Properties

Label 325.10.a.h.1.14
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 6453 x^{15} - 11965 x^{14} + 16673200 x^{13} + 68278926 x^{12} - 22023799708 x^{11} + \cdots + 22\!\cdots\!80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-30.4531\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.4531 q^{2} -140.165 q^{3} +541.204 q^{4} -4548.78 q^{6} -1977.44 q^{7} +947.752 q^{8} -36.8521 q^{9} +45933.0 q^{11} -75857.7 q^{12} -28561.0 q^{13} -64174.0 q^{14} -246339. q^{16} +112081. q^{17} -1195.97 q^{18} +577238. q^{19} +277167. q^{21} +1.49067e6 q^{22} +1.93424e6 q^{23} -132841. q^{24} -926893. q^{26} +2.76403e6 q^{27} -1.07020e6 q^{28} -163389. q^{29} +1.17335e6 q^{31} -8.47971e6 q^{32} -6.43818e6 q^{33} +3.63739e6 q^{34} -19944.5 q^{36} -1.66402e7 q^{37} +1.87332e7 q^{38} +4.00324e6 q^{39} -2.70676e7 q^{41} +8.99493e6 q^{42} +2.49967e7 q^{43} +2.48591e7 q^{44} +6.27720e7 q^{46} -4.14926e7 q^{47} +3.45280e7 q^{48} -3.64433e7 q^{49} -1.57098e7 q^{51} -1.54573e7 q^{52} +5.20775e7 q^{53} +8.97013e7 q^{54} -1.87412e6 q^{56} -8.09084e7 q^{57} -5.30248e6 q^{58} -3.12427e7 q^{59} +5.72870e7 q^{61} +3.80790e7 q^{62} +72872.8 q^{63} -1.49067e8 q^{64} -2.08939e8 q^{66} +1.62760e8 q^{67} +6.06588e7 q^{68} -2.71112e8 q^{69} -1.52286e8 q^{71} -34926.7 q^{72} +1.46423e8 q^{73} -5.40025e8 q^{74} +3.12403e8 q^{76} -9.08296e7 q^{77} +1.29918e8 q^{78} -2.80971e8 q^{79} -3.86694e8 q^{81} -8.78429e8 q^{82} -1.67132e7 q^{83} +1.50004e8 q^{84} +8.11221e8 q^{86} +2.29014e7 q^{87} +4.35331e7 q^{88} -3.31895e8 q^{89} +5.64776e7 q^{91} +1.04682e9 q^{92} -1.64463e8 q^{93} -1.34656e9 q^{94} +1.18856e9 q^{96} -1.22720e9 q^{97} -1.18270e9 q^{98} -1.69273e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 33 q^{2} - 73 q^{3} + 4267 q^{4} - 1103 q^{6} + 10670 q^{7} - 11481 q^{8} + 47590 q^{9} - 130917 q^{11} - 32239 q^{12} - 485537 q^{13} - 292206 q^{14} + 1064251 q^{16} + 193953 q^{17} + 2026286 q^{18}+ \cdots - 3023832936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.4531 1.43424 0.717119 0.696951i \(-0.245460\pi\)
0.717119 + 0.696951i \(0.245460\pi\)
\(3\) −140.165 −0.999063 −0.499532 0.866296i \(-0.666495\pi\)
−0.499532 + 0.866296i \(0.666495\pi\)
\(4\) 541.204 1.05704
\(5\) 0 0
\(6\) −4548.78 −1.43289
\(7\) −1977.44 −0.311287 −0.155644 0.987813i \(-0.549745\pi\)
−0.155644 + 0.987813i \(0.549745\pi\)
\(8\) 947.752 0.0818069
\(9\) −36.8521 −0.00187228
\(10\) 0 0
\(11\) 45933.0 0.945927 0.472964 0.881082i \(-0.343184\pi\)
0.472964 + 0.881082i \(0.343184\pi\)
\(12\) −75857.7 −1.05605
\(13\) −28561.0 −0.277350
\(14\) −64174.0 −0.446460
\(15\) 0 0
\(16\) −246339. −0.939708
\(17\) 112081. 0.325471 0.162736 0.986670i \(-0.447968\pi\)
0.162736 + 0.986670i \(0.447968\pi\)
\(18\) −1195.97 −0.00268530
\(19\) 577238. 1.01616 0.508082 0.861309i \(-0.330355\pi\)
0.508082 + 0.861309i \(0.330355\pi\)
\(20\) 0 0
\(21\) 277167. 0.310996
\(22\) 1.49067e6 1.35668
\(23\) 1.93424e6 1.44123 0.720617 0.693334i \(-0.243859\pi\)
0.720617 + 0.693334i \(0.243859\pi\)
\(24\) −132841. −0.0817302
\(25\) 0 0
\(26\) −926893. −0.397786
\(27\) 2.76403e6 1.00093
\(28\) −1.07020e6 −0.329043
\(29\) −163389. −0.0428975 −0.0214487 0.999770i \(-0.506828\pi\)
−0.0214487 + 0.999770i \(0.506828\pi\)
\(30\) 0 0
\(31\) 1.17335e6 0.228192 0.114096 0.993470i \(-0.463603\pi\)
0.114096 + 0.993470i \(0.463603\pi\)
\(32\) −8.47971e6 −1.42957
\(33\) −6.43818e6 −0.945041
\(34\) 3.63739e6 0.466804
\(35\) 0 0
\(36\) −19944.5 −0.00197907
\(37\) −1.66402e7 −1.45965 −0.729827 0.683632i \(-0.760399\pi\)
−0.729827 + 0.683632i \(0.760399\pi\)
\(38\) 1.87332e7 1.45742
\(39\) 4.00324e6 0.277090
\(40\) 0 0
\(41\) −2.70676e7 −1.49597 −0.747985 0.663715i \(-0.768979\pi\)
−0.747985 + 0.663715i \(0.768979\pi\)
\(42\) 8.99493e6 0.446042
\(43\) 2.49967e7 1.11500 0.557500 0.830177i \(-0.311761\pi\)
0.557500 + 0.830177i \(0.311761\pi\)
\(44\) 2.48591e7 0.999881
\(45\) 0 0
\(46\) 6.27720e7 2.06707
\(47\) −4.14926e7 −1.24031 −0.620155 0.784479i \(-0.712930\pi\)
−0.620155 + 0.784479i \(0.712930\pi\)
\(48\) 3.45280e7 0.938828
\(49\) −3.64433e7 −0.903100
\(50\) 0 0
\(51\) −1.57098e7 −0.325167
\(52\) −1.54573e7 −0.293170
\(53\) 5.20775e7 0.906585 0.453292 0.891362i \(-0.350249\pi\)
0.453292 + 0.891362i \(0.350249\pi\)
\(54\) 8.97013e7 1.43558
\(55\) 0 0
\(56\) −1.87412e6 −0.0254654
\(57\) −8.09084e7 −1.01521
