Properties

Label 325.10.a.h.1.10
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 6453 x^{15} - 11965 x^{14} + 16673200 x^{13} + 68278926 x^{12} - 22023799708 x^{11} + \cdots + 22\!\cdots\!80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-8.60741\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.6074 q^{2} +39.6173 q^{3} -399.483 q^{4} +420.237 q^{6} +7059.84 q^{7} -9668.47 q^{8} -18113.5 q^{9} +41815.8 q^{11} -15826.4 q^{12} -28561.0 q^{13} +74886.7 q^{14} +101978. q^{16} +189793. q^{17} -192137. q^{18} -901879. q^{19} +279692. q^{21} +443557. q^{22} +1.17742e6 q^{23} -383039. q^{24} -302958. q^{26} -1.49739e6 q^{27} -2.82029e6 q^{28} -1.67282e6 q^{29} +6.49608e6 q^{31} +6.03198e6 q^{32} +1.65663e6 q^{33} +2.01321e6 q^{34} +7.23602e6 q^{36} -1.15017e7 q^{37} -9.56661e6 q^{38} -1.13151e6 q^{39} +1.94859e7 q^{41} +2.96681e6 q^{42} -1.18398e7 q^{43} -1.67047e7 q^{44} +1.24893e7 q^{46} -2.11765e7 q^{47} +4.04008e6 q^{48} +9.48776e6 q^{49} +7.51907e6 q^{51} +1.14096e7 q^{52} +3.67444e7 q^{53} -1.58835e7 q^{54} -6.82579e7 q^{56} -3.57300e7 q^{57} -1.77443e7 q^{58} +1.04985e8 q^{59} -1.05980e8 q^{61} +6.89066e7 q^{62} -1.27878e8 q^{63} +1.17711e7 q^{64} +1.75725e7 q^{66} -2.54898e7 q^{67} -7.58189e7 q^{68} +4.66460e7 q^{69} +4.38520e7 q^{71} +1.75130e8 q^{72} -2.59790e8 q^{73} -1.22004e8 q^{74} +3.60285e8 q^{76} +2.95213e8 q^{77} -1.20024e7 q^{78} +3.25043e8 q^{79} +2.97205e8 q^{81} +2.06695e8 q^{82} +2.65493e8 q^{83} -1.11732e8 q^{84} -1.25589e8 q^{86} -6.62726e7 q^{87} -4.04295e8 q^{88} +3.01612e8 q^{89} -2.01636e8 q^{91} -4.70357e8 q^{92} +2.57357e8 q^{93} -2.24628e8 q^{94} +2.38971e8 q^{96} -1.38428e9 q^{97} +1.00641e8 q^{98} -7.57429e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 33 q^{2} - 73 q^{3} + 4267 q^{4} - 1103 q^{6} + 10670 q^{7} - 11481 q^{8} + 47590 q^{9} - 130917 q^{11} - 32239 q^{12} - 485537 q^{13} - 292206 q^{14} + 1064251 q^{16} + 193953 q^{17} + 2026286 q^{18}+ \cdots - 3023832936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.6074 0.468786 0.234393 0.972142i \(-0.424690\pi\)
0.234393 + 0.972142i \(0.424690\pi\)
\(3\) 39.6173 0.282383 0.141192 0.989982i \(-0.454907\pi\)
0.141192 + 0.989982i \(0.454907\pi\)
\(4\) −399.483 −0.780240
\(5\) 0 0
\(6\) 420.237 0.132377
\(7\) 7059.84 1.11136 0.555679 0.831397i \(-0.312458\pi\)
0.555679 + 0.831397i \(0.312458\pi\)
\(8\) −9668.47 −0.834551
\(9\) −18113.5 −0.920260
\(10\) 0 0
\(11\) 41815.8 0.861139 0.430569 0.902558i \(-0.358313\pi\)
0.430569 + 0.902558i \(0.358313\pi\)
\(12\) −15826.4 −0.220327
\(13\) −28561.0 −0.277350
\(14\) 74886.7 0.520989
\(15\) 0 0
\(16\) 101978. 0.389014
\(17\) 189793. 0.551137 0.275568 0.961281i \(-0.411134\pi\)
0.275568 + 0.961281i \(0.411134\pi\)
\(18\) −192137. −0.431405
\(19\) −901879. −1.58766 −0.793829 0.608140i \(-0.791916\pi\)
−0.793829 + 0.608140i \(0.791916\pi\)
\(20\) 0 0
\(21\) 279692. 0.313829
\(22\) 443557. 0.403690
\(23\) 1.17742e6 0.877313 0.438657 0.898655i \(-0.355454\pi\)
0.438657 + 0.898655i \(0.355454\pi\)
\(24\) −383039. −0.235663
\(25\) 0 0
\(26\) −302958. −0.130018
\(27\) −1.49739e6 −0.542249
\(28\) −2.82029e6 −0.867125
\(29\) −1.67282e6 −0.439196 −0.219598 0.975590i \(-0.570475\pi\)
−0.219598 + 0.975590i \(0.570475\pi\)
\(30\) 0 0
\(31\) 6.49608e6 1.26335 0.631675 0.775233i \(-0.282368\pi\)
0.631675 + 0.775233i \(0.282368\pi\)
\(32\) 6.03198e6 1.01692
\(33\) 1.65663e6 0.243171
\(34\) 2.01321e6 0.258365
\(35\) 0 0
\(36\) 7.23602e6 0.718023
\(37\) −1.15017e7 −1.00892 −0.504459 0.863436i \(-0.668308\pi\)
−0.504459 + 0.863436i \(0.668308\pi\)
\(38\) −9.56661e6 −0.744272
\(39\) −1.13151e6 −0.0783190
\(40\) 0 0
\(41\) 1.94859e7 1.07694 0.538471 0.842644i \(-0.319002\pi\)
0.538471 + 0.842644i \(0.319002\pi\)
\(42\) 2.96681e6 0.147118
\(43\) −1.18398e7 −0.528123 −0.264062 0.964506i \(-0.585062\pi\)
−0.264062 + 0.964506i \(0.585062\pi\)
\(44\) −1.67047e7 −0.671895
\(45\) 0 0
\(46\) 1.24893e7 0.411272
\(47\) −2.11765e7 −0.633016 −0.316508 0.948590i \(-0.602510\pi\)
−0.316508 + 0.948590i \(0.602510\pi\)
\(48\) 4.04008e6 0.109851
\(49\) 9.48776e6 0.235116
\(50\) 0 0
\(51\) 7.51907e6 0.155632
\(52\) 1.14096e7 0.216400
\(53\) 3.67444e7 0.639661 0.319830 0.947475i \(-0.396374\pi\)
0.319830 + 0.947475i \(0.396374\pi\)
\(54\) −1.58835e7 −0.254199
\(55\) 0 0
\(56\) −6.82579e7 −0.927485
\(57\) −3.57300e7 −0.448328
\(58\) −1.77443e7 −0.205889
\(59\) 1.04985e8 1.12796 0.563982 0.825787i \(-0.309269\pi\)
0.563982 + 0.825787i \(0.309269\pi\)
\(60\) 0 0
\(61\) −1.05980e8 −0.980030 −0.490015 0.871714i \(-0.663009\pi\)
−0.490015 + 0.871714i \(0.663009\pi\)
\(62\) 6.89066e7 0.592241
\(63\) −1.27878e8 −1.02274
\(64\) 1.17711e7 0.0877017
\(65\) 0 0
\(66\) 1.75725e7 0.113995
\(67\) −2.54898e7 −0.154536 −0.0772680 0.997010i \(-0.524620\pi\)
−0.0772680 + 0.997010i \(0.524620\pi\)
\(68\) −7.58189e7 −0.430019
\(69\) 4.66460e7 0.247739
\(70\) 0 0
\(71\) 4.38520e7 0.204799 0.102399 0.994743i \(-0.467348\pi\)
0.102399 + 0.994743i \(0.467348\pi\)
\(72\) 1.75130e8 0.768004
