\) 0 0
\(235\) −19.1411 −1.24863
\(236\) −1.32501 −0.0862507
\(237\) 0 0
\(238\) 1.58441 0.102702
\(239\) −15.8229 −1.02350 −0.511751 0.859134i \(-0.671003\pi\)
−0.511751 + 0.859134i \(0.671003\pi\)
\(240\) 0 0
\(241\) 23.6459 1.52317 0.761583 0.648067i \(-0.224422\pi\)
0.761583 + 0.648067i \(0.224422\pi\)
\(242\) −23.0915 −1.48438
\(243\) 0 0
\(244\) −4.83750 −0.309689
\(245\) −17.0077 −1.08658
\(246\) 0 0
\(247\) 0 0
\(248\) −25.0155 −1.58848
\(249\) 0 0
\(250\) 13.9213 0.880459
\(251\) −19.4115 −1.22524 −0.612621 0.790377i \(-0.709885\pi\)
−0.612621 + 0.790377i \(0.709885\pi\)
\(252\) 0 0
\(253\) −15.5321 −0.976494
\(254\) 2.80335 0.175898
\(255\) 0 0
\(256\) 8.09833 0.506145
\(257\) 12.2959 0.766998 0.383499 0.923541i \(-0.374719\pi\)
0.383499 + 0.923541i \(0.374719\pi\)
\(258\) 0 0
\(259\) −3.24897 −0.201881
\(260\) −3.57398 −0.221649
\(261\) 0 0
\(262\) −13.4611 −0.831630
\(263\) −6.34049 −0.390971 −0.195486 0.980707i \(-0.562628\pi\)
−0.195486 + 0.980707i \(0.562628\pi\)
\(264\) 0 0
\(265\) −25.0719 −1.54016
\(266\) 0 0
\(267\) 0 0
\(268\) 3.54664 0.216645
\(269\) −2.32501 −0.141758 −0.0708791 0.997485i \(-0.522580\pi\)
−0.0708791 + 0.997485i \(0.522580\pi\)
\(270\) 0 0
\(271\) 14.9436 0.907757 0.453878 0.891064i \(-0.350040\pi\)
0.453878 + 0.891064i \(0.350040\pi\)
\(272\) 8.88981 0.539024
\(273\) 0 0
\(274\) −19.3509 −1.16903
\(275\) 7.20708 0.434603
\(276\) 0 0
\(277\) −23.9659 −1.43997 −0.719984 0.693990i \(-0.755851\pi\)
−0.719984 + 0.693990i \(0.755851\pi\)
\(278\) 6.20439 0.372115
\(279\) 0 0
\(280\) 3.41147 0.203875
\(281\) 25.5604 1.52480 0.762402 0.647104i \(-0.224020\pi\)
0.762402 + 0.647104i \(0.224020\pi\)
\(282\) 0 0
\(283\) −7.51073 −0.446467 −0.223233 0.974765i \(-0.571661\pi\)
−0.223233 + 0.974765i \(0.571661\pi\)
\(284\) 1.32770 0.0787843
\(285\) 0 0
\(286\) 31.7939 1.88001
\(287\) −4.50980 −0.266205
\(288\) 0 0
\(289\) −13.2226 −0.777798
\(290\) −6.24897 −0.366952
\(291\) 0 0
\(292\) −0.644963 −0.0377436
\(293\) 14.7665 0.862669 0.431334 0.902192i \(-0.358043\pi\)
0.431334 + 0.902192i \(0.358043\pi\)
\(294\) 0 0
\(295\) −9.66044 −0.562453
\(296\) −15.4611 −0.898658
\(297\) 0 0
\(298\) 9.29860 0.538653
\(299\) 12.3628 0.714958
\(300\) 0 0
\(301\) −0.0942073 −0.00543002
\(302\) −0.248970 −0.0143266
\(303\) 0 0
\(304\) 0 0
\(305\) −35.2695 −2.01953
\(306\) 0 0
\(307\) −5.51249 −0.314614 −0.157307 0.987550i \(-0.550281\pi\)
−0.157307 + 0.987550i \(0.550281\pi\)
\(308\) 0.943563 0.0537645
\(309\) 0 0
\(310\) 38.3259 2.17677
\(311\) −17.3996 −0.986642 −0.493321 0.869847i \(-0.664217\pi\)
−0.493321 + 0.869847i \(0.664217\pi\)
\(312\) 0 0
\(313\) 15.9436 0.901183 0.450592 0.892730i \(-0.351213\pi\)
0.450592 + 0.892730i \(0.351213\pi\)
\(314\) −10.2044 −0.575867
\(315\) 0 0
\(316\) −3.65270 −0.205481
\(317\) 1.97359 0.110848 0.0554240 0.998463i \(-0.482349\pi\)
0.0554240 + 0.998463i \(0.482349\pi\)
\(318\) 0 0
\(319\) 8.22493 0.460507
\(320\) 15.6236 0.873386
\(321\) 0 0
\(322\) 2.47977 0.138192
\(323\) 0 0
\(324\) 0 0
\(325\) −5.73648 −0.318203
\(326\) 0.686852 0.0380412
\(327\) 0 0
\(328\) −21.4611 −1.18499
\(329\) −4.02229 −0.221756
\(330\) 0 0
\(331\) 0.837496 0.0460330 0.0230165 0.999735i \(-0.492673\pi\)