\(58\) −5.30248e6 −0.0615252
\(59\) −3.12427e7 −0.335672 −0.167836 0.985815i \(-0.553678\pi\)
−0.167836 + 0.985815i \(0.553678\pi\)
\(60\) 0 0
\(61\) 5.72870e7 0.529751 0.264876 0.964283i \(-0.414669\pi\)
0.264876 + 0.964283i \(0.414669\pi\)
\(62\) 3.80790e7 0.327282
\(63\) 72872.8 0.000582818 0
\(64\) −1.49067e8 −1.11064
\(65\) 0 0
\(66\) −2.08939e8 −1.35541
\(67\) 1.62760e8 0.986759 0.493380 0.869814i \(-0.335761\pi\)
0.493380 + 0.869814i \(0.335761\pi\)
\(68\) 6.06588e7 0.344036
\(69\) −2.71112e8 −1.43988
\(70\) 0 0
\(71\) −1.52286e8 −0.711207 −0.355604 0.934637i \(-0.615725\pi\)
−0.355604 + 0.934637i \(0.615725\pi\)
\(72\) −34926.7 −0.000153166 0
\(73\) 1.46423e8 0.603472 0.301736 0.953392i \(-0.402434\pi\)
0.301736 + 0.953392i \(0.402434\pi\)
\(74\) −5.40025e8 −2.09349
\(75\) 0 0
\(76\) 3.12403e8 1.07412
\(77\) −9.08296e7 −0.294455
\(78\) 1.29918e8 0.397413
\(79\) −2.80971e8 −0.811595 −0.405797 0.913963i \(-0.633006\pi\)
−0.405797 + 0.913963i \(0.633006\pi\)
\(80\) 0 0
\(81\) −3.86694e8 −0.998124
\(82\) −8.78429e8 −2.14558
\(83\) −1.67132e7 −0.0386552 −0.0193276 0.999813i \(-0.506153\pi\)
−0.0193276 + 0.999813i \(0.506153\pi\)
\(84\) 1.50004e8 0.328735
\(85\) 0 0
\(86\) 8.11221e8 1.59918
\(87\) 2.29014e7 0.0428573
\(88\) 4.35331e7 0.0773833
\(89\) −3.31895e8 −0.560719 −0.280359 0.959895i \(-0.590454\pi\)
−0.280359 + 0.959895i \(0.590454\pi\)
\(90\) 0 0
\(91\) 5.64776e7 0.0863356
\(92\) 1.04682e9 1.52344
\(93\) −1.64463e8 −0.227979
\(94\) −1.34656e9 −1.77890
\(95\) 0 0
\(96\) 1.18856e9 1.42823
\(97\) −1.22720e9 −1.40748 −0.703738 0.710459i \(-0.748487\pi\)
−0.703738 + 0.710459i \(0.748487\pi\)
\(98\) −1.18270e9 −1.29526
\(99\) −1.69273e6 −0.00177104
\(100\) 0 0
\(101\) −7.86930e8 −0.752471 −0.376236 0.926524i \(-0.622782\pi\)
−0.376236 + 0.926524i \(0.622782\pi\)
\(102\) −5.09833e8 −0.466366
\(103\) 1.27000e9 1.11182 0.555912 0.831241i \(-0.312369\pi\)
0.555912 + 0.831241i \(0.312369\pi\)
\(104\) −2.70687e7 −0.0226891
\(105\) 0 0
\(106\) 1.69008e9 1.30026
\(107\) −6.30085e8 −0.464699 −0.232350 0.972632i \(-0.574641\pi\)
−0.232350 + 0.972632i \(0.574641\pi\)
\(108\) 1.49590e9 1.05803
\(109\) 6.31111e8 0.428239 0.214119 0.976807i \(-0.431312\pi\)
0.214119 + 0.976807i \(0.431312\pi\)
\(110\) 0 0
\(111\) 2.33236e9 1.45829
\(112\) 4.87120e8 0.292519
\(113\) −3.41718e9 −1.97158 −0.985792 0.167973i \(-0.946278\pi\)
−0.985792 + 0.167973i \(0.946278\pi\)
\(114\) −2.62573e9 −1.45606
\(115\) 0 0
\(116\) −8.84267e7 −0.0453443
\(117\) 1.05253e6 0.000519278 0
\(118\) −1.01392e9 −0.481433
\(119\) −2.21634e8 −0.101315
\(120\) 0 0
\(121\) −2.48108e8 −0.105222
\(122\) 1.85914e9 0.759790
\(123\) 3.79393e9 1.49457
\(124\) 6.35023e8 0.241208
\(125\) 0 0
\(126\) 2.36495e6 0.000835900 0
\(127\) −2.94756e9 −1.00542 −0.502709 0.864456i \(-0.667663\pi\)
−0.502709 + 0.864456i \(0.667663\pi\)
\(128\) −4.96087e8 −0.163348
\(129\) −3.50366e9 −1.11396
\(130\) 0 0
\(131\) 4.81398e9 1.42818 0.714090 0.700054i \(-0.246841\pi\)
0.714090 + 0.700054i \(0.246841\pi\)
\(132\) −3.48437e9 −0.998945
\(133\) −1.14145e9 −0.316319
\(134\) 5.28207e9 1.41525
\(135\) 0 0
\(136\) 1.06225e8 0.0266258
\(137\) −5.35617e9 −1.29901 −0.649504 0.760358i \(-0.725024\pi\)
−0.649504 + 0.760358i \(0.725024\pi\)
\(138\) −8.79841e9 −2.06514
\(139\) −9.24945e8 −0.210160 −0.105080 0.994464i \(-0.533510\pi\)
−0.105080 + 0.994464i \(0.533510\pi\)
\(140\) 0 0
\(141\) 5.81580e9 1.23915
\(142\) −4.94214e9 −1.02004
\(143\) −1.31189e9 −0.262353
\(144\) 9.07811e6 0.00175940
\(145\) 0 0
\(146\) 4.75188e9 0.865522
\(147\) 5.10807e9 0.902254
\(148\) −9.00571e9 −1.54291
\(149\) −4.25279e9 −0.706864 −0.353432 0.935460i \(-0.614985\pi\)
−0.353432 + 0.935460i \(0.614985\pi\)
\(150\) 0 0
\(151\) −5.14018e9 −0.804603 −0.402302 0.915507i \(-0.631790\pi\)
−0.402302 + 0.915507i \(0.631790\pi\)
\(152\) 5.47079e8 0.0831292
\(153\) −4.13044e6 −0.000609375 0
\(154\) −2.94770e9 −0.422319
\(155\) 0 0
\(156\) 2.16657e9 0.292895
\(157\) −1.11024e10 −1.45837 −0.729183 0.684319i \(-0.760100\pi\)
−0.729183 + 0.684319i \(0.760100\pi\)
\(158\) −9.11837e9 −1.16402
\(159\) −7.29942e9 −0.905736
\(160\) 0 0
\(161\) −3.82483e9 −0.448638
\(162\) −1.25494e10 −1.43155
\(163\) 3.94647e9 0.437890 0.218945 0.975737i \(-0.429739\pi\)
0.218945 + 0.975737i \(0.429739\pi\)
\(164\) −1.46491e10 −1.58130
\(165\) 0 0
\(166\) −5.42395e8 −0.0554408