\(73\) −2.59790e8 −1.07071 −0.535353 0.844629i \(-0.679821\pi\)
−0.535353 + 0.844629i \(0.679821\pi\)
\(74\) −1.22004e8 −0.472966
\(75\) 0 0
\(76\) 3.60285e8 1.23875
\(77\) 2.95213e8 0.957033
\(78\) −1.20024e7 −0.0367149
\(79\) 3.25043e8 0.938899 0.469450 0.882959i \(-0.344452\pi\)
0.469450 + 0.882959i \(0.344452\pi\)
\(80\) 0 0
\(81\) 2.97205e8 0.767138
\(82\) 2.06695e8 0.504855
\(83\) 2.65493e8 0.614048 0.307024 0.951702i \(-0.400667\pi\)
0.307024 + 0.951702i \(0.400667\pi\)
\(84\) −1.11732e8 −0.244862
\(85\) 0 0
\(86\) −1.25589e8 −0.247577
\(87\) −6.62726e7 −0.124022
\(88\) −4.04295e8 −0.718664
\(89\) 3.01612e8 0.509558 0.254779 0.966999i \(-0.417997\pi\)
0.254779 + 0.966999i \(0.417997\pi\)
\(90\) 0 0
\(91\) −2.01636e8 −0.308235
\(92\) −4.70357e8 −0.684515
\(93\) 2.57357e8 0.356749
\(94\) −2.24628e8 −0.296749
\(95\) 0 0
\(96\) 2.38971e8 0.287160
\(97\) −1.38428e9 −1.58763 −0.793817 0.608157i \(-0.791909\pi\)
−0.793817 + 0.608157i \(0.791909\pi\)
\(98\) 1.00641e8 0.110219
\(99\) −7.57429e8 −0.792471
\(100\) 0 0
\(101\) −1.03603e8 −0.0990666 −0.0495333 0.998772i \(-0.515773\pi\)
−0.0495333 + 0.998772i \(0.515773\pi\)
\(102\) 7.97579e7 0.0729580
\(103\) −1.27982e9 −1.12042 −0.560209 0.828351i \(-0.689279\pi\)
−0.560209 + 0.828351i \(0.689279\pi\)
\(104\) 2.76141e8 0.231463
\(105\) 0 0
\(106\) 3.89763e8 0.299864
\(107\) −1.46144e9 −1.07784 −0.538921 0.842356i \(-0.681168\pi\)
−0.538921 + 0.842356i \(0.681168\pi\)
\(108\) 5.98183e8 0.423084
\(109\) −2.22647e9 −1.51077 −0.755383 0.655284i \(-0.772549\pi\)
−0.755383 + 0.655284i \(0.772549\pi\)
\(110\) 0 0
\(111\) −4.55667e8 −0.284901
\(112\) 7.19946e8 0.432334
\(113\) 8.13140e8 0.469151 0.234575 0.972098i \(-0.424630\pi\)
0.234575 + 0.972098i \(0.424630\pi\)
\(114\) −3.79003e8 −0.210170
\(115\) 0 0
\(116\) 6.68263e8 0.342678
\(117\) 5.17339e8 0.255234
\(118\) 1.11362e9 0.528774
\(119\) 1.33991e9 0.612510
\(120\) 0 0
\(121\) −6.09389e8 −0.258440
\(122\) −1.12417e9 −0.459424
\(123\) 7.71977e8 0.304110
\(124\) −2.59507e9 −0.985716
\(125\) 0 0
\(126\) −1.35646e9 −0.479445
\(127\) −1.51830e9 −0.517894 −0.258947 0.965892i \(-0.583375\pi\)
−0.258947 + 0.965892i \(0.583375\pi\)
\(128\) −2.96351e9 −0.975802
\(129\) −4.69060e8 −0.149133
\(130\) 0 0
\(131\) −1.34209e9 −0.398162 −0.199081 0.979983i \(-0.563796\pi\)
−0.199081 + 0.979983i \(0.563796\pi\)
\(132\) −6.61794e8 −0.189732
\(133\) −6.36713e9 −1.76446
\(134\) −2.70381e8 −0.0724443
\(135\) 0 0
\(136\) −1.83501e9 −0.459952
\(137\) −3.99500e9 −0.968889 −0.484445 0.874822i \(-0.660978\pi\)
−0.484445 + 0.874822i \(0.660978\pi\)
\(138\) 4.94794e8 0.116136
\(139\) −8.16348e9 −1.85485 −0.927424 0.374011i \(-0.877982\pi\)
−0.927424 + 0.374011i \(0.877982\pi\)
\(140\) 0 0
\(141\) −8.38956e8 −0.178753
\(142\) 4.65156e8 0.0960067
\(143\) −1.19430e9 −0.238837
\(144\) −1.84717e9 −0.357994
\(145\) 0 0
\(146\) −2.75570e9 −0.501932
\(147\) 3.75879e8 0.0663927
\(148\) 4.59475e9 0.787198
\(149\) 5.19659e9 0.863735 0.431867 0.901937i \(-0.357855\pi\)
0.431867 + 0.901937i \(0.357855\pi\)
\(150\) 0 0
\(151\) −2.57840e9 −0.403603 −0.201801 0.979426i \(-0.564680\pi\)
−0.201801 + 0.979426i \(0.564680\pi\)
\(152\) 8.71980e9 1.32498
\(153\) −3.43781e9 −0.507189
\(154\) 3.13144e9 0.448643
\(155\) 0 0
\(156\) 4.52018e8 0.0611076
\(157\) 5.82664e9 0.765368 0.382684 0.923879i \(-0.375000\pi\)
0.382684 + 0.923879i \(0.375000\pi\)
\(158\) 3.44787e9 0.440143
\(159\) 1.45571e9 0.180630
\(160\) 0 0
\(161\) 8.31237e9 0.975009
\(162\) 3.15257e9 0.359623
\(163\) 7.97012e9 0.884343 0.442171 0.896931i \(-0.354208\pi\)
0.442171 + 0.896931i \(0.354208\pi\)
\(164\) −7.78426e9 −0.840273
\(165\) 0 0
\(166\) 2.81620e9 0.287857
\(167\) −4.14246e9 −0.412130 −0.206065 0.978538i \(-0.566066\pi\)
−0.206065 + 0.978538i \(0.566066\pi\)
\(168\) −2.70419e9 −0.261906
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 1.63362e10 1.46106
\(172\) 4.72979e9 0.412063
\(173\) −1.16240e10 −0.986612 −0.493306 0.869856i \(-0.664212\pi\)
−0.493306 + 0.869856i \(0.664212\pi\)
\(174\) −7.02981e8 −0.0581396
\(175\) 0 0
\(176\) 4.26427e9 0.334995
\(177\) 4.15924e9 0.318518
\(178\) 3.19932e9 0.238874
\(179\) −8.25443e9 −0.600964 −0.300482 0.953787i \(-0.597148\pi\)
−0.300482 + 0.953787i \(0.597148\pi\)
\(180\) 0 0
\(181\) −2.01413e10 −1.39487 −0.697436 0.716647i \(-0.745676\pi\)
−0.697436 + 0.716647i \(0.745676\pi\)
\(182\) −2.13884e9 −0.144496
\(183\) −4.19864e9 −0.276744
\(184\) −1.13838e10 −0.732163
\(185\) 0 0
\(186\) 2.72989e9 0.167239
\(187\) 7.93633e9 0.474605
\(188\) 8.45966e9 0.493904
\(189\) −1.05714e10 −0.602633
\(190\) 0 0
\(191\) 1.73463e10 0.943098 0.471549 0.881840i \(-0.343695\pi\)
0.471549 + 0.881840i \(0.343695\pi\)
\(192\) 4.66340e8 0.0247655
\(193\) −2.09400e10 −1.08635 −0.543175 0.839620i \(-0.682778\pi\)
−0.543175 + 0.839620i \(0.682778\pi\)
\(194\) −1.46836e10 −0.744260
\(195\) 0 0
\(196\) −3.79020e9 −0.183447
\(197\) 2.00721e10 0.949500 0.474750 0.880121i \(-0.342538\pi\)
0.474750 + 0.880121i \(0.342538\pi\)
\(198\) −8.03436e9 −0.371499