0.0230165 + 0.999735i \(0.492673\pi\)
\(332\) 3.98545 0.218730
\(333\) 0 0
\(334\) −5.19253 −0.284123
\(335\) 25.8580 1.41278
\(336\) 0 0
\(337\) 3.32770 0.181271 0.0906356 0.995884i \(-0.471110\pi\)
0.0906356 + 0.995884i \(0.471110\pi\)
\(338\) −5.38919 −0.293133
\(339\) 0 0
\(340\) −1.70914 −0.0926912
\(341\) −50.4448 −2.73174
\(342\) 0 0
\(343\) −7.29860 −0.394087
\(344\) −0.448311 −0.0241713
\(345\) 0 0
\(346\) 2.47565 0.133092
\(347\) −4.00774 −0.215147 −0.107573 0.994197i \(-0.534308\pi\)
−0.107573 + 0.994197i \(0.534308\pi\)
\(348\) 0 0
\(349\) −27.9026 −1.49359 −0.746796 0.665053i \(-0.768409\pi\)
−0.746796 + 0.665053i \(0.768409\pi\)
\(350\) −1.15064 −0.0615045
\(351\) 0 0
\(352\) 9.92396 0.528949
\(353\) −12.9436 −0.688916 −0.344458 0.938802i \(-0.611937\pi\)
−0.344458 + 0.938802i \(0.611937\pi\)
\(354\) 0 0
\(355\) 9.68004 0.513763
\(356\) −2.05737 −0.109040
\(357\) 0 0
\(358\) −3.23854 −0.171162
\(359\) −11.4466 −0.604126 −0.302063 0.953288i \(-0.597675\pi\)
−0.302063 + 0.953288i \(0.597675\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 13.4088 0.704750
\(363\) 0 0
\(364\) −0.751030 −0.0393647
\(365\) −4.70233 −0.246131
\(366\) 0 0
\(367\) −28.6013 −1.49298 −0.746488 0.665398i \(-0.768262\pi\)
−0.746488 + 0.665398i \(0.768262\pi\)
\(368\) 13.9135 0.725293
\(369\) 0 0
\(370\) 23.6878 1.23147
\(371\) −5.26857 −0.273531
\(372\) 0 0
\(373\) 12.5662 0.650655 0.325328 0.945601i \(-0.394525\pi\)
0.325328 + 0.945601i \(0.394525\pi\)
\(374\) 15.2044 0.786200
\(375\) 0 0
\(376\) −19.1411 −0.987129
\(377\) −6.54664 −0.337169
\(378\) 0 0
\(379\) 2.19934 0.112973 0.0564863 0.998403i \(-0.482010\pi\)
0.0564863 + 0.998403i \(0.482010\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −29.2199 −1.49502
\(383\) −5.92808 −0.302911 −0.151455 0.988464i \(-0.548396\pi\)
−0.151455 + 0.988464i \(0.548396\pi\)
\(384\) 0 0
\(385\) 6.87939 0.350606
\(386\) −36.5185 −1.85874
\(387\) 0 0
\(388\) 2.36184 0.119904
\(389\) 33.1189 1.67919 0.839596 0.543211i \(-0.182792\pi\)
0.839596 + 0.543211i \(0.182792\pi\)
\(390\) 0 0
\(391\) 5.91210 0.298988
\(392\) −17.0077 −0.859021
\(393\) 0 0
\(394\) −6.72462 −0.338782
\(395\) −26.6313 −1.33997
\(396\) 0 0
\(397\) −26.0496 −1.30739 −0.653697 0.756757i \(-0.726783\pi\)
−0.653697 + 0.756757i \(0.726783\pi\)
\(398\) 30.6996 1.53883
\(399\) 0 0
\(400\) −6.45605 −0.322803
\(401\) −15.9682 −0.797415 −0.398707 0.917078i \(-0.630541\pi\)
−0.398707 + 0.917078i \(0.630541\pi\)
\(402\) 0 0
\(403\) 40.1516 2.00009
\(404\) 3.04189 0.151340
\(405\) 0 0
\(406\) −1.31315 −0.0651704
\(407\) −31.1780 −1.54544
\(408\) 0 0
\(409\) 2.94862 0.145800 0.0728998 0.997339i \(-0.476775\pi\)
0.0728998 + 0.997339i \(0.476775\pi\)
\(410\) 32.8803 1.62384
\(411\) 0 0
\(412\) 1.33544 0.0657922
\(413\) −2.03003 −0.0998912
\(414\) 0 0
\(415\) 29.0574 1.42637
\(416\) −7.89899 −0.387280
\(417\) 0 0
\(418\) 0 0
\(419\) 33.4962 1.63640 0.818198 0.574937i \(-0.194973\pi\)
0.818198 + 0.574937i \(0.194973\pi\)
\(420\) 0 0
\(421\) −18.0178 −0.878136 −0.439068 0.898454i \(-0.644691\pi\)
−0.439068 + 0.898454i \(0.644691\pi\)
\(422\) 41.6614 2.02804
\(423\) 0 0
\(424\) −25.0719 −1.21760
\(425\) −2.74329 −0.133069