\(167\) 3.16550e9 0.314933 0.157466 0.987524i \(-0.449667\pi\)
0.157466 + 0.987524i \(0.449667\pi\)
\(168\) 2.62686e8 0.0254416
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −2.12725e7 −0.00190255
\(172\) 1.35283e10 1.17860
\(173\) 1.43846e8 0.0122093 0.00610465 0.999981i \(-0.498057\pi\)
0.00610465 + 0.999981i \(0.498057\pi\)
\(174\) 7.43221e8 0.0614676
\(175\) 0 0
\(176\) −1.13151e10 −0.888895
\(177\) 4.37913e9 0.335357
\(178\) −1.07710e10 −0.804204
\(179\) −1.79850e9 −0.130940 −0.0654699 0.997855i \(-0.520855\pi\)
−0.0654699 + 0.997855i \(0.520855\pi\)
\(180\) 0 0
\(181\) −2.44006e10 −1.68984 −0.844921 0.534891i \(-0.820353\pi\)
−0.844921 + 0.534891i \(0.820353\pi\)
\(182\) 1.83287e9 0.123826
\(183\) −8.02962e9 −0.529255
\(184\) 1.83318e9 0.117903
\(185\) 0 0
\(186\) −5.33733e9 −0.326976
\(187\) 5.14823e9 0.307872
\(188\) −2.24560e10 −1.31106
\(189\) −5.46569e9 −0.311578
\(190\) 0 0
\(191\) −2.12939e10 −1.15772 −0.578862 0.815425i \(-0.696503\pi\)
−0.578862 + 0.815425i \(0.696503\pi\)
\(192\) 2.08940e10 1.10960
\(193\) −1.08184e10 −0.561251 −0.280625 0.959817i \(-0.590542\pi\)
−0.280625 + 0.959817i \(0.590542\pi\)
\(194\) −3.98263e10 −2.01866
\(195\) 0 0
\(196\) −1.97233e10 −0.954612
\(197\) −1.12826e9 −0.0533718 −0.0266859 0.999644i \(-0.508495\pi\)
−0.0266859 + 0.999644i \(0.508495\pi\)
\(198\) −5.49343e7 −0.00254010
\(199\) −9.79834e9 −0.442908 −0.221454 0.975171i \(-0.571080\pi\)
−0.221454 + 0.975171i \(0.571080\pi\)
\(200\) 0 0
\(201\) −2.28132e10 −0.985835
\(202\) −2.55383e10 −1.07922
\(203\) 3.23092e8 0.0133534
\(204\) −8.50222e9 −0.343714
\(205\) 0 0
\(206\) 4.12154e10 1.59462
\(207\) −7.12807e7 −0.00269840
\(208\) 7.03568e9 0.260628
\(209\) 2.65143e10 0.961217
\(210\) 0 0
\(211\) 4.90016e9 0.170192 0.0850960 0.996373i \(-0.472880\pi\)
0.0850960 + 0.996373i \(0.472880\pi\)
\(212\) 2.81845e10 0.958295
\(213\) 2.13451e10 0.710541
\(214\) −2.04482e10 −0.666490
\(215\) 0 0
\(216\) 2.61961e9 0.0818833
\(217\) −2.32023e9 −0.0710334
\(218\) 2.04815e10 0.614197
\(219\) −2.05234e10 −0.602906
\(220\) 0 0
\(221\) −3.20115e9 −0.0902695
\(222\) 7.56924e10 2.09153
\(223\) 2.00710e10 0.543498 0.271749 0.962368i \(-0.412398\pi\)
0.271749 + 0.962368i \(0.412398\pi\)
\(224\) 1.67681e10 0.445008
\(225\) 0 0
\(226\) −1.10898e11 −2.82772
\(227\) 4.85778e10 1.21429 0.607144 0.794592i \(-0.292315\pi\)
0.607144 + 0.794592i \(0.292315\pi\)
\(228\) −4.37879e10 −1.07312
\(229\) −1.58719e10 −0.381391 −0.190696 0.981649i \(-0.561074\pi\)
−0.190696 + 0.981649i \(0.561074\pi\)
\(230\) 0 0
\(231\) 1.27311e10 0.294179
\(232\) −1.54852e8 −0.00350931
\(233\) 2.95883e10 0.657685 0.328843 0.944385i \(-0.393341\pi\)
0.328843 + 0.944385i \(0.393341\pi\)
\(234\) 3.41580e7 0.000744768 0
\(235\) 0 0
\(236\) −1.69087e10 −0.354818
\(237\) 3.93822e10 0.810834
\(238\) −7.19270e9 −0.145310
\(239\) 2.67710e10 0.530730 0.265365 0.964148i \(-0.414508\pi\)
0.265365 + 0.964148i \(0.414508\pi\)
\(240\) 0 0
\(241\) −7.76202e9 −0.148217 −0.0741085 0.997250i \(-0.523611\pi\)
−0.0741085 + 0.997250i \(0.523611\pi\)
\(242\) −8.05187e9 −0.150913
\(243\) −2.03530e8 −0.00374456
\(244\) 3.10040e10 0.559968
\(245\) 0 0
\(246\) 1.23125e11 2.14357
\(247\) −1.64865e10 −0.281833
\(248\) 1.11205e9 0.0186677
\(249\) 2.34260e9 0.0386190
\(250\) 0 0
\(251\) −1.89491e10 −0.301341 −0.150670 0.988584i \(-0.548143\pi\)
−0.150670 + 0.988584i \(0.548143\pi\)
\(252\) 3.94390e7 0.000616061 0
\(253\) 8.88453e10 1.36330
\(254\) −9.56576e10 −1.44201
\(255\) 0 0
\(256\) 6.02229e10 0.876359
\(257\) 8.59419e10 1.22887 0.614435 0.788967i \(-0.289384\pi\)
0.614435 + 0.788967i \(0.289384\pi\)
\(258\) −1.13705e11 −1.59768
\(259\) 3.29049e10 0.454372
\(260\) 0 0
\(261\) 6.02123e6 8.03162e−5 0
\(262\) 1.56228e11 2.04835
\(263\) 4.87750e10 0.628631 0.314316 0.949319i \(-0.398225\pi\)
0.314316 + 0.949319i \(0.398225\pi\)
\(264\) −6.10180e9 −0.0773108
\(265\) 0 0
\(266\) −3.70437e10 −0.453677
\(267\) 4.65199e10 0.560194
\(268\) 8.80863e10 1.04304
\(269\) 6.64637e10 0.773925 0.386963 0.922095i \(-0.373524\pi\)
0.386963 + 0.922095i \(0.373524\pi\)
\(270\) 0 0
\(271\) 7.94709e10 0.895048 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(272\) −2.76100e10 −0.305848
\(273\) −7.91617e9 −0.0862547
\(274\) −1.73824e11 −1.86309
\(275\) 0 0
\(276\) −1.46727e11 −1.52201
\(277\) 1.93237e11 1.97211 0.986054 0.166426i \(-0.0532226\pi\)