\(199\) −7.09798e9 −0.320846 −0.160423 0.987048i \(-0.551286\pi\)
−0.160423 + 0.987048i \(0.551286\pi\)
\(200\) 0 0
\(201\) −1.00984e9 −0.0436384
\(202\) −1.09896e9 −0.0464410
\(203\) −1.18099e10 −0.488104
\(204\) −3.00374e9 −0.121430
\(205\) 0 0
\(206\) −1.35755e10 −0.525236
\(207\) −2.13271e10 −0.807356
\(208\) −2.91258e9 −0.107893
\(209\) −3.77128e10 −1.36719
\(210\) 0 0
\(211\) −4.77609e10 −1.65883 −0.829414 0.558635i \(-0.811325\pi\)
−0.829414 + 0.558635i \(0.811325\pi\)
\(212\) −1.46788e10 −0.499089
\(213\) 1.73730e9 0.0578317
\(214\) −1.55021e10 −0.505277
\(215\) 0 0
\(216\) 1.44775e10 0.452535
\(217\) 4.58613e10 1.40403
\(218\) −2.36171e10 −0.708225
\(219\) −1.02922e10 −0.302349
\(220\) 0 0
\(221\) −5.42067e9 −0.152858
\(222\) −4.83345e9 −0.133558
\(223\) −4.50927e10 −1.22105 −0.610526 0.791996i \(-0.709042\pi\)
−0.610526 + 0.791996i \(0.709042\pi\)
\(224\) 4.25848e10 1.13016
\(225\) 0 0
\(226\) 8.62531e9 0.219931
\(227\) 5.14032e10 1.28491 0.642457 0.766322i \(-0.277915\pi\)
0.642457 + 0.766322i \(0.277915\pi\)
\(228\) 1.42735e10 0.349804
\(229\) −8.65756e9 −0.208035 −0.104017 0.994575i \(-0.533170\pi\)
−0.104017 + 0.994575i \(0.533170\pi\)
\(230\) 0 0
\(231\) 1.16955e10 0.270250
\(232\) 1.61736e10 0.366532
\(233\) −6.18115e10 −1.37394 −0.686970 0.726686i \(-0.741060\pi\)
−0.686970 + 0.726686i \(0.741060\pi\)
\(234\) 5.48763e9 0.119650
\(235\) 0 0
\(236\) −4.19399e10 −0.880082
\(237\) 1.28773e10 0.265129
\(238\) 1.42129e10 0.287136
\(239\) −5.77153e10 −1.14420 −0.572098 0.820185i \(-0.693870\pi\)
−0.572098 + 0.820185i \(0.693870\pi\)
\(240\) 0 0
\(241\) 1.45035e10 0.276947 0.138474 0.990366i \(-0.455780\pi\)
0.138474 + 0.990366i \(0.455780\pi\)
\(242\) −6.46404e9 −0.121153
\(243\) 4.12476e10 0.758876
\(244\) 4.23372e10 0.764658
\(245\) 0 0
\(246\) 8.18867e9 0.142563
\(247\) 2.57586e10 0.440337
\(248\) −6.28072e10 −1.05433
\(249\) 1.05181e10 0.173397
\(250\) 0 0
\(251\) −1.19655e11 −1.90283 −0.951413 0.307918i \(-0.900368\pi\)
−0.951413 + 0.307918i \(0.900368\pi\)
\(252\) 5.10852e10 0.797981
\(253\) 4.92346e10 0.755488
\(254\) −1.61052e10 −0.242781
\(255\) 0 0
\(256\) −3.74620e10 −0.545144
\(257\) 5.16474e10 0.738497 0.369249 0.929331i \(-0.379615\pi\)
0.369249 + 0.929331i \(0.379615\pi\)
\(258\) −4.97551e9 −0.0699115
\(259\) −8.12004e10 −1.12127
\(260\) 0 0
\(261\) 3.03006e10 0.404175
\(262\) −1.42361e10 −0.186653
\(263\) 4.32530e9 0.0557462 0.0278731 0.999611i \(-0.491127\pi\)
0.0278731 + 0.999611i \(0.491127\pi\)
\(264\) −1.60171e10 −0.202939
\(265\) 0 0
\(266\) −6.75387e10 −0.827152
\(267\) 1.19490e10 0.143891
\(268\) 1.01827e10 0.120575
\(269\) −2.02373e9 −0.0235649 −0.0117825 0.999931i \(-0.503751\pi\)
−0.0117825 + 0.999931i \(0.503751\pi\)
\(270\) 0 0
\(271\) −1.67526e10 −0.188678 −0.0943390 0.995540i \(-0.530074\pi\)
−0.0943390 + 0.995540i \(0.530074\pi\)
\(272\) 1.93546e10 0.214400
\(273\) −7.98827e9 −0.0870404
\(274\) −4.23766e10 −0.454202
\(275\) 0 0
\(276\) −1.86343e10 −0.193295
\(277\) 8.72923e10 0.890875 0.445437 0.895313i \(-0.353048\pi\)
0.445437 + 0.895313i \(0.353048\pi\)
\(278\) −8.65934e10 −0.869527
\(279\) −1.17667e11 −1.16261
\(280\) 0 0
\(281\) −1.33617e11 −1.27845 −0.639225 0.769019i \(-0.720745\pi\)
−0.639225 + 0.769019i \(0.720745\pi\)
\(282\) −8.89916e9 −0.0837969
\(283\) 1.20149e11 1.11348 0.556740 0.830687i \(-0.312052\pi\)
0.556740 + 0.830687i \(0.312052\pi\)
\(284\) −1.75181e10 −0.159792
\(285\) 0 0
\(286\) −1.26684e10 −0.111963
\(287\) 1.37567e11 1.19687
\(288\) −1.09260e11 −0.935826
\(289\) −8.25666e10 −0.696248
\(290\) 0 0
\(291\) −5.48413e10 −0.448321
\(292\) 1.03782e11 0.835407
\(293\) −9.34714e10 −0.740926 −0.370463 0.928847i \(-0.620801\pi\)
−0.370463 + 0.928847i \(0.620801\pi\)
\(294\) 3.98711e9 0.0311240
\(295\) 0 0
\(296\) 1.11204e11 0.841993
\(297\) −6.26146e10 −0.466952
\(298\) 5.51224e10 0.404907
\(299\) −3.36282e10 −0.243323
\(300\) 0 0
\(301\) −8.35869e10 −0.586934
\(302\) −2.73502e10 −0.189203
\(303\) −4.10448e9 −0.0279748
\(304\) −9.19715e10 −0.617621
\(305\) 0 0
\(306\) −3.64662e10 −0.237763
\(307\) −1.12751e11 −0.724433 −0.362216 0.932094i \(-0.617980\pi\)
−0.362216 + 0.932094i \(0.617980\pi\)
\(308\) −1.17932e11 −0.746715
\(309\) −5.07028e10 −0.316387
\(310\) 0 0
\(311\) 1.67036e11 1.01248 0.506242 0.862391i \(-0.331034\pi\)
0.506242 + 0.862391i \(0.331034\pi\)
\(312\) 1.09400e10 0.0653612
\(313\) 1.26256e11 0.743536 0.371768 0.928326i \(-0.378752\pi\)
0.371768 + 0.928326i \(0.378752\pi\)
\(314\) 6.18056e10 0.358793
\(315\) 0 0
\(316\) −1.29849e11 −0.732566
\(317\) −2.34026e11 −1.30166 −0.650829 0.759224i \(-0.725579\pi\)
−0.650829 + 0.759224i \(0.725579\pi\)
\(318\) 1.54414e10 0.0846766
\(319\) −6.99503e10 −0.378209
\(320\) 0 0
\(321\) −5.78985e10 −0.304365
\(322\) 8.81728e10 0.457070
\(323\) −1.71170e11 −0.875017
\(324\) −1.18728e11 −0.598551
\(325\) 0 0
\(326\) 8.45424e10 0.414567
\(327\) −8.82066e10 −0.426615
\(328\) −1.88399e11 −0.898763
\(329\) −1.49503e11 −0.703507
\(330\) 0 0
\(331\) 5.82842e10 0.266885 0.133443 0.991057i \(-0.457397\pi\)