\(426\) 0 0
\(427\) −7.41147 −0.358666
\(428\) −1.97090 −0.0952672
\(429\) 0 0
\(430\) 0.686852 0.0331229
\(431\) 21.3209 1.02699 0.513496 0.858092i \(-0.328350\pi\)
0.513496 + 0.858092i \(0.328350\pi\)
\(432\) 0 0
\(433\) 22.0523 1.05977 0.529883 0.848071i \(-0.322236\pi\)
0.529883 + 0.848071i \(0.322236\pi\)
\(434\) 8.05375 0.386592
\(435\) 0 0
\(436\) 0.724622 0.0347031
\(437\) 0 0
\(438\) 0 0
\(439\) 3.38682 0.161644 0.0808221 0.996729i \(-0.474245\pi\)
0.0808221 + 0.996729i \(0.474245\pi\)
\(440\) 32.7374 1.56070
\(441\) 0 0
\(442\) −12.1019 −0.575631
\(443\) 30.1644 1.43315 0.716576 0.697509i \(-0.245708\pi\)
0.716576 + 0.697509i \(0.245708\pi\)
\(444\) 0 0
\(445\) −15.0000 −0.711068
\(446\) −18.4047 −0.871486
\(447\) 0 0
\(448\) 3.28312 0.155113
\(449\) −30.9118 −1.45882 −0.729409 0.684078i \(-0.760205\pi\)
−0.729409 + 0.684078i \(0.760205\pi\)
\(450\) 0 0
\(451\) −43.2772 −2.03785
\(452\) 2.52704 0.118862
\(453\) 0 0
\(454\) −6.65002 −0.312101
\(455\) −5.47565 −0.256703
\(456\) 0 0
\(457\) −39.0479 −1.82658 −0.913291 0.407307i \(-0.866468\pi\)
−0.913291 + 0.407307i \(0.866468\pi\)
\(458\) −5.04963 −0.235954
\(459\) 0 0
\(460\) −2.67499 −0.124722
\(461\) 1.50744 0.0702083 0.0351041 0.999384i \(-0.488824\pi\)
0.0351041 + 0.999384i \(0.488824\pi\)
\(462\) 0 0
\(463\) −3.28312 −0.152579 −0.0762897 0.997086i \(-0.524307\pi\)
−0.0762897 + 0.997086i \(0.524307\pi\)
\(464\) −7.36783 −0.342043
\(465\) 0 0
\(466\) −23.6418 −1.09518
\(467\) 22.8871 1.05909 0.529545 0.848282i \(-0.322363\pi\)
0.529545 + 0.848282i \(0.322363\pi\)
\(468\) 0 0
\(469\) 5.43376 0.250908
\(470\) 29.3259 1.35270
\(471\) 0 0
\(472\) −9.66044 −0.444658
\(473\) −0.904038 −0.0415677
\(474\) 0 0
\(475\) 0 0
\(476\) −0.359156 −0.0164619
\(477\) 0 0
\(478\) 24.2422 1.10881
\(479\) 9.65776 0.441274 0.220637 0.975356i \(-0.429186\pi\)
0.220637 + 0.975356i \(0.429186\pi\)
\(480\) 0 0
\(481\) 24.8161 1.13152
\(482\) −36.2276 −1.65012
\(483\) 0 0
\(484\) 5.23442 0.237928
\(485\) 17.2199 0.781914
\(486\) 0 0
\(487\) 22.5107 1.02006 0.510029 0.860157i \(-0.329635\pi\)
0.510029 + 0.860157i \(0.329635\pi\)
\(488\) −35.2695 −1.59658
\(489\) 0 0
\(490\) 26.0574 1.17715
\(491\) −7.27126 −0.328147 −0.164074 0.986448i \(-0.552463\pi\)
−0.164074 + 0.986448i \(0.552463\pi\)
\(492\) 0 0
\(493\) −3.13072 −0.141001
\(494\) 0 0
\(495\) 0 0
\(496\) 45.1881 2.02901
\(497\) 2.03415 0.0912440
\(498\) 0 0
\(499\) −12.8111 −0.573503 −0.286752 0.958005i \(-0.592575\pi\)
−0.286752 + 0.958005i \(0.592575\pi\)
\(500\) −3.15570 −0.141127
\(501\) 0 0
\(502\) 29.7401 1.32737
\(503\) −8.37052 −0.373223 −0.186611 0.982434i \(-0.559751\pi\)
−0.186611 + 0.982434i \(0.559751\pi\)
\(504\) 0 0
\(505\) 22.1780 0.986907
\(506\) 23.7965 1.05789
\(507\) 0 0
\(508\) −0.635467 −0.0281943
\(509\) 13.6827 0.606476 0.303238 0.952915i \(-0.401932\pi\)
0.303238 + 0.952915i \(0.401932\pi\)
\(510\) 0 0
\(511\) −0.988140 −0.0437128
\(512\) 14.2736 0.630811
\(513\) 0 0
\(514\) −18.8384 −0.830928
\(515\) 9.73648 0.429041
\(516\) 0 0
\(517\) −38.5990 −1.69758
\(518\) 4.97771 0.218708
\(519\) 0 0
\(520\) −26.0574 −1.14269
\(521\) −16.9641 −0.743211 −0.371605 0.928391i \(-0.621193\pi\)