0.986054 + 0.166426i \(0.0532226\pi\)
\(278\) −3.00173e10 −0.301419
\(279\) −4.32406e7 −0.000427241 0
\(280\) 0 0
\(281\) −2.02998e11 −1.94229 −0.971145 0.238491i \(-0.923347\pi\)
−0.971145 + 0.238491i \(0.923347\pi\)
\(282\) 1.88741e11 1.77723
\(283\) −1.39960e11 −1.29707 −0.648537 0.761183i \(-0.724619\pi\)
−0.648537 + 0.761183i \(0.724619\pi\)
\(284\) −8.24175e10 −0.751773
\(285\) 0 0
\(286\) −4.25750e10 −0.376277
\(287\) 5.35246e10 0.465677
\(288\) 3.12495e8 0.00267656
\(289\) −1.06026e11 −0.894068
\(290\) 0 0
\(291\) 1.72010e11 1.40616
\(292\) 7.92447e10 0.637893
\(293\) −5.84561e10 −0.463367 −0.231684 0.972791i \(-0.574423\pi\)
−0.231684 + 0.972791i \(0.574423\pi\)
\(294\) 1.65773e11 1.29405
\(295\) 0 0
\(296\) −1.57707e10 −0.119410
\(297\) 1.26960e11 0.946811
\(298\) −1.38016e11 −1.01381
\(299\) −5.52437e10 −0.399726
\(300\) 0 0
\(301\) −4.94294e10 −0.347086
\(302\) −1.66815e11 −1.15399
\(303\) 1.10300e11 0.751766
\(304\) −1.42196e11 −0.954898
\(305\) 0 0
\(306\) −1.34045e8 −0.000873988 0
\(307\) −4.39290e10 −0.282246 −0.141123 0.989992i \(-0.545071\pi\)
−0.141123 + 0.989992i \(0.545071\pi\)
\(308\) −4.91573e10 −0.311251
\(309\) −1.78009e11 −1.11078
\(310\) 0 0
\(311\) −1.35107e11 −0.818948 −0.409474 0.912322i \(-0.634288\pi\)
−0.409474 + 0.912322i \(0.634288\pi\)
\(312\) 3.79408e9 0.0226679
\(313\) −2.34571e11 −1.38141 −0.690707 0.723135i \(-0.742701\pi\)
−0.690707 + 0.723135i \(0.742701\pi\)
\(314\) −3.60306e11 −2.09164
\(315\) 0 0
\(316\) −1.52062e11 −0.857887
\(317\) 2.09782e11 1.16681 0.583406 0.812180i \(-0.301720\pi\)
0.583406 + 0.812180i \(0.301720\pi\)
\(318\) −2.36889e11 −1.29904
\(319\) −7.50495e9 −0.0405779
\(320\) 0 0
\(321\) 8.83157e10 0.464264
\(322\) −1.24128e11 −0.643453
\(323\) 6.46976e10 0.330732
\(324\) −2.09280e11 −1.05506
\(325\) 0 0
\(326\) 1.28075e11 0.628038
\(327\) −8.84594e10 −0.427838
\(328\) −2.56534e10 −0.122381
\(329\) 8.20490e10 0.386093
\(330\) 0 0
\(331\) −3.35795e10 −0.153762 −0.0768809 0.997040i \(-0.524496\pi\)
−0.0768809 + 0.997040i \(0.524496\pi\)
\(332\) −9.04525e9 −0.0408601
\(333\) 6.13225e8 0.00273288
\(334\) 1.02730e11 0.451688
\(335\) 0 0
\(336\) −6.82770e10 −0.292245
\(337\) −4.08385e11 −1.72479 −0.862394 0.506238i \(-0.831036\pi\)
−0.862394 + 0.506238i \(0.831036\pi\)
\(338\) 2.64730e10 0.110326
\(339\) 4.78968e11 1.96974
\(340\) 0 0
\(341\) 5.38956e10 0.215853
\(342\) −6.90357e8 −0.00272870
\(343\) 1.51861e11 0.592411
\(344\) 2.36907e10 0.0912147
\(345\) 0 0
\(346\) 4.66826e9 0.0175111
\(347\) 3.18055e11 1.17766 0.588830 0.808257i \(-0.299589\pi\)
0.588830 + 0.808257i \(0.299589\pi\)
\(348\) 1.23943e10 0.0453018
\(349\) −4.42266e10 −0.159577 −0.0797883 0.996812i \(-0.525424\pi\)
−0.0797883 + 0.996812i \(0.525424\pi\)
\(350\) 0 0
\(351\) −7.89434e10 −0.277609
\(352\) −3.89498e11 −1.35227
\(353\) 1.20263e11 0.412237 0.206119 0.978527i \(-0.433917\pi\)
0.206119 + 0.978527i \(0.433917\pi\)
\(354\) 1.42116e11 0.480982
\(355\) 0 0
\(356\) −1.79623e11 −0.592701
\(357\) 3.10652e10 0.101220
\(358\) −5.83669e10 −0.187799
\(359\) −4.49351e11 −1.42778 −0.713889 0.700259i \(-0.753068\pi\)
−0.713889 + 0.700259i \(0.753068\pi\)
\(360\) 0 0
\(361\) 1.05162e10 0.0325894
\(362\) −7.91874e11 −2.42364
\(363\) 3.47760e10 0.105123
\(364\) 3.05659e10 0.0912601
\(365\) 0 0
\(366\) −2.60586e11 −0.759078
\(367\) −1.09613e11 −0.315403 −0.157702 0.987487i \(-0.550408\pi\)
−0.157702 + 0.987487i \(0.550408\pi\)
\(368\) −4.76477e11 −1.35434
\(369\) 9.97500e8 0.00280088
\(370\) 0 0
\(371\) −1.02980e11 −0.282208
\(372\) −8.90079e10 −0.240982
\(373\) 5.85392e11 1.56588 0.782938 0.622100i \(-0.213720\pi\)
0.782938 + 0.622100i \(0.213720\pi\)
\(374\) 1.67076e11 0.441562
\(375\) 0 0
\(376\) −3.93247e10 −0.101466
\(377\) 4.66655e9 0.0118976
\(378\) −1.77379e11 −0.446877
\(379\) 4.33758e11 1.07987 0.539934 0.841707i \(-0.318449\pi\)
0.539934 + 0.841707i \(0.318449\pi\)
\(380\) 0 0
\(381\) 4.13144e11 1.00448
\(382\) −6.91053e11 −1.66045
\(383\) 1.91121e11 0.453851 0.226926 0.973912i \(-0.427133\pi\)
0.226926 + 0.973912i \(0.427133\pi\)
\(384\) 6.95338e10 0.163195
\(385\) 0 0
\(386\) −3.51092e11 −0.804967
\(387\) −9.21182e8 −0.00208760
\(388\) −6.64163e11 −1.48776
\(389\) −7.67434e11 −1.69929 −0.849645 0.527355i \(-0.823184\pi\)
−0.849645 + 0.527355i \(0.823184\pi\)
\(390\) 0 0
\(391\) 2.16792e11 0.469080
\(392\) −3.45393e10 −0.0738798