0.133443 + 0.991057i \(0.457397\pi\)
\(332\) −1.06060e11 −0.479105
\(333\) 2.08336e11 0.928466
\(334\) −4.39408e10 −0.193201
\(335\) 0 0
\(336\) 2.85223e10 0.122084
\(337\) 8.15971e10 0.344620 0.172310 0.985043i \(-0.444877\pi\)
0.172310 + 0.985043i \(0.444877\pi\)
\(338\) 8.65279e9 0.0360605
\(339\) 3.22144e10 0.132480
\(340\) 0 0
\(341\) 2.71639e11 1.08792
\(342\) 1.73284e11 0.684924
\(343\) −2.17908e11 −0.850060
\(344\) 1.14473e11 0.440746
\(345\) 0 0
\(346\) −1.23300e11 −0.462510
\(347\) −2.97245e9 −0.0110061 −0.00550303 0.999985i \(-0.501752\pi\)
−0.00550303 + 0.999985i \(0.501752\pi\)
\(348\) 2.64748e10 0.0967667
\(349\) −3.25463e11 −1.17432 −0.587161 0.809470i \(-0.699755\pi\)
−0.587161 + 0.809470i \(0.699755\pi\)
\(350\) 0 0
\(351\) 4.27670e10 0.150393
\(352\) 2.52232e11 0.875705
\(353\) −3.73886e11 −1.28160 −0.640801 0.767707i \(-0.721398\pi\)
−0.640801 + 0.767707i \(0.721398\pi\)
\(354\) 4.41188e10 0.149317
\(355\) 0 0
\(356\) −1.20489e11 −0.397577
\(357\) 5.30835e10 0.172963
\(358\) −8.75582e10 −0.281724
\(359\) 5.76577e11 1.83203 0.916014 0.401147i \(-0.131388\pi\)
0.916014 + 0.401147i \(0.131388\pi\)
\(360\) 0 0
\(361\) 4.90698e11 1.52066
\(362\) −2.13647e11 −0.653897
\(363\) −2.41423e10 −0.0729793
\(364\) 8.05502e10 0.240497
\(365\) 0 0
\(366\) −4.45367e10 −0.129734
\(367\) 6.04552e11 1.73955 0.869774 0.493451i \(-0.164265\pi\)
0.869774 + 0.493451i \(0.164265\pi\)
\(368\) 1.20070e11 0.341287
\(369\) −3.52957e11 −0.991066
\(370\) 0 0
\(371\) 2.59410e11 0.710892
\(372\) −1.02810e11 −0.278350
\(373\) −3.90114e11 −1.04352 −0.521762 0.853091i \(-0.674725\pi\)
−0.521762 + 0.853091i \(0.674725\pi\)
\(374\) 8.41839e10 0.222488
\(375\) 0 0
\(376\) 2.04745e11 0.528284
\(377\) 4.77775e10 0.121811
\(378\) −1.12135e11 −0.282506
\(379\) 6.56944e11 1.63551 0.817753 0.575570i \(-0.195220\pi\)
0.817753 + 0.575570i \(0.195220\pi\)
\(380\) 0 0
\(381\) −6.01509e10 −0.146245
\(382\) 1.83999e11 0.442111
\(383\) 6.87899e11 1.63354 0.816771 0.576962i \(-0.195762\pi\)
0.816771 + 0.576962i \(0.195762\pi\)
\(384\) −1.17406e11 −0.275550
\(385\) 0 0
\(386\) −2.22120e11 −0.509265
\(387\) 2.14459e11 0.486011
\(388\) 5.52995e11 1.23873
\(389\) −8.31135e11 −1.84034 −0.920170 0.391518i \(-0.871950\pi\)
−0.920170 + 0.391518i \(0.871950\pi\)
\(390\) 0 0
\(391\) 2.23465e11 0.483520
\(392\) −9.17322e10 −0.196216
\(393\) −5.31699e10 −0.112434
\(394\) 2.12913e11 0.445112
\(395\) 0 0
\(396\) 3.02580e11 0.618317
\(397\) −5.53624e11 −1.11856 −0.559278 0.828980i \(-0.688922\pi\)
−0.559278 + 0.828980i \(0.688922\pi\)
\(398\) −7.52912e10 −0.150408
\(399\) −2.52248e11 −0.498253
\(400\) 0 0
\(401\) −7.96171e11 −1.53765 −0.768824 0.639461i \(-0.779158\pi\)
−0.768824 + 0.639461i \(0.779158\pi\)
\(402\) −1.07117e10 −0.0204571
\(403\) −1.85535e11 −0.350390
\(404\) 4.13877e10 0.0772957
\(405\) 0 0
\(406\) −1.25272e11 −0.228816
\(407\) −4.80954e11 −0.868818
\(408\) −7.26980e10 −0.129883
\(409\) −3.87733e11 −0.685138 −0.342569 0.939493i \(-0.611297\pi\)
−0.342569 + 0.939493i \(0.611297\pi\)
\(410\) 0 0
\(411\) −1.58271e11 −0.273598
\(412\) 5.11264e11 0.874194
\(413\) 7.41181e11 1.25357
\(414\) −2.26225e11 −0.378477
\(415\) 0 0
\(416\) −1.72279e11 −0.282042
\(417\) −3.23415e11 −0.523778
\(418\) −4.00035e11 −0.640921
\(419\) 3.33743e11 0.528991 0.264496 0.964387i \(-0.414795\pi\)
0.264496 + 0.964387i \(0.414795\pi\)
\(420\) 0 0
\(421\) −8.16850e11 −1.26728 −0.633640 0.773628i \(-0.718440\pi\)
−0.633640 + 0.773628i \(0.718440\pi\)
\(422\) −5.06619e11 −0.777635
\(423\) 3.83580e11 0.582539
\(424\) −3.55262e11 −0.533830
\(425\) 0 0
\(426\) 1.84282e10 0.0271107
\(427\) −7.48202e11 −1.08916
\(428\) 5.83822e11 0.840976
\(429\) −4.73149e10 −0.0674435
\(430\) 0 0
\(431\) 1.23826e12 1.72847 0.864237 0.503085i \(-0.167802\pi\)
0.864237 + 0.503085i \(0.167802\pi\)
\(432\) −1.52701e11 −0.210942
\(433\) 9.18106e11 1.25516 0.627578 0.778554i \(-0.284047\pi\)
0.627578 + 0.778554i \(0.284047\pi\)
\(434\) 4.86470e11 0.658191
\(435\) 0 0
\(436\) 8.89435e11 1.17876
\(437\) −1.06189e12 −1.39287
\(438\) −1.09173e11 −0.141737
\(439\) 8.17970e11 1.05111 0.525553 0.850761i \(-0.323858\pi\)
0.525553 + 0.850761i \(0.323858\pi\)
\(440\) 0 0
\(441\) −1.71856e11 −0.216367
\(442\) −5.74993e10 −0.0716576
\(443\) −8.22578e11 −1.01475 −0.507377 0.861724i \(-0.669385\pi\)
−0.507377 + 0.861724i \(0.669385\pi\)
\(444\) 1.82031e11 0.222291
\(445\) 0 0
\(446\) −4.78317e11 −0.572412
\(447\) 2.05875e11 0.243904
\(448\) 8.31023e10 0.0974680
\(449\) 1.42936e12 1.65972 0.829859 0.557973i \(-0.188421\pi\)
0.829859 + 0.557973i \(0.188421\pi\)
\(450\) 0 0
\(451\) 8.14816e11 0.927396
\(452\) −3.24835e11 −0.366050
\(453\) −1.02149e11 −0.113971
\(454\) 5.45255e11 0.602349
\(455\) 0 0
\(456\) 3.45455e11 0.374153
\(457\) −1.02265e11 −0.109674 −0.0548369 0.998495i \(-0.517464\pi\)
−0.0548369 + 0.998495i \(0.517464\pi\)
\(458\) −9.18344e10 −0.0975238
\(459\) −2.84194e11 −0.298854
\(460\) 0 0
\(461\) −7.01331e11 −0.723217 −0.361609 0.932330i \(-0.617772\pi\)