−0.371605 + 0.928391i \(0.621193\pi\)
\(522\) 0 0
\(523\) 3.90673 0.170829 0.0854146 0.996345i \(-0.472779\pi\)
0.0854146 + 0.996345i \(0.472779\pi\)
\(524\) 3.05138 0.133300
\(525\) 0 0
\(526\) 9.71419 0.423559
\(527\) 19.2012 0.836418
\(528\) 0 0
\(529\) −13.7469 −0.597692
\(530\) 38.4124 1.66853
\(531\) 0 0
\(532\) 0 0
\(533\) 34.4466 1.49205
\(534\) 0 0
\(535\) −14.3696 −0.621251
\(536\) 25.8580 1.11690
\(537\) 0 0
\(538\) 3.56212 0.153574
\(539\) −34.2968 −1.47727
\(540\) 0 0
\(541\) 13.1976 0.567409 0.283704 0.958912i \(-0.408437\pi\)
0.283704 + 0.958912i \(0.408437\pi\)
\(542\) −22.8949 −0.983419
\(543\) 0 0
\(544\) −3.77744 −0.161956
\(545\) 5.28312 0.226304
\(546\) 0 0
\(547\) 31.5749 1.35005 0.675023 0.737797i \(-0.264134\pi\)
0.675023 + 0.737797i \(0.264134\pi\)
\(548\) 4.38650 0.187382
\(549\) 0 0
\(550\) −11.0419 −0.470828
\(551\) 0 0
\(552\) 0 0
\(553\) −5.59627 −0.237977
\(554\) 36.7178 1.55999
\(555\) 0 0
\(556\) −1.40642 −0.0596456
\(557\) −35.6323 −1.50979 −0.754894 0.655847i \(-0.772312\pi\)
−0.754894 + 0.655847i \(0.772312\pi\)
\(558\) 0 0
\(559\) 0.719570 0.0304346
\(560\) −6.16250 −0.260413
\(561\) 0 0
\(562\) −39.1607 −1.65190
\(563\) −21.9914 −0.926829 −0.463414 0.886142i \(-0.653376\pi\)
−0.463414 + 0.886142i \(0.653376\pi\)
\(564\) 0 0
\(565\) 18.4243 0.775115
\(566\) 11.5071 0.483680
\(567\) 0 0
\(568\) 9.68004 0.406166
\(569\) 28.7588 1.20563 0.602815 0.797881i \(-0.294046\pi\)
0.602815 + 0.797881i \(0.294046\pi\)
\(570\) 0 0
\(571\) 7.30365 0.305648 0.152824 0.988253i \(-0.451163\pi\)
0.152824 + 0.988253i \(0.451163\pi\)
\(572\) −7.20708 −0.301343
\(573\) 0 0
\(574\) 6.90941 0.288393
\(575\) −4.29355 −0.179053
\(576\) 0 0
\(577\) 31.5090 1.31174 0.655868 0.754876i \(-0.272303\pi\)
0.655868 + 0.754876i \(0.272303\pi\)
\(578\) 20.2581 0.842628
\(579\) 0 0
\(580\) 1.41653 0.0588181
\(581\) 6.10607 0.253322
\(582\) 0 0
\(583\) −50.5586 −2.09392
\(584\) −4.70233 −0.194584
\(585\) 0 0
\(586\) −22.6236 −0.934573
\(587\) −27.2891 −1.12634 −0.563171 0.826340i \(-0.690419\pi\)
−0.563171 + 0.826340i \(0.690419\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 14.8007 0.609334
\(591\) 0 0
\(592\) 27.9290 1.14788
\(593\) −34.7716 −1.42790 −0.713948 0.700198i \(-0.753095\pi\)
−0.713948 + 0.700198i \(0.753095\pi\)
\(594\) 0 0
\(595\) −2.61856 −0.107350
\(596\) −2.10782 −0.0863397
\(597\) 0 0
\(598\) −18.9409 −0.774550
\(599\) 15.8990 0.649615 0.324807 0.945780i \(-0.394700\pi\)
0.324807 + 0.945780i \(0.394700\pi\)
\(600\) 0 0
\(601\) 24.6928 1.00724 0.503621 0.863925i \(-0.332001\pi\)
0.503621 + 0.863925i \(0.332001\pi\)
\(602\) 0.144334 0.00588261
\(603\) 0 0
\(604\) 0.0564370 0.00229639
\(605\) 38.1634 1.55156
\(606\) 0 0
\(607\) −4.01455 −0.162945 −0.0814727 0.996676i \(-0.525962\pi\)
−0.0814727 + 0.996676i \(0.525962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 54.0360 2.18785
\(611\) 30.7229 1.24291
\(612\) 0 0
\(613\) −40.2172 −1.62436 −0.812178 0.583409i \(-0.801718\pi\)
−0.812178 + 0.583409i \(0.801718\pi\)
\(614\) 8.44562 0.340838
\(615\) 0 0
\(616\) 6.87939 0.277178
\(617\) 22.1803 0.892947 0.446474 0.894797i \(-0.352680\pi\)
0.446474 + 0.894797i \(0.352680\pi\)
\(618\) 0 0