\(393\) −6.74750e11 −1.42684
\(394\) −3.66156e10 −0.0765478
\(395\) 0 0
\(396\) −9.16111e8 −0.00187206
\(397\) −1.29691e11 −0.262031 −0.131015 0.991380i \(-0.541824\pi\)
−0.131015 + 0.991380i \(0.541824\pi\)
\(398\) −3.17986e11 −0.635235
\(399\) 1.59991e11 0.316023
\(400\) 0 0
\(401\) 7.69168e11 1.48550 0.742748 0.669571i \(-0.233522\pi\)
0.742748 + 0.669571i \(0.233522\pi\)
\(402\) −7.40359e11 −1.41392
\(403\) −3.35122e10 −0.0632892
\(404\) −4.25889e11 −0.795391
\(405\) 0 0
\(406\) 1.04853e10 0.0191520
\(407\) −7.64332e11 −1.38073
\(408\) −1.48890e10 −0.0266009
\(409\) −1.25462e11 −0.221696 −0.110848 0.993837i \(-0.535357\pi\)
−0.110848 + 0.993837i \(0.535357\pi\)
\(410\) 0 0
\(411\) 7.50747e11 1.29779
\(412\) 6.87329e11 1.17524
\(413\) 6.17805e10 0.104490
\(414\) −2.31328e9 −0.00387014
\(415\) 0 0
\(416\) 2.42189e11 0.396492
\(417\) 1.29645e11 0.209963
\(418\) 8.60470e11 1.37861
\(419\) −2.65984e11 −0.421593 −0.210796 0.977530i \(-0.567606\pi\)
−0.210796 + 0.977530i \(0.567606\pi\)
\(420\) 0 0
\(421\) 2.82647e11 0.438505 0.219252 0.975668i \(-0.429638\pi\)
0.219252 + 0.975668i \(0.429638\pi\)
\(422\) 1.59025e11 0.244096
\(423\) 1.52909e9 0.00232221
\(424\) 4.93565e10 0.0741649
\(425\) 0 0
\(426\) 6.92713e11 1.01909
\(427\) −1.13282e11 −0.164905
\(428\) −3.41004e11 −0.491205
\(429\) 1.83881e11 0.262107
\(430\) 0 0
\(431\) −2.29614e11 −0.320517 −0.160258 0.987075i \(-0.551233\pi\)
−0.160258 + 0.987075i \(0.551233\pi\)
\(432\) −6.80887e11 −0.940586
\(433\) 1.31434e11 0.179686 0.0898428 0.995956i \(-0.471364\pi\)
0.0898428 + 0.995956i \(0.471364\pi\)
\(434\) −7.52988e10 −0.101879
\(435\) 0 0
\(436\) 3.41559e11 0.452665
\(437\) 1.11651e12 1.46453
\(438\) −6.66047e11 −0.864711
\(439\) −9.34953e11 −1.20143 −0.600717 0.799462i \(-0.705118\pi\)
−0.600717 + 0.799462i \(0.705118\pi\)
\(440\) 0 0
\(441\) 1.34302e9 0.00169086
\(442\) −1.03887e11 −0.129468
\(443\) 1.32453e12 1.63398 0.816989 0.576653i \(-0.195642\pi\)
0.816989 + 0.576653i \(0.195642\pi\)
\(444\) 1.26228e12 1.54146
\(445\) 0 0
\(446\) 6.51367e11 0.779505
\(447\) 5.96091e11 0.706202
\(448\) 2.94771e11 0.345728
\(449\) 3.24134e11 0.376371 0.188185 0.982134i \(-0.439739\pi\)
0.188185 + 0.982134i \(0.439739\pi\)
\(450\) 0 0
\(451\) −1.24330e12 −1.41508
\(452\) −1.84939e12 −2.08404
\(453\) 7.20471e11 0.803850
\(454\) 1.57650e12 1.74158
\(455\) 0 0
\(456\) −7.66811e10 −0.0830513
\(457\) 1.34314e12 1.44045 0.720226 0.693739i \(-0.244038\pi\)
0.720226 + 0.693739i \(0.244038\pi\)
\(458\) −5.15094e11 −0.547005
\(459\) 3.09796e11 0.325775
\(460\) 0 0
\(461\) −6.79766e11 −0.700979 −0.350490 0.936567i \(-0.613985\pi\)
−0.350490 + 0.936567i \(0.613985\pi\)
\(462\) 4.13164e11 0.421923
\(463\) −1.68324e11 −0.170228 −0.0851142 0.996371i \(-0.527125\pi\)
−0.0851142 + 0.996371i \(0.527125\pi\)
\(464\) 4.02491e10 0.0403111
\(465\) 0 0
\(466\) 9.60232e11 0.943277
\(467\) 6.99834e11 0.680878 0.340439 0.940267i \(-0.389424\pi\)
0.340439 + 0.940267i \(0.389424\pi\)
\(468\) 5.69635e8 0.000548897 0
\(469\) −3.21848e11 −0.307166
\(470\) 0 0
\(471\) 1.55616e12 1.45700
\(472\) −2.96104e10 −0.0274603
\(473\) 1.14817e12 1.05471
\(474\) 1.27807e12 1.16293
\(475\) 0 0
\(476\) −1.19949e11 −0.107094
\(477\) −1.91917e9 −0.00169738
\(478\) 8.68800e11 0.761192
\(479\) −1.18268e12 −1.02650 −0.513250 0.858239i \(-0.671559\pi\)
−0.513250 + 0.858239i \(0.671559\pi\)
\(480\) 0 0
\(481\) 4.75259e11 0.404835
\(482\) −2.51902e11 −0.212578
\(483\) 5.36106e11 0.448218
\(484\) −1.34277e11 −0.111224
\(485\) 0 0
\(486\) −6.60519e9 −0.00537059
\(487\) −5.39148e11 −0.434338 −0.217169 0.976134i \(-0.569682\pi\)
−0.217169 + 0.976134i \(0.569682\pi\)
\(488\) 5.42939e10 0.0433373
\(489\) −5.53156e11 −0.437480
\(490\) 0 0
\(491\) −1.19524e11 −0.0928084 −0.0464042 0.998923i \(-0.514776\pi\)
−0.0464042 + 0.998923i \(0.514776\pi\)
\(492\) 2.05329e12 1.57982
\(493\) −1.83128e10 −0.0139619
\(494\) −5.35038e11 −0.404216
\(495\) 0 0
\(496\) −2.89043e11 −0.214434
\(497\) 3.01135e11 0.221390
\(498\) 7.60247e10 0.0553889
\(499\) 2.50379e12 1.80778 0.903888 0.427769i \(-0.140700\pi\)
0.903888 + 0.427769i \(0.140700\pi\)
\(500\) 0 0
\(501\) −4.43691e11 −0.314638
\(502\) −6.14958e11 −0.432194
\(503\) 1.99793e12 1.39163 0.695817 0.718219i \(-0.255043\pi\)
0.695817 + 0.718219i \(0.255043\pi\)
\(504\) 6.90653e7 4.76785e−5 0
\(505\) 0 0