−0.361609 + 0.932330i \(0.617772\pi\)
\(462\) 1.24059e11 0.126689
\(463\) −4.06102e10 −0.0410696 −0.0205348 0.999789i \(-0.506537\pi\)
−0.0205348 + 0.999789i \(0.506537\pi\)
\(464\) −1.70590e11 −0.170853
\(465\) 0 0
\(466\) −6.55660e11 −0.644084
\(467\) 1.59339e11 0.155023 0.0775117 0.996991i \(-0.475302\pi\)
0.0775117 + 0.996991i \(0.475302\pi\)
\(468\) −2.06668e11 −0.199144
\(469\) −1.79954e11 −0.171745
\(470\) 0 0
\(471\) 2.30836e11 0.216127
\(472\) −1.01505e12 −0.941344
\(473\) −4.95089e11 −0.454787
\(474\) 1.36595e11 0.124289
\(475\) 0 0
\(476\) −5.35270e11 −0.477905
\(477\) −6.65569e11 −0.588654
\(478\) −6.12211e11 −0.536383
\(479\) 1.81846e12 1.57832 0.789159 0.614189i \(-0.210517\pi\)
0.789159 + 0.614189i \(0.210517\pi\)
\(480\) 0 0
\(481\) 3.28501e11 0.279823
\(482\) 1.53845e11 0.129829
\(483\) 3.29313e11 0.275326
\(484\) 2.43440e11 0.201646
\(485\) 0 0
\(486\) 4.37531e11 0.355750
\(487\) −2.58312e10 −0.0208097 −0.0104048 0.999946i \(-0.503312\pi\)
−0.0104048 + 0.999946i \(0.503312\pi\)
\(488\) 1.02466e12 0.817885
\(489\) 3.15754e11 0.249724
\(490\) 0 0
\(491\) 3.22969e11 0.250781 0.125390 0.992107i \(-0.459982\pi\)
0.125390 + 0.992107i \(0.459982\pi\)
\(492\) −3.08391e11 −0.237279
\(493\) −3.17489e11 −0.242057
\(494\) 2.73232e11 0.206424
\(495\) 0 0
\(496\) 6.62455e11 0.491461
\(497\) 3.09588e11 0.227604
\(498\) 1.11570e11 0.0812860
\(499\) 2.78527e11 0.201101 0.100551 0.994932i \(-0.467940\pi\)
0.100551 + 0.994932i \(0.467940\pi\)
\(500\) 0 0
\(501\) −1.64113e11 −0.116379
\(502\) −1.26923e12 −0.892018
\(503\) 2.69599e12 1.87785 0.938927 0.344117i \(-0.111822\pi\)
0.938927 + 0.344117i \(0.111822\pi\)
\(504\) 1.23639e12 0.853527
\(505\) 0 0
\(506\) 5.22251e11 0.354162
\(507\) 3.23170e10 0.0217218
\(508\) 6.06535e11 0.404081
\(509\) −1.83646e10 −0.0121269 −0.00606347 0.999982i \(-0.501930\pi\)
−0.00606347 + 0.999982i \(0.501930\pi\)
\(510\) 0 0
\(511\) −1.83408e12 −1.18994
\(512\) 1.11994e12 0.720246
\(513\) 1.35047e12 0.860907
\(514\) 5.47845e11 0.346197
\(515\) 0 0
\(516\) 1.87381e11 0.116360
\(517\) −8.85513e11 −0.545114
\(518\) −8.61327e11 −0.525635
\(519\) −4.60510e11 −0.278603
\(520\) 0 0
\(521\) 5.71331e11 0.339718 0.169859 0.985468i \(-0.445669\pi\)
0.169859 + 0.985468i \(0.445669\pi\)
\(522\) 3.21411e11 0.189471
\(523\) −4.28321e11 −0.250330 −0.125165 0.992136i \(-0.539946\pi\)
−0.125165 + 0.992136i \(0.539946\pi\)
\(524\) 5.36141e11 0.310662
\(525\) 0 0
\(526\) 4.58802e10 0.0261330
\(527\) 1.23291e12 0.696279
\(528\) 1.68939e11 0.0945969
\(529\) −4.14844e11 −0.230322
\(530\) 0 0
\(531\) −1.90165e12 −1.03802
\(532\) 2.54356e12 1.37670
\(533\) −5.56536e11 −0.298690
\(534\) 1.26748e11 0.0674539
\(535\) 0 0
\(536\) 2.46447e11 0.128968
\(537\) −3.27018e11 −0.169702
\(538\) −2.14665e10 −0.0110469
\(539\) 3.96738e11 0.202467
\(540\) 0 0
\(541\) 7.96212e10 0.0399614 0.0199807 0.999800i \(-0.493640\pi\)
0.0199807 + 0.999800i \(0.493640\pi\)
\(542\) −1.77702e11 −0.0884495
\(543\) −7.97945e11 −0.393889
\(544\) 1.14483e12 0.560460
\(545\) 0 0
\(546\) −8.47349e10 −0.0408033
\(547\) 2.30263e12 1.09972 0.549860 0.835257i \(-0.314681\pi\)
0.549860 + 0.835257i \(0.314681\pi\)
\(548\) 1.59593e12 0.755966
\(549\) 1.91966e12 0.901882
\(550\) 0 0
\(551\) 1.50868e12 0.697294
\(552\) −4.50996e11 −0.206751
\(553\) 2.29475e12 1.04345
\(554\) 9.25945e11 0.417630
\(555\) 0 0
\(556\) 3.26117e12 1.44723
\(557\) −8.65592e11 −0.381035 −0.190517 0.981684i \(-0.561017\pi\)
−0.190517 + 0.981684i \(0.561017\pi\)
\(558\) −1.24814e12 −0.545015
\(559\) 3.38156e11 0.146475
\(560\) 0 0
\(561\) 3.14416e11 0.134021
\(562\) −1.41733e12 −0.599320
\(563\) 3.11714e12 1.30758 0.653791 0.756675i \(-0.273178\pi\)
0.653791 + 0.756675i \(0.273178\pi\)
\(564\) 3.35149e11 0.139470
\(565\) 0 0
\(566\) 1.27447e12 0.521984
\(567\) 2.09822e12 0.852564
\(568\) −4.23982e11 −0.170915
\(569\) 4.10441e12 1.64152 0.820759 0.571274i \(-0.193551\pi\)
0.820759 + 0.571274i \(0.193551\pi\)
\(570\) 0 0
\(571\) −1.68482e12 −0.663272 −0.331636 0.943407i \(-0.607601\pi\)
−0.331636 + 0.943407i \(0.607601\pi\)
\(572\) 4.77102e11 0.186350
\(573\) 6.87213e11 0.266315
\(574\) 1.45923e12 0.561074
\(575\) 0 0
\(576\) −2.13216e11 −0.0807084
\(577\) −2.60646e12 −0.978947 −0.489473 0.872018i \(-0.662811\pi\)
−0.489473 + 0.872018i \(0.662811\pi\)
\(578\) −8.75818e11 −0.326391
\(579\) −8.29587e11 −0.306767
\(580\) 0 0
\(581\) 1.87434e12 0.682427
\(582\) −5.81724e11 −0.210167
\(583\) 1.53650e12 0.550837
\(584\) 2.51178e12 0.893558
\(585\) 0 0
\(586\) −9.91490e11 −0.347335
\(587\) 2.50883e12 0.872167 0.436083 0.899906i \(-0.356365\pi\)
0.436083 + 0.899906i \(0.356365\pi\)
\(588\) −1.50157e11 −0.0518022
\(589\) −5.85868e12 −2.00577
\(590\) 0 0
\(591\) 7.95203e11 0.268123
\(592\) −1.17292e12 −0.392483
\(593\) 4.12741e12 1.37067 0.685333 0.728230i \(-0.259657\pi\)
0.685333 + 0.728230i \(0.259657\pi\)
\(594\) −6.64179e11 −0.218900
\(595\) 0 0
\(596\) −2.07595e12 −0.673920
\(597\) −2.81203e11 −0.0906014
\(598\) −3.56708e11 −0.114066