\(619\) −23.2354 −0.933908 −0.466954 0.884282i \(-0.654649\pi\)
−0.466954 + 0.884282i \(0.654649\pi\)
\(620\) −8.68779 −0.348910
\(621\) 0 0
\(622\) 26.6578 1.06888
\(623\) −3.15207 −0.126285
\(624\) 0 0
\(625\) −30.0651 −1.20260
\(626\) −24.4270 −0.976298
\(627\) 0 0
\(628\) 2.31315 0.0923047
\(629\) 11.8675 0.473189
\(630\) 0 0
\(631\) 28.0523 1.11675 0.558373 0.829590i \(-0.311426\pi\)
0.558373 + 0.829590i \(0.311426\pi\)
\(632\) −26.6313 −1.05934
\(633\) 0 0
\(634\) −3.02372 −0.120087
\(635\) −4.63310 −0.183859
\(636\) 0 0
\(637\) 27.2986 1.08161
\(638\) −12.6013 −0.498891
\(639\) 0 0
\(640\) −33.7793 −1.33524
\(641\) 43.4789 1.71732 0.858658 0.512550i \(-0.171299\pi\)
0.858658 + 0.512550i \(0.171299\pi\)
\(642\) 0 0
\(643\) 39.3509 1.55185 0.775924 0.630826i \(-0.217284\pi\)
0.775924 + 0.630826i \(0.217284\pi\)
\(644\) −0.562118 −0.0221506
\(645\) 0 0
\(646\) 0 0
\(647\) −18.8862 −0.742493 −0.371246 0.928534i \(-0.621069\pi\)
−0.371246 + 0.928534i \(0.621069\pi\)
\(648\) 0 0
\(649\) −19.4807 −0.764685
\(650\) 8.78880 0.344725
\(651\) 0 0
\(652\) −0.155697 −0.00609755
\(653\) 46.7428 1.82919 0.914593 0.404375i \(-0.132511\pi\)
0.914593 + 0.404375i \(0.132511\pi\)
\(654\) 0 0
\(655\) 22.2472 0.869271
\(656\) 38.7674 1.51361
\(657\) 0 0
\(658\) 6.16250 0.240239
\(659\) 2.08915 0.0813819 0.0406910 0.999172i \(-0.487044\pi\)
0.0406910 + 0.999172i \(0.487044\pi\)
\(660\) 0 0
\(661\) 12.4483 0.484183 0.242092 0.970253i \(-0.422167\pi\)
0.242092 + 0.970253i \(0.422167\pi\)
\(662\) −1.28312 −0.0498698
\(663\) 0 0
\(664\) 29.0574 1.12764
\(665\) 0 0
\(666\) 0 0
\(667\) −4.89992 −0.189726
\(668\) 1.17705 0.0455415
\(669\) 0 0
\(670\) −39.6168 −1.53053
\(671\) −71.1225 −2.74565
\(672\) 0 0
\(673\) 10.8212 0.417126 0.208563 0.978009i \(-0.433121\pi\)
0.208563 + 0.978009i \(0.433121\pi\)
\(674\) −5.09833 −0.196380
\(675\) 0 0
\(676\) 1.22163 0.0469857
\(677\) 4.36184 0.167639 0.0838196 0.996481i \(-0.473288\pi\)
0.0838196 + 0.996481i \(0.473288\pi\)
\(678\) 0 0
\(679\) 3.61856 0.138867
\(680\) −12.4611 −0.477862
\(681\) 0 0
\(682\) 77.2859 2.95943
\(683\) −44.6441 −1.70826 −0.854130 0.520059i \(-0.825910\pi\)
−0.854130 + 0.520059i \(0.825910\pi\)
\(684\) 0 0
\(685\) 31.9813 1.22194
\(686\) 11.1821 0.426935
\(687\) 0 0
\(688\) 0.809831 0.0308745
\(689\) 40.2422 1.53310
\(690\) 0 0
\(691\) 24.3209 0.925210 0.462605 0.886564i \(-0.346915\pi\)
0.462605 + 0.886564i \(0.346915\pi\)
\(692\) −0.561185 −0.0213330
\(693\) 0 0
\(694\) 6.14022 0.233079
\(695\) −10.2540 −0.388957
\(696\) 0 0
\(697\) 16.4730 0.623958
\(698\) 42.7493 1.61808
\(699\) 0 0
\(700\) 0.260830 0.00985844
\(701\) 23.5594 0.889827 0.444914 0.895573i \(-0.353234\pi\)
0.444914 + 0.895573i \(0.353234\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 31.5057 1.18742
\(705\) 0 0
\(706\) 19.8307 0.746338
\(707\) 4.66044 0.175274
\(708\) 0 0
\(709\) −6.15333 −0.231093 −0.115547 0.993302i \(-0.536862\pi\)
−0.115547 + 0.993302i \(0.536862\pi\)
\(710\) −14.8307 −0.556586
\(711\) 0 0
\(712\) −15.0000 −0.562149
\(713\) 30.0520 1.12546
\(714\) 0 0
\(715\) −52.5458 −1.96510
\(716\) 0.734118 0.0274353
\(717\) 0 0
\(718\) 17.5371 0.654480
\(719\) −32.5749 −1.21484 −0.607420 0.794381i \(-0.707795\pi\)