\(506\) 2.88330e12 1.95530
\(507\) −1.14337e11 −0.0768510
\(508\) −1.59523e12 −1.06277
\(509\) 4.19816e9 0.00277223 0.00138611 0.999999i \(-0.499559\pi\)
0.00138611 + 0.999999i \(0.499559\pi\)
\(510\) 0 0
\(511\) −2.89543e11 −0.187853
\(512\) 2.20842e12 1.42025
\(513\) 1.59550e12 1.01711
\(514\) 2.78908e12 1.76249
\(515\) 0 0
\(516\) −1.89619e12 −1.17749
\(517\) −1.90588e12 −1.17324
\(518\) 1.06787e12 0.651677
\(519\) −2.01622e10 −0.0121979
\(520\) 0 0
\(521\) −2.61613e12 −1.55557 −0.777786 0.628530i \(-0.783657\pi\)
−0.777786 + 0.628530i \(0.783657\pi\)
\(522\) 1.95408e8 0.000115193 0
\(523\) −5.21399e11 −0.304728 −0.152364 0.988324i \(-0.548689\pi\)
−0.152364 + 0.988324i \(0.548689\pi\)
\(524\) 2.60534e12 1.50964
\(525\) 0 0
\(526\) 1.58290e12 0.901607
\(527\) 1.31511e11 0.0742701
\(528\) 1.58597e12 0.888063
\(529\) 1.94012e12 1.07715
\(530\) 0 0
\(531\) 1.15136e9 0.000628473 0
\(532\) −6.17758e11 −0.334361
\(533\) 7.73079e11 0.414908
\(534\) 1.50972e12 0.803451
\(535\) 0 0
\(536\) 1.54256e11 0.0807237
\(537\) 2.52086e11 0.130817
\(538\) 2.15695e12 1.10999
\(539\) −1.67395e12 −0.854267
\(540\) 0 0
\(541\) −3.20666e11 −0.160940 −0.0804702 0.996757i \(-0.525642\pi\)
−0.0804702 + 0.996757i \(0.525642\pi\)
\(542\) 2.57908e12 1.28371
\(543\) 3.42010e12 1.68826
\(544\) −9.50417e11 −0.465285
\(545\) 0 0
\(546\) −2.56904e11 −0.123710
\(547\) −3.84616e12 −1.83689 −0.918447 0.395543i \(-0.870556\pi\)
−0.918447 + 0.395543i \(0.870556\pi\)
\(548\) −2.89878e12 −1.37310
\(549\) −2.11115e9 −0.000991844 0
\(550\) 0 0
\(551\) −9.43144e10 −0.0435909
\(552\) −2.56947e11 −0.117792
\(553\) 5.55602e11 0.252639
\(554\) 6.27113e12 2.82847
\(555\) 0 0
\(556\) −5.00584e11 −0.222147
\(557\) −4.35058e12 −1.91513 −0.957565 0.288217i \(-0.906938\pi\)
−0.957565 + 0.288217i \(0.906938\pi\)
\(558\) −1.40329e9 −0.000612765 0
\(559\) −7.13931e11 −0.309245
\(560\) 0 0
\(561\) −7.21600e11 −0.307584
\(562\) −6.58792e12 −2.78571
\(563\) 1.12913e12 0.473648 0.236824 0.971553i \(-0.423894\pi\)
0.236824 + 0.971553i \(0.423894\pi\)
\(564\) 3.14753e12 1.30983
\(565\) 0 0
\(566\) −4.54213e12 −1.86031
\(567\) 7.64663e11 0.310704
\(568\) −1.44329e11 −0.0581816
\(569\) −2.81599e12 −1.12623 −0.563114 0.826379i \(-0.690397\pi\)
−0.563114 + 0.826379i \(0.690397\pi\)
\(570\) 0 0
\(571\) −8.52974e11 −0.335794 −0.167897 0.985805i \(-0.553698\pi\)
−0.167897 + 0.985805i \(0.553698\pi\)
\(572\) −7.10001e11 −0.277317
\(573\) 2.98465e12 1.15664
\(574\) 1.73704e12 0.667891
\(575\) 0 0
\(576\) 5.49345e9 0.00207943
\(577\) 2.51069e12 0.942979 0.471490 0.881872i \(-0.343717\pi\)
0.471490 + 0.881872i \(0.343717\pi\)
\(578\) −3.44086e12 −1.28231
\(579\) 1.51636e12 0.560725
\(580\) 0 0
\(581\) 3.30493e10 0.0120329
\(582\) 5.58224e12 2.01677
\(583\) 2.39207e12 0.857563
\(584\) 1.38773e11 0.0493681
\(585\) 0 0
\(586\) −1.89708e12 −0.664579
\(587\) 5.00003e12 1.73821 0.869103 0.494631i \(-0.164697\pi\)
0.869103 + 0.494631i \(0.164697\pi\)
\(588\) 2.76451e12 0.953718
\(589\) 6.77304e11 0.231881
\(590\) 0 0
\(591\) 1.58142e11 0.0533218
\(592\) 4.09912e12 1.37165
\(593\) −2.18751e12 −0.726448 −0.363224 0.931702i \(-0.618324\pi\)
−0.363224 + 0.931702i \(0.618324\pi\)
\(594\) 4.12025e12 1.35795
\(595\) 0 0
\(596\) −2.30163e12 −0.747182
\(597\) 1.37338e12 0.442493
\(598\) −1.79283e12 −0.573302
\(599\) 4.00554e10 0.0127128 0.00635639 0.999980i \(-0.497977\pi\)
0.00635639 + 0.999980i \(0.497977\pi\)
\(600\) 0 0
\(601\) −2.05272e12 −0.641794 −0.320897 0.947114i \(-0.603984\pi\)
−0.320897 + 0.947114i \(0.603984\pi\)
\(602\) −1.60414e12 −0.497803
\(603\) −5.99805e9 −0.00184749
\(604\) −2.78188e12 −0.850496
\(605\) 0 0
\(606\) 3.57957e12 1.07821
\(607\) 2.40562e12 0.719246 0.359623 0.933098i \(-0.382905\pi\)
0.359623 + 0.933098i \(0.382905\pi\)
\(608\) −4.89481e12 −1.45268
\(609\) −4.52860e10 −0.0133409
\(610\) 0 0
\(611\) 1.18507e12 0.344000
\(612\) −2.23541e9 −0.000644132 0
\(613\) 3.88281e12 1.11064 0.555320 0.831636i \(-0.312596\pi\)
0.555320 + 0.831636i \(0.312596\pi\)
\(614\) −1.42563e12 −0.404808
\(615\) 0 0
\(616\) −8.60839e10 −0.0240885
\(617\) −1.16917e12 −0.324784 −0.162392 0.986726i \(-0.551921\pi\)
−0.162392 + 0.986726i \(0.551921\pi\)
\(618\) −5.77695e12 −1.59313
\(619\) −5.67461e12 −1.55356 −0.776780 0.629772i \(-0.783148\pi\)
−0.776780 + 0.629772i \(0.783148\pi\)
\(620\) 0 0
\(621\) 5.34628e12 1.44258