\(599\) 2.27898e11 0.0723302 0.0361651 0.999346i \(-0.488486\pi\)
0.0361651 + 0.999346i \(0.488486\pi\)
\(600\) 0 0
\(601\) 4.64556e12 1.45246 0.726228 0.687454i \(-0.241272\pi\)
0.726228 + 0.687454i \(0.241272\pi\)
\(602\) −8.86641e11 −0.275146
\(603\) 4.61708e11 0.142213
\(604\) 1.03003e12 0.314907
\(605\) 0 0
\(606\) −4.35379e10 −0.0131142
\(607\) −2.24855e12 −0.672285 −0.336142 0.941811i \(-0.609122\pi\)
−0.336142 + 0.941811i \(0.609122\pi\)
\(608\) −5.44012e12 −1.61451
\(609\) −4.67874e11 −0.137832
\(610\) 0 0
\(611\) 6.04823e11 0.175567
\(612\) 1.37334e12 0.395729
\(613\) −2.88188e12 −0.824336 −0.412168 0.911108i \(-0.635228\pi\)
−0.412168 + 0.911108i \(0.635228\pi\)
\(614\) −1.19600e12 −0.339604
\(615\) 0 0
\(616\) −2.85426e12 −0.798693
\(617\) −4.36400e12 −1.21227 −0.606137 0.795360i \(-0.707282\pi\)
−0.606137 + 0.795360i \(0.707282\pi\)
\(618\) −5.37826e11 −0.148318
\(619\) 3.23424e12 0.885450 0.442725 0.896658i \(-0.354012\pi\)
0.442725 + 0.896658i \(0.354012\pi\)
\(620\) 0 0
\(621\) −1.76305e12 −0.475722
\(622\) 1.77182e12 0.474638
\(623\) 2.12933e12 0.566301
\(624\) −1.15389e11 −0.0304672
\(625\) 0 0
\(626\) 1.33925e12 0.348559
\(627\) −1.49408e12 −0.386073
\(628\) −2.32764e12 −0.597170
\(629\) −2.18295e12 −0.556052
\(630\) 0 0
\(631\) −3.29382e12 −0.827118 −0.413559 0.910477i \(-0.635714\pi\)
−0.413559 + 0.910477i \(0.635714\pi\)
\(632\) −3.14267e12 −0.783559
\(633\) −1.89216e12 −0.468425
\(634\) −2.48241e12 −0.610199
\(635\) 0 0
\(636\) −5.81532e11 −0.140934
\(637\) −2.70980e11 −0.0652093
\(638\) −7.41992e11 −0.177299
\(639\) −7.94312e11 −0.188468
\(640\) 0 0
\(641\) 4.27802e12 1.00088 0.500439 0.865772i \(-0.333172\pi\)
0.500439 + 0.865772i \(0.333172\pi\)
\(642\) −6.14153e11 −0.142682
\(643\) −3.33298e12 −0.768923 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(644\) −3.32065e12 −0.760741
\(645\) 0 0
\(646\) −1.81567e12 −0.410196
\(647\) 6.18197e12 1.38694 0.693470 0.720485i \(-0.256081\pi\)
0.693470 + 0.720485i \(0.256081\pi\)
\(648\) −2.87352e12 −0.640216
\(649\) 4.39005e12 0.971333
\(650\) 0 0
\(651\) 1.81690e12 0.396476
\(652\) −3.18393e12 −0.689999
\(653\) 7.64064e12 1.64445 0.822224 0.569164i \(-0.192733\pi\)
0.822224 + 0.569164i \(0.192733\pi\)
\(654\) −9.35643e11 −0.199991
\(655\) 0 0
\(656\) 1.98712e12 0.418945
\(657\) 4.70570e12 0.985327
\(658\) −1.58584e12 −0.329794
\(659\) 1.90916e12 0.394327 0.197164 0.980371i \(-0.436827\pi\)
0.197164 + 0.980371i \(0.436827\pi\)
\(660\) 0 0
\(661\) −1.36384e12 −0.277879 −0.138940 0.990301i \(-0.544369\pi\)
−0.138940 + 0.990301i \(0.544369\pi\)
\(662\) 6.18244e11 0.125112
\(663\) −2.14752e11 −0.0431645
\(664\) −2.56692e12 −0.512454
\(665\) 0 0
\(666\) 2.20991e12 0.435252
\(667\) −1.96961e12 −0.385313
\(668\) 1.65484e12 0.321560
\(669\) −1.78645e12 −0.344805
\(670\) 0 0
\(671\) −4.43163e12 −0.843942
\(672\) 1.68709e12 0.319137
\(673\) −2.70123e12 −0.507567 −0.253784 0.967261i \(-0.581675\pi\)
−0.253784 + 0.967261i \(0.581675\pi\)
\(674\) 8.65534e11 0.161553
\(675\) 0 0
\(676\) −3.25870e11 −0.0600184
\(677\) −6.85241e12 −1.25370 −0.626851 0.779139i \(-0.715656\pi\)
−0.626851 + 0.779139i \(0.715656\pi\)
\(678\) 3.41711e11 0.0621049
\(679\) −9.77278e12 −1.76443
\(680\) 0 0
\(681\) 2.03645e12 0.362838
\(682\) 2.88138e12 0.510001
\(683\) 7.13875e12 1.25525 0.627623 0.778517i \(-0.284028\pi\)
0.627623 + 0.778517i \(0.284028\pi\)
\(684\) −6.52602e12 −1.13998
\(685\) 0 0
\(686\) −2.31144e12 −0.398496
\(687\) −3.42989e11 −0.0587455
\(688\) −1.20739e12 −0.205447
\(689\) −1.04946e12 −0.177410
\(690\) 0 0
\(691\) −3.78880e12 −0.632194 −0.316097 0.948727i \(-0.602372\pi\)
−0.316097 + 0.948727i \(0.602372\pi\)
\(692\) 4.64357e12 0.769794
\(693\) −5.34733e12 −0.880719
\(694\) −3.15300e10 −0.00515949
\(695\) 0 0
\(696\) 6.40755e11 0.103502
\(697\) 3.69827e12 0.593542
\(698\) −3.45232e12 −0.550506
\(699\) −2.44880e12 −0.387978
\(700\) 0 0
\(701\) −2.81594e12 −0.440445 −0.220223 0.975450i \(-0.570678\pi\)
−0.220223 + 0.975450i \(0.570678\pi\)
\(702\) 4.53648e11 0.0705021
\(703\) 1.03732e13 1.60182
\(704\) 4.92219e11 0.0755233
\(705\) 0 0
\(706\) −3.96597e12 −0.600797
\(707\) −7.31423e11 −0.110098
\(708\) −1.66154e12 −0.248521
\(709\) −4.28790e12 −0.637290 −0.318645 0.947874i \(-0.603228\pi\)
−0.318645 + 0.947874i \(0.603228\pi\)
\(710\) 0 0
\(711\) −5.88766e12 −0.864031
\(712\) −2.91613e12 −0.425252
\(713\) 7.64859e12 1.10835
\(714\) 5.63078e11 0.0810824
\(715\) 0 0
\(716\) 3.29750e12 0.468896
\(717\) −2.28652e12 −0.323102
\(718\) 6.11599e12 0.858829
\(719\) 8.25681e11 0.115221 0.0576106 0.998339i \(-0.481652\pi\)
0.0576106 + 0.998339i \(0.481652\pi\)
\(720\) 0 0
\(721\) −9.03530e12 −1.24518
\(722\) 5.20504e12 0.712864
\(723\) 5.74590e11 0.0782052
\(724\) 8.04611e12 1.08834
\(725\) 0 0
\(726\) −2.56088e11 −0.0342116
\(727\) −5.14290e12 −0.682815 −0.341408 0.939915i \(-0.610904\pi\)
−0.341408 + 0.939915i \(0.610904\pi\)
\(728\) 1.94951e12 0.257238
\(729\) −4.21576e12 −0.552844
\(730\) 0 0
\(731\) −2.24710e12 −0.291068
\(732\) 1.67728e12 0.215927