−0.607420 + 0.794381i \(0.707795\pi\)
\(720\) 0 0
\(721\) 2.04601 0.0761973
\(722\) 0 0
\(723\) 0 0
\(724\) −3.03952 −0.112963
\(725\) 2.27362 0.0844402
\(726\) 0 0
\(727\) 32.2300 1.19534 0.597672 0.801741i \(-0.296093\pi\)
0.597672 + 0.801741i \(0.296093\pi\)
\(728\) −5.47565 −0.202941
\(729\) 0 0
\(730\) 7.20439 0.266647
\(731\) 0.344111 0.0127274
\(732\) 0 0
\(733\) 9.78106 0.361272 0.180636 0.983550i \(-0.442184\pi\)
0.180636 + 0.983550i \(0.442184\pi\)
\(734\) 43.8198 1.61742
\(735\) 0 0
\(736\) −5.91210 −0.217923
\(737\) 52.1438 1.92074
\(738\) 0 0
\(739\) 27.7743 1.02169 0.510846 0.859672i \(-0.329332\pi\)
0.510846 + 0.859672i \(0.329332\pi\)
\(740\) −5.36959 −0.197390
\(741\) 0 0
\(742\) 8.07192 0.296329
\(743\) −32.3022 −1.18505 −0.592527 0.805551i \(-0.701870\pi\)
−0.592527 + 0.805551i \(0.701870\pi\)
\(744\) 0 0
\(745\) −15.3678 −0.563034
\(746\) −19.2526 −0.704887
\(747\) 0 0
\(748\) −3.44656 −0.126019
\(749\) −3.01960 −0.110334
\(750\) 0 0
\(751\) −3.48515 −0.127175 −0.0635874 0.997976i \(-0.520254\pi\)
−0.0635874 + 0.997976i \(0.520254\pi\)
\(752\) 34.5767 1.26088
\(753\) 0 0
\(754\) 10.0300 0.365272
\(755\) 0.411474 0.0149751
\(756\) 0 0
\(757\) −36.9341 −1.34239 −0.671196 0.741280i \(-0.734219\pi\)
−0.671196 + 0.741280i \(0.734219\pi\)
\(758\) −3.36959 −0.122389
\(759\) 0 0
\(760\) 0 0
\(761\) −31.3429 −1.13618 −0.568089 0.822967i \(-0.692317\pi\)
−0.568089 + 0.822967i \(0.692317\pi\)
\(762\) 0 0
\(763\) 1.11019 0.0401914
\(764\) 6.62361 0.239634
\(765\) 0 0
\(766\) 9.08235 0.328159
\(767\) 15.5057 0.559878
\(768\) 0 0
\(769\) −31.7425 −1.14466 −0.572331 0.820022i \(-0.693961\pi\)
−0.572331 + 0.820022i \(0.693961\pi\)
\(770\) −10.5398 −0.379829
\(771\) 0 0
\(772\) 8.27807 0.297934
\(773\) 10.9572 0.394102 0.197051 0.980393i \(-0.436863\pi\)
0.197051 + 0.980393i \(0.436863\pi\)
\(774\) 0 0
\(775\) −13.9445 −0.500901
\(776\) 17.2199 0.618157
\(777\) 0 0
\(778\) −50.7410 −1.81915
\(779\) 0 0
\(780\) 0 0
\(781\) 19.5202 0.698489
\(782\) −9.05787 −0.323909
\(783\) 0 0
\(784\) 30.7229 1.09725
\(785\) 16.8648 0.601932
\(786\) 0 0
\(787\) −46.3542 −1.65235 −0.826175 0.563414i \(-0.809488\pi\)
−0.826175 + 0.563414i \(0.809488\pi\)
\(788\) 1.52435 0.0543027
\(789\) 0 0
\(790\) 40.8016 1.45166
\(791\) 3.87164 0.137660
\(792\) 0 0
\(793\) 56.6100 2.01028
\(794\) 39.9103 1.41637
\(795\) 0 0
\(796\) −6.95904 −0.246657
\(797\) −3.47296 −0.123019 −0.0615093 0.998107i \(-0.519591\pi\)
−0.0615093 + 0.998107i \(0.519591\pi\)
\(798\) 0 0
\(799\) 14.6922 0.519774
\(800\) 2.74329 0.0969899
\(801\) 0 0
\(802\) 24.4647 0.863880
\(803\) −9.48246 −0.334629
\(804\) 0 0
\(805\) −4.09833 −0.144447
\(806\) −61.5158 −2.16680
\(807\) 0 0
\(808\) 22.1780 0.780219
\(809\) 51.9495 1.82645 0.913224 0.407457i \(-0.133584\pi\)
0.913224 + 0.407457i \(0.133584\pi\)
\(810\) 0 0
\(811\) −16.7769 −0.589118 −0.294559 0.955633i \(-0.595173\pi\)
−0.294559 + 0.955633i \(0.595173\pi\)
\(812\) 0.297667 0.0104460
\(813\) 0 0
\(814\) 47.7674 1.67425
\(815\) −1.13516 −0.0397630
\(816\) 0 0
\(817\) 0 0
\(818\) −4.51754 −0.157952
\(819\) 0 0
\(820\) −7.45336 −0.260283
\(821\) 37.2472 1.29994 0.649968 0.759961i \(-0.274782\pi\)