\(622\) −4.38464e12 −1.17457
\(623\) 6.56301e11 0.174545
\(624\) −9.86155e11 −0.260384
\(625\) 0 0
\(626\) −7.61254e12 −1.98128
\(627\) −3.71637e12 −0.960317
\(628\) −6.00863e12 −1.54155
\(629\) −1.86505e12 −0.475075
\(630\) 0 0
\(631\) −2.45580e12 −0.616680 −0.308340 0.951276i \(-0.599773\pi\)
−0.308340 + 0.951276i \(0.599773\pi\)
\(632\) −2.66291e11 −0.0663940
\(633\) −6.86830e11 −0.170033
\(634\) 6.80807e12 1.67349
\(635\) 0 0
\(636\) −3.95048e12 −0.957398
\(637\) 1.04086e12 0.250475
\(638\) −2.43559e11 −0.0581983
\(639\) 5.61205e9 0.00133158
\(640\) 0 0
\(641\) 1.77359e12 0.414947 0.207473 0.978241i \(-0.433476\pi\)
0.207473 + 0.978241i \(0.433476\pi\)
\(642\) 2.86612e12 0.665865
\(643\) −8.05907e12 −1.85924 −0.929621 0.368518i \(-0.879865\pi\)
−0.929621 + 0.368518i \(0.879865\pi\)
\(644\) −2.07001e12 −0.474227
\(645\) 0 0
\(646\) 2.09964e12 0.474349
\(647\) −5.30499e12 −1.19019 −0.595093 0.803657i \(-0.702885\pi\)
−0.595093 + 0.803657i \(0.702885\pi\)
\(648\) −3.66490e11 −0.0816534
\(649\) −1.43507e12 −0.317521
\(650\) 0 0
\(651\) 3.25215e11 0.0709669
\(652\) 2.13584e12 0.462866
\(653\) −7.57246e12 −1.62978 −0.814888 0.579619i \(-0.803202\pi\)
−0.814888 + 0.579619i \(0.803202\pi\)
\(654\) −2.87078e12 −0.613621
\(655\) 0 0
\(656\) 6.66781e12 1.40578
\(657\) −5.39601e9 −0.00112987
\(658\) 2.66275e12 0.553749
\(659\) −2.34944e12 −0.485267 −0.242633 0.970118i \(-0.578011\pi\)
−0.242633 + 0.970118i \(0.578011\pi\)
\(660\) 0 0
\(661\) 7.60177e12 1.54885 0.774423 0.632669i \(-0.218040\pi\)
0.774423 + 0.632669i \(0.218040\pi\)
\(662\) −1.08976e12 −0.220531
\(663\) 4.48689e11 0.0901850
\(664\) −1.58400e10 −0.00316226
\(665\) 0 0
\(666\) 1.99011e10 0.00391960
\(667\) −3.16033e11 −0.0618253
\(668\) 1.71318e12 0.332896
\(669\) −2.81325e12 −0.542989
\(670\) 0 0
\(671\) 2.63137e12 0.501106
\(672\) −2.35029e12 −0.444591
\(673\) 7.92100e12 1.48837 0.744187 0.667971i \(-0.232837\pi\)
0.744187 + 0.667971i \(0.232837\pi\)
\(674\) −1.32534e13 −2.47376
\(675\) 0 0
\(676\) 4.41477e11 0.0813107
\(677\) −1.41521e11 −0.0258924 −0.0129462 0.999916i \(-0.504121\pi\)
−0.0129462 + 0.999916i \(0.504121\pi\)
\(678\) 1.55440e13 2.82507
\(679\) 2.42670e12 0.438130
\(680\) 0 0
\(681\) −6.80890e12 −1.21315
\(682\) 1.74908e12 0.309585
\(683\) −9.56533e12 −1.68193 −0.840963 0.541093i \(-0.818011\pi\)
−0.840963 + 0.541093i \(0.818011\pi\)
\(684\) −1.15127e10 −0.00201106
\(685\) 0 0
\(686\) 4.92837e12 0.849659
\(687\) 2.22469e12 0.381034
\(688\) −6.15766e12 −1.04777
\(689\) −1.48738e12 −0.251441
\(690\) 0 0
\(691\) 6.71434e12 1.12035 0.560173 0.828376i \(-0.310735\pi\)
0.560173 + 0.828376i \(0.310735\pi\)
\(692\) 7.78501e10 0.0129057
\(693\) 3.34727e9 0.000551303 0
\(694\) 1.03219e13 1.68905
\(695\) 0 0
\(696\) 2.17048e10 0.00350602
\(697\) −3.03378e12 −0.486896
\(698\) −1.43529e12 −0.228871
\(699\) −4.14723e12 −0.657069
\(700\) 0 0
\(701\) 7.92662e12 1.23981 0.619907 0.784675i \(-0.287170\pi\)
0.619907 + 0.784675i \(0.287170\pi\)
\(702\) −2.56196e12 −0.398158
\(703\) −9.60533e12 −1.48325
\(704\) −6.84711e12 −1.05058
\(705\) 0 0
\(706\) 3.90292e12 0.591246
\(707\) 1.55610e12 0.234235
\(708\) 2.37000e12 0.354486
\(709\) 1.04486e12 0.155292 0.0776459 0.996981i \(-0.475260\pi\)
0.0776459 + 0.996981i \(0.475260\pi\)
\(710\) 0 0
\(711\) 1.03544e10 0.00151953
\(712\) −3.14554e11 −0.0458706
\(713\) 2.26954e12 0.328879
\(714\) 1.00816e12 0.145174
\(715\) 0 0
\(716\) −9.73355e11 −0.138408
\(717\) −3.75234e12 −0.530232
\(718\) −1.45828e13 −2.04777
\(719\) −5.62070e11 −0.0784351 −0.0392175 0.999231i \(-0.512487\pi\)
−0.0392175 + 0.999231i \(0.512487\pi\)
\(720\) 0 0
\(721\) −2.51135e12 −0.346097
\(722\) 3.41284e11 0.0467410
\(723\) 1.08796e12 0.148078
\(724\) −1.32057e13 −1.78623
\(725\) 0 0
\(726\) 1.12859e12 0.150772
\(727\) −8.11852e12 −1.07788 −0.538942 0.842343i \(-0.681176\pi\)
−0.538942 + 0.842343i \(0.681176\pi\)
\(728\) 5.35267e10 0.00706284
\(729\) 7.63982e12 1.00187
\(730\) 0 0
\(731\) 2.80166e12 0.362901
\(732\) −4.34566e12 −0.559443
\(733\) 1.25990e13 1.61201 0.806003 0.591912i \(-0.201627\pi\)
0.806003 + 0.591912i \(0.201627\pi\)
\(734\) −3.55729e12 −0.452363
\(735\) 0 0
\(736\) −1.64018e13 −2.06035
\(737\) 7.47605e12 0.933402
\(738\) 3.23720e10 0.00401713
\(739\) 1.29835e12 0.160137 0.0800687 0.996789i \(-0.474486\pi\)
0.0800687 + 0.996789i \(0.474486\pi\)
\(740\) 0 0