\(733\) −1.45460e13 −1.86113 −0.930563 0.366133i \(-0.880682\pi\)
−0.930563 + 0.366133i \(0.880682\pi\)
\(734\) 6.41273e12 0.815475
\(735\) 0 0
\(736\) 7.10215e12 0.892153
\(737\) −1.06587e12 −0.133077
\(738\) −3.74396e12 −0.464598
\(739\) −3.02351e12 −0.372916 −0.186458 0.982463i \(-0.559701\pi\)
−0.186458 + 0.982463i \(0.559701\pi\)
\(740\) 0 0
\(741\) 1.02048e12 0.124344
\(742\) 2.75167e12 0.333256
\(743\) −1.47422e13 −1.77465 −0.887325 0.461144i \(-0.847439\pi\)
−0.887325 + 0.461144i \(0.847439\pi\)
\(744\) −2.48825e12 −0.297725
\(745\) 0 0
\(746\) −4.13810e12 −0.489189
\(747\) −4.80901e12 −0.565083
\(748\) −3.17043e12 −0.370306
\(749\) −1.03176e13 −1.19787
\(750\) 0 0
\(751\) −1.40778e13 −1.61494 −0.807469 0.589910i \(-0.799163\pi\)
−0.807469 + 0.589910i \(0.799163\pi\)
\(752\) −2.15953e12 −0.246252
\(753\) −4.74040e12 −0.537326
\(754\) 5.06795e11 0.0571033
\(755\) 0 0
\(756\) 4.22308e12 0.470198
\(757\) 1.42372e13 1.57577 0.787885 0.615823i \(-0.211176\pi\)
0.787885 + 0.615823i \(0.211176\pi\)
\(758\) 6.96848e12 0.766702
\(759\) 1.95054e12 0.213337
\(760\) 0 0
\(761\) 1.00559e13 1.08690 0.543449 0.839442i \(-0.317118\pi\)
0.543449 + 0.839442i \(0.317118\pi\)
\(762\) −6.38046e11 −0.0685574
\(763\) −1.57185e13 −1.67900
\(764\) −6.92955e12 −0.735843
\(765\) 0 0
\(766\) 7.29683e12 0.765781
\(767\) −2.99849e12 −0.312841
\(768\) −1.48414e12 −0.153940
\(769\) −2.23252e12 −0.230212 −0.115106 0.993353i \(-0.536721\pi\)
−0.115106 + 0.993353i \(0.536721\pi\)
\(770\) 0 0
\(771\) 2.04613e12 0.208539
\(772\) 8.36518e12 0.847613
\(773\) −4.87460e12 −0.491057 −0.245528 0.969389i \(-0.578961\pi\)
−0.245528 + 0.969389i \(0.578961\pi\)
\(774\) 2.27486e12 0.227835
\(775\) 0 0
\(776\) 1.33838e13 1.32496
\(777\) −3.21694e12 −0.316627
\(778\) −8.81619e12 −0.862726
\(779\) −1.75739e13 −1.70982
\(780\) 0 0
\(781\) 1.83371e12 0.176360
\(782\) 2.37039e12 0.226667
\(783\) 2.50487e12 0.238154
\(784\) 9.67540e11 0.0914632
\(785\) 0 0
\(786\) −5.63995e11 −0.0527076
\(787\) 3.88782e12 0.361260 0.180630 0.983551i \(-0.442186\pi\)
0.180630 + 0.983551i \(0.442186\pi\)
\(788\) −8.01847e12 −0.740838
\(789\) 1.71356e11 0.0157418
\(790\) 0 0
\(791\) 5.74064e12 0.521394
\(792\) 7.32318e12 0.661358
\(793\) 3.02689e12 0.271811
\(794\) −5.87252e12 −0.524363
\(795\) 0 0
\(796\) 2.83552e12 0.250336
\(797\) 7.61196e12 0.668242 0.334121 0.942530i \(-0.391561\pi\)
0.334121 + 0.942530i \(0.391561\pi\)
\(798\) −2.67570e12 −0.233574
\(799\) −4.01915e12 −0.348878
\(800\) 0 0
\(801\) −5.46324e12 −0.468926
\(802\) −8.44532e12 −0.720827
\(803\) −1.08633e13 −0.922026
\(804\) 4.03412e11 0.0340484
\(805\) 0 0
\(806\) −1.96804e12 −0.164258
\(807\) −8.01745e10 −0.00665435
\(808\) 1.00169e12 0.0826762
\(809\) −9.82054e12 −0.806059 −0.403030 0.915187i \(-0.632043\pi\)
−0.403030 + 0.915187i \(0.632043\pi\)
\(810\) 0 0
\(811\) −9.15136e12 −0.742834 −0.371417 0.928466i \(-0.621128\pi\)
−0.371417 + 0.928466i \(0.621128\pi\)
\(812\) 4.71783e12 0.380838
\(813\) −6.63693e11 −0.0532795
\(814\) −5.10168e12 −0.407289
\(815\) 0 0
\(816\) 7.66777e11 0.0605429
\(817\) 1.06780e13 0.838480
\(818\) −4.11285e12 −0.321183
\(819\) 3.65233e12 0.283656
\(820\) 0 0
\(821\) −2.42674e13 −1.86415 −0.932073 0.362272i \(-0.882001\pi\)
−0.932073 + 0.362272i \(0.882001\pi\)
\(822\) −1.67885e12 −0.128259
\(823\) −6.09583e12 −0.463163 −0.231581 0.972816i \(-0.574390\pi\)
−0.231581 + 0.972816i \(0.574390\pi\)
\(824\) 1.23739e13 0.935046
\(825\) 0 0
\(826\) 7.86201e12 0.587657
\(827\) 1.05553e13 0.784684 0.392342 0.919819i \(-0.371665\pi\)
0.392342 + 0.919819i \(0.371665\pi\)
\(828\) 8.51981e12 0.629931
\(829\) 3.16763e12 0.232937 0.116469 0.993194i \(-0.462843\pi\)
0.116469 + 0.993194i \(0.462843\pi\)
\(830\) 0 0
\(831\) 3.45828e12 0.251568
\(832\) −3.36195e11 −0.0243241
\(833\) 1.80071e12 0.129581
\(834\) −3.43059e12 −0.245540
\(835\) 0 0
\(836\) 1.50656e13 1.06674
\(837\) −9.72718e12 −0.685050
\(838\) 3.54015e12 0.247984
\(839\) −1.76898e13 −1.23252 −0.616260 0.787543i \(-0.711353\pi\)
−0.616260 + 0.787543i \(0.711353\pi\)
\(840\) 0 0
\(841\) −1.17088e13 −0.807107
\(842\) −8.66466e12 −0.594083
\(843\) −5.29355e12 −0.361013
\(844\) 1.90796e13 1.29428
\(845\) 0 0
\(846\) 4.06880e12 0.273086
\(847\) −4.30219e12 −0.287220
\(848\) 3.74711e12 0.248837
\(849\) 4.75999e12 0.314428
\(850\) 0 0
\(851\) −1.35423e13 −0.885137
\(852\) −6.94020e11 −0.0451226
\(853\) −9.95608e12 −0.643899 −0.321950 0.946757i \(-0.604338\pi\)
−0.321950 + 0.946757i \(0.604338\pi\)
\(854\) −7.93648e12 −0.510585
\(855\) 0 0
\(856\) 1.41299e13 0.899515
\(857\) −2.30894e13 −1.46217 −0.731087 0.682285i \(-0.760986\pi\)
−0.731087 + 0.682285i \(0.760986\pi\)
\(858\) −5.01889e11 −0.0316166
\(859\) 5.77387e12 0.361824 0.180912 0.983499i \(-0.442095\pi\)
0.180912 + 0.983499i \(0.442095\pi\)
\(860\) 0 0
\(861\) 5.45003e12 0.337975
\(862\) 1.31347e13 0.810284
\(863\) 1.14444e13 0.702338 0.351169 0.936312i \(-0.385784\pi\)
0.351169 + 0.936312i \(0.385784\pi\)
\(864\) −9.03224e12 −0.551422
\(865\) 0 0