0.649968 + 0.759961i \(0.274782\pi\)
\(822\) 0 0
\(823\) −4.39961 −0.153361 −0.0766805 0.997056i \(-0.524432\pi\)
−0.0766805 + 0.997056i \(0.524432\pi\)
\(824\) 9.73648 0.339186
\(825\) 0 0
\(826\) 3.11019 0.108217
\(827\) −13.8625 −0.482045 −0.241023 0.970519i \(-0.577483\pi\)
−0.241023 + 0.970519i \(0.577483\pi\)
\(828\) 0 0
\(829\) −16.3770 −0.568797 −0.284398 0.958706i \(-0.591794\pi\)
−0.284398 + 0.958706i \(0.591794\pi\)
\(830\) −44.5185 −1.54526
\(831\) 0 0
\(832\) −25.0770 −0.869388
\(833\) 13.0547 0.452318
\(834\) 0 0
\(835\) 8.58172 0.296983
\(836\) 0 0
\(837\) 0 0
\(838\) −51.3191 −1.77279
\(839\) −38.2891 −1.32189 −0.660943 0.750436i \(-0.729844\pi\)
−0.660943 + 0.750436i \(0.729844\pi\)
\(840\) 0 0
\(841\) −26.4053 −0.910527
\(842\) 27.6049 0.951329
\(843\) 0 0
\(844\) −9.44387 −0.325071
\(845\) 8.90673 0.306401
\(846\) 0 0
\(847\) 8.01960 0.275557
\(848\) 45.2900 1.55527
\(849\) 0 0
\(850\) 4.20296 0.144160
\(851\) 18.5740 0.636708
\(852\) 0 0
\(853\) 22.0901 0.756350 0.378175 0.925734i \(-0.376552\pi\)
0.378175 + 0.925734i \(0.376552\pi\)
\(854\) 11.3550 0.388561
\(855\) 0 0
\(856\) −14.3696 −0.491142
\(857\) 45.0077 1.53744 0.768718 0.639588i \(-0.220895\pi\)
0.768718 + 0.639588i \(0.220895\pi\)
\(858\) 0 0
\(859\) −15.9727 −0.544980 −0.272490 0.962159i \(-0.587847\pi\)
−0.272490 + 0.962159i \(0.587847\pi\)
\(860\) −0.155697 −0.00530921
\(861\) 0 0
\(862\) −32.6655 −1.11259
\(863\) 41.2576 1.40443 0.702213 0.711967i \(-0.252195\pi\)
0.702213 + 0.711967i \(0.252195\pi\)
\(864\) 0 0
\(865\) −4.09152 −0.139116
\(866\) −33.7861 −1.14810
\(867\) 0 0
\(868\) −1.82564 −0.0619661
\(869\) −53.7033 −1.82176
\(870\) 0 0
\(871\) −41.5039 −1.40631
\(872\) 5.28312 0.178909
\(873\) 0 0
\(874\) 0 0
\(875\) −4.83481 −0.163446
\(876\) 0 0
\(877\) −46.1652 −1.55889 −0.779444 0.626472i \(-0.784498\pi\)
−0.779444 + 0.626472i \(0.784498\pi\)
\(878\) −5.18891 −0.175117
\(879\) 0 0
\(880\) −59.1370 −1.99351
\(881\) −18.9581 −0.638715 −0.319357 0.947634i \(-0.603467\pi\)
−0.319357 + 0.947634i \(0.603467\pi\)
\(882\) 0 0
\(883\) 35.0496 1.17951 0.589757 0.807581i \(-0.299224\pi\)
0.589757 + 0.807581i \(0.299224\pi\)
\(884\) 2.74329 0.0922668
\(885\) 0 0
\(886\) −46.2145 −1.55261
\(887\) −17.8375 −0.598925 −0.299462 0.954108i \(-0.596807\pi\)
−0.299462 + 0.954108i \(0.596807\pi\)
\(888\) 0 0
\(889\) −0.973593 −0.0326532
\(890\) 22.9813 0.770336
\(891\) 0 0
\(892\) 4.17200 0.139689
\(893\) 0 0
\(894\) 0 0
\(895\) 5.35235 0.178909
\(896\) −7.09833 −0.237138
\(897\) 0 0
\(898\) 47.3596 1.58041
\(899\) −15.9139 −0.530757
\(900\) 0 0
\(901\) 19.2445 0.641128
\(902\) 66.3046 2.20770
\(903\) 0 0
\(904\) 18.4243 0.612782
\(905\) −22.1607 −0.736648
\(906\) 0 0
\(907\) 14.2513 0.473208 0.236604 0.971606i \(-0.423966\pi\)
0.236604 + 0.971606i \(0.423966\pi\)
\(908\) 1.50744 0.0500260
\(909\) 0 0
\(910\) 8.38919 0.278099
\(911\) −16.4466 −0.544899 −0.272449 0.962170i \(-0.587834\pi\)
−0.272449 + 0.962170i \(0.587834\pi\)
\(912\) 0 0
\(913\) 58.5954 1.93923
\(914\) 59.8248 1.97883
\(915\) 0 0
\(916\) 1.14466 0.0378206
\(917\) 4.67499 0.154382
\(918\) 0 0
\(919\) −33.8999 −1.11826 −0.559128 0.829082i \(-0.688864\pi\)
−0.559128 + 0.829082i \(0.688864\pi\)
\(920\) −19.5030 −0.642995
\(921\) 0 0
\(922\) −2.30953 −0.0760602
\(923\) −15.5371 −0.511411
\(924\) 0 0
\(925\) −8.61856 −0.283376
\(926\) 5.03003 0.165297
\(927\) 0 0
\(928\) 3.13072 0.102771
\(929\) −21.5345 −0.706522 −0.353261 0.935525i \(-0.614927\pi\)
−0.353261 + 0.935525i \(0.614927\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5.35916 0.175545
\(933\) 0 0
\(934\) −35.0651 −1.14737
\(935\) −25.1284 −0.821785
\(936\) 0 0
\(937\) 7.56624 0.247178 0.123589 0.992333i \(-0.460560\pi\)
0.123589 + 0.992333i \(0.460560\pi\)
\(938\) −8.32501 −0.271821
\(939\) 0 0
\(940\) −6.64765 −0.216822
\(941\) 19.1275 0.623540 0.311770 0.950158i \(-0.399078\pi\)
0.311770 + 0.950158i \(0.399078\pi\)
\(942\) 0 0
\(943\) 25.7820 0.839577
\(944\) 17.4507 0.567971
\(945\) 0 0
\(946\) 1.38507 0.0450324
\(947\) −60.2072 −1.95647 −0.978235 0.207498i \(-0.933468\pi\)
−0.978235 + 0.207498i \(0.933468\pi\)
\(948\) 0 0
\(949\) 7.54757 0.245005
\(950\) 0 0
\(951\) 0 0
\(952\) −2.61856 −0.0848679
\(953\) −19.7478 −0.639695 −0.319848 0.947469i \(-0.603632\pi\)
−0.319848 + 0.947469i \(0.603632\pi\)
\(954\) 0 0
\(955\) 48.2918 1.56269
\(956\) −5.49525 −0.177729
\(957\) 0 0
\(958\) −14.7965 −0.478055
\(959\) 6.72050 0.217016
\(960\) 0 0
\(961\) 66.6023 2.14846
\(962\) −38.0205 −1.22583
\(963\) 0 0
\(964\) 8.21213 0.264495
\(965\) 60.3542 1.94287
\(966\) 0 0
\(967\) −5.16849 −0.166207 −0.0831037 0.996541i \(-0.526483\pi\)
−0.0831037 + 0.996541i \(0.526483\pi\)
\(968\) 38.1634 1.22662
\(969\) 0 0
\(970\) −26.3824 −0.847087
\(971\) −8.75784 −0.281052 −0.140526 0.990077i \(-0.544879\pi\)
−0.140526 + 0.990077i \(0.544879\pi\)
\(972\) 0 0
\(973\) −2.15476 −0.0690785
\(974\) −34.4884 −1.10508
\(975\) 0 0
\(976\) 63.7110 2.03934
\(977\) 40.7279 1.30300 0.651501 0.758648i \(-0.274140\pi\)
0.651501 + 0.758648i \(0.274140\pi\)
\(978\) 0 0
\(979\) −30.2481 −0.966735
\(980\) −5.90673 −0.188683
\(981\) 0 0
\(982\) 11.1402 0.355499
\(983\) 3.95037 0.125997 0.0629986 0.998014i \(-0.479934\pi\)
0.0629986 + 0.998014i \(0.479934\pi\)
\(984\) 0 0
\(985\) 11.1138 0.354115
\(986\) 4.79654 0.152753
\(987\) 0 0
\(988\) 0 0
\(989\) 0.538572 0.0171256
\(990\) 0 0
\(991\) 18.5621 0.589645 0.294823 0.955552i \(-0.404739\pi\)
0.294823 + 0.955552i \(0.404739\pi\)
\(992\) −19.2012 −0.609639
\(993\) 0 0
\(994\) −3.11650 −0.0988492
\(995\) −50.7374 −1.60848
\(996\) 0 0
\(997\) 2.73917 0.0867504 0.0433752 0.999059i \(-0.486189\pi\)
0.0433752 + 0.999059i \(0.486189\pi\)
\(998\) 19.6277 0.621305
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.x.1.1 3
3.2 odd 2 1083.2.a.n.1.3 3
19.2 odd 18 171.2.u.a.118.1 6
19.10 odd 18 171.2.u.a.100.1 6
19.18 odd 2 3249.2.a.w.1.3 3
57.2 even 18 57.2.i.a.4.1 6
57.29 even 18 57.2.i.a.43.1 yes 6
57.56 even 2 1083.2.a.m.1.1 3
228.59 odd 18 912.2.bo.b.289.1 6
228.143 odd 18 912.2.bo.b.385.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.a.4.1 6 57.2 even 18
57.2.i.a.43.1 yes 6 57.29 even 18
171.2.u.a.100.1 6 19.10 odd 18
171.2.u.a.118.1 6 19.2 odd 18
912.2.bo.b.289.1 6 228.59 odd 18
912.2.bo.b.385.1 6 228.143 odd 18
1083.2.a.m.1.1 3 57.56 even 2
1083.2.a.n.1.3 3 3.2 odd 2
3249.2.a.w.1.3 3 19.18 odd 2
3249.2.a.x.1.1 3 1.1 even 1 trivial