\(866\) 9.73873e12 0.588399
\(867\) −3.27106e12 −0.196609
\(868\) −1.83208e13 −1.09548
\(869\) 1.35919e13 0.808522
\(870\) 0 0
\(871\) 7.28014e11 0.0428606
\(872\) 2.15265e13 1.26081
\(873\) 2.50741e13 1.46104
\(874\) −1.12639e13 −0.652960
\(875\) 0 0
\(876\) 4.11155e12 0.235905
\(877\) 9.22439e12 0.526550 0.263275 0.964721i \(-0.415197\pi\)
0.263275 + 0.964721i \(0.415197\pi\)
\(878\) 8.67654e12 0.492744
\(879\) −3.70308e12 −0.209225
\(880\) 0 0
\(881\) −3.40228e13 −1.90274 −0.951369 0.308055i \(-0.900322\pi\)
−0.951369 + 0.308055i \(0.900322\pi\)
\(882\) −1.82295e12 −0.101430
\(883\) 2.48858e13 1.37761 0.688807 0.724945i \(-0.258135\pi\)
0.688807 + 0.724945i \(0.258135\pi\)
\(884\) 2.16546e12 0.119266
\(885\) 0 0
\(886\) −8.72543e12 −0.475702
\(887\) 6.06525e12 0.328997 0.164499 0.986377i \(-0.447399\pi\)
0.164499 + 0.986377i \(0.447399\pi\)
\(888\) 4.40561e12 0.237765
\(889\) −1.07190e13 −0.575565
\(890\) 0 0
\(891\) 1.24278e13 0.660612
\(892\) 1.80138e13 0.952714
\(893\) 1.90987e13 1.00501
\(894\) 2.18380e12 0.114339
\(895\) 0 0
\(896\) −2.09219e13 −1.08447
\(897\) −1.33226e12 −0.0687103
\(898\) 1.51619e13 0.778053
\(899\) −1.08668e13 −0.554859
\(900\) 0 0
\(901\) 6.97382e12 0.352541
\(902\) 8.64309e12 0.434750
\(903\) −3.31149e12 −0.165740
\(904\) −7.86182e12 −0.391530
\(905\) 0 0
\(906\) −1.08354e12 −0.0534278
\(907\) 2.49998e13 1.22660 0.613301 0.789850i \(-0.289841\pi\)
0.613301 + 0.789850i \(0.289841\pi\)
\(908\) −2.05347e13 −1.00254
\(909\) 1.87662e12 0.0911670
\(910\) 0 0
\(911\) −2.82447e13 −1.35864 −0.679319 0.733843i \(-0.737725\pi\)
−0.679319 + 0.733843i \(0.737725\pi\)
\(912\) −3.64366e12 −0.174406
\(913\) 1.11018e13 0.528780
\(914\) −1.08476e12 −0.0514135
\(915\) 0 0
\(916\) 3.45855e12 0.162317
\(917\) −9.47493e12 −0.442501
\(918\) −3.01457e12 −0.140098
\(919\) 2.32324e13 1.07442 0.537210 0.843448i \(-0.319478\pi\)
0.537210 + 0.843448i \(0.319478\pi\)
\(920\) 0 0
\(921\) −4.46689e12 −0.204568
\(922\) −7.43930e12 −0.339034
\(923\) −1.25246e12 −0.0568009
\(924\) −4.67216e12 −0.210860
\(925\) 0 0
\(926\) −4.30769e11 −0.0192529
\(927\) 2.31819e13 1.03108
\(928\) −1.00904e13 −0.446626
\(929\) 3.02630e13 1.33303 0.666517 0.745490i \(-0.267785\pi\)
0.666517 + 0.745490i \(0.267785\pi\)
\(930\) 0 0
\(931\) −8.55682e12 −0.373283
\(932\) 2.46926e13 1.07200
\(933\) 6.61751e12 0.285909
\(934\) 1.69018e12 0.0726728
\(935\) 0 0
\(936\) −5.00188e12 −0.213006
\(937\) −1.38314e13 −0.586191 −0.293096 0.956083i \(-0.594685\pi\)
−0.293096 + 0.956083i \(0.594685\pi\)
\(938\) −1.90884e12 −0.0805115
\(939\) 5.00191e12 0.209962
\(940\) 0 0
\(941\) −1.09092e13 −0.453566 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(942\) 2.44857e12 0.101317
\(943\) 2.29430e13 0.944815
\(944\) 1.07062e13 0.438794
\(945\) 0 0
\(946\) −5.25162e12 −0.213198
\(947\) −2.97826e13 −1.20334 −0.601668 0.798746i \(-0.705497\pi\)
−0.601668 + 0.798746i \(0.705497\pi\)
\(948\) −5.14427e12 −0.206864
\(949\) 7.41987e12 0.296960
\(950\) 0 0
\(951\) −9.27146e12 −0.367567
\(952\) −1.29549e13 −0.511171
\(953\) −1.65043e13 −0.648155 −0.324078 0.946030i \(-0.605054\pi\)
−0.324078 + 0.946030i \(0.605054\pi\)
\(954\) −7.05996e12 −0.275953
\(955\) 0 0
\(956\) 2.30563e13 0.892748
\(957\) −2.77124e12 −0.106800
\(958\) 1.92892e13 0.739893
\(959\) −2.82041e13 −1.07678
\(960\) 0 0
\(961\) 1.57594e13 0.596053
\(962\) 3.48455e12 0.131177
\(963\) 2.64718e13 0.991895
\(964\) −5.79391e12 −0.216085
\(965\) 0 0
\(966\) 3.49316e12 0.129069
\(967\) −2.09401e13 −0.770122 −0.385061 0.922891i \(-0.625820\pi\)
−0.385061 + 0.922891i \(0.625820\pi\)
\(968\) 5.89186e12 0.215682
\(969\) −6.78129e12 −0.247090
\(970\) 0 0
\(971\) 1.50360e13 0.542806 0.271403 0.962466i \(-0.412512\pi\)
0.271403 + 0.962466i \(0.412512\pi\)
\(972\) −1.64777e13 −0.592105
\(973\) −5.76329e13 −2.06140
\(974\) −2.74003e11 −0.00975527
\(975\) 0 0
\(976\) −1.08076e13 −0.381245
\(977\) −3.10616e13 −1.09068 −0.545341 0.838214i \(-0.683600\pi\)
−0.545341 + 0.838214i \(0.683600\pi\)
\(978\) 3.34934e12 0.117067
\(979\) 1.26121e13 0.438800
\(980\) 0 0
\(981\) 4.03290e13 1.39030
\(982\) 3.42587e12 0.117563
\(983\) −6.35006e12 −0.216914 −0.108457 0.994101i \(-0.534591\pi\)
−0.108457 + 0.994101i \(0.534591\pi\)
\(984\) −7.46384e12 −0.253796
\(985\) 0 0
\(986\) −3.36774e12 −0.113473
\(987\) −5.92290e12 −0.198659
\(988\) −1.02901e13 −0.343569
\(989\) −1.39403e13 −0.463330
\(990\) 0 0
\(991\) −6.46977e12 −0.213087 −0.106544 0.994308i \(-0.533978\pi\)
−0.106544 + 0.994308i \(0.533978\pi\)
\(992\) 3.91842e13 1.28472
\(993\) 2.30906e12 0.0753639
\(994\) 3.28393e12 0.106698
\(995\) 0 0
\(996\) −4.20181e12 −0.135291
\(997\) 1.35531e13 0.434421 0.217210 0.976125i \(-0.430304\pi\)
0.217210 + 0.976125i \(0.430304\pi\)
\(998\) 2.95445e12 0.0942733
\(999\) 1.72226e13 0.547085
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.h.1.10 yes 17
5.4 even 2 325.10.a.g.1.8 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.10.a.g.1.8 17 5.4 even 2
325.10.a.h.1.10 yes 17 1.1 even 1 trivial