\(741\) 2.31083e12 0.281569
\(742\) −3.34202e12 −0.404754
\(743\) −1.67442e12 −0.201565 −0.100783 0.994908i \(-0.532135\pi\)
−0.100783 + 0.994908i \(0.532135\pi\)
\(744\) −1.55870e11 −0.0186502
\(745\) 0 0
\(746\) 1.89978e13 2.24584
\(747\) 6.15917e8 7.23735e−5 0
\(748\) 2.78624e12 0.325433
\(749\) 1.24595e12 0.144655
\(750\) 0 0
\(751\) 8.04908e12 0.923350 0.461675 0.887049i \(-0.347249\pi\)
0.461675 + 0.887049i \(0.347249\pi\)
\(752\) 1.02212e13 1.16553
\(753\) 2.65600e12 0.301058
\(754\) 1.51444e11 0.0170640
\(755\) 0 0
\(756\) −2.95805e12 −0.329350
\(757\) −1.56188e13 −1.72869 −0.864345 0.502899i \(-0.832267\pi\)
−0.864345 + 0.502899i \(0.832267\pi\)
\(758\) 1.40768e13 1.54879
\(759\) −1.24530e13 −1.36202
\(760\) 0 0
\(761\) −1.39186e12 −0.150440 −0.0752202 0.997167i \(-0.523966\pi\)
−0.0752202 + 0.997167i \(0.523966\pi\)
\(762\) 1.34078e13 1.44066
\(763\) −1.24798e12 −0.133305
\(764\) −1.15243e13 −1.22376
\(765\) 0 0
\(766\) 6.20246e12 0.650931
\(767\) 8.92324e11 0.0930986
\(768\) −8.44113e12 −0.875538
\(769\) −1.17551e13 −1.21215 −0.606077 0.795406i \(-0.707258\pi\)
−0.606077 + 0.795406i \(0.707258\pi\)
\(770\) 0 0
\(771\) −1.20460e13 −1.22772
\(772\) −5.85498e12 −0.593264
\(773\) 1.62652e13 1.63852 0.819259 0.573424i \(-0.194385\pi\)
0.819259 + 0.573424i \(0.194385\pi\)
\(774\) −2.98952e10 −0.00299411
\(775\) 0 0
\(776\) −1.16308e12 −0.115141
\(777\) −4.61210e12 −0.453946
\(778\) −2.49056e13 −2.43719
\(779\) −1.56245e13 −1.52015
\(780\) 0 0
\(781\) −6.99493e12 −0.672750
\(782\) 7.03556e12 0.672773
\(783\) −4.51612e11 −0.0429375
\(784\) 8.97741e12 0.848650
\(785\) 0 0
\(786\) −2.18977e13 −2.04643
\(787\) −6.27938e12 −0.583486 −0.291743 0.956497i \(-0.594235\pi\)
−0.291743 + 0.956497i \(0.594235\pi\)
\(788\) −6.10619e11 −0.0564160
\(789\) −6.83653e12 −0.628043
\(790\) 0 0
\(791\) 6.75726e12 0.613729
\(792\) −1.60429e9 −0.000144883 0
\(793\) −1.63618e12 −0.146927
\(794\) −4.20887e12 −0.375815
\(795\) 0 0
\(796\) −5.30290e12 −0.468171
\(797\) −1.68270e11 −0.0147721 −0.00738607 0.999973i \(-0.502351\pi\)
−0.00738607 + 0.999973i \(0.502351\pi\)
\(798\) 5.19222e12 0.453252
\(799\) −4.65055e12 −0.403686
\(800\) 0 0
\(801\) 1.22310e10 0.00104982
\(802\) 2.49619e13 2.13056
\(803\) 6.72565e12 0.570840
\(804\) −1.23466e13 −1.04207
\(805\) 0 0
\(806\) −1.08757e12 −0.0907718
\(807\) −9.31586e12 −0.773200
\(808\) −7.45814e11 −0.0615573
\(809\) −1.16770e13 −0.958432 −0.479216 0.877697i \(-0.659079\pi\)
−0.479216 + 0.877697i \(0.659079\pi\)
\(810\) 0 0
\(811\) −3.15287e12 −0.255924 −0.127962 0.991779i \(-0.540844\pi\)
−0.127962 + 0.991779i \(0.540844\pi\)
\(812\) 1.74858e11 0.0141151
\(813\) −1.11390e13 −0.894209
\(814\) −2.48049e13 −1.98029
\(815\) 0 0
\(816\) 3.86994e12 0.305562
\(817\) 1.44291e13 1.13302
\(818\) −4.07164e12 −0.317965
\(819\) −2.08132e9 −0.000161645 0
\(820\) 0 0
\(821\) −5.17107e12 −0.397225 −0.198612 0.980078i \(-0.563643\pi\)
−0.198612 + 0.980078i \(0.563643\pi\)
\(822\) 2.43641e13 1.86134
\(823\) −1.86301e13 −1.41552 −0.707759 0.706454i \(-0.750294\pi\)
−0.707759 + 0.706454i \(0.750294\pi\)
\(824\) 1.20364e12 0.0909548
\(825\) 0 0
\(826\) 2.00497e12 0.149864
\(827\) −2.11656e13 −1.57346 −0.786732 0.617295i \(-0.788229\pi\)
−0.786732 + 0.617295i \(0.788229\pi\)
\(828\) −3.85774e10 −0.00285231
\(829\) 2.77298e12 0.203916 0.101958 0.994789i \(-0.467489\pi\)
0.101958 + 0.994789i \(0.467489\pi\)
\(830\) 0 0
\(831\) −2.70850e13 −1.97026
\(832\) 4.25751e12 0.308036
\(833\) −4.08462e12 −0.293933
\(834\) 4.20737e12 0.301137
\(835\) 0 0
\(836\) 1.43496e13 1.01604
\(837\) 3.24318e12 0.228406
\(838\) −8.63202e12 −0.604664
\(839\) 2.22549e13 1.55059 0.775295 0.631599i \(-0.217601\pi\)
0.775295 + 0.631599i \(0.217601\pi\)
\(840\) 0 0
\(841\) −1.44805e13 −0.998160
\(842\) 9.17276e12 0.628920
\(843\) 2.84532e13 1.94047
\(844\) 2.65199e12 0.179900
\(845\) 0 0
\(846\) 4.96238e10 0.00333060
\(847\) 4.90618e11 0.0327543
\(848\) −1.28287e13 −0.851925
\(849\) 1.96174e13 1.29586
\(850\) 0 0
\(851\) −3.21860e13 −2.10370
\(852\) 1.15520e13 0.751069
\(853\) −4.23195e12 −0.273697 −0.136848 0.990592i \(-0.543697\pi\)
−0.136848 + 0.990592i \(0.543697\pi\)
\(854\) −3.67634e12 −0.236513
\(855\) 0 0
\(856\) −5.97164e11 −0.0380156
\(857\) 1.68023e13 1.06403 0.532017 0.846733i \(-0.321434\pi\)
0.532017 + 0.846733i \(0.321434\pi\)
\(858\) 5.96751e12 0.375924
\(859\) 3.21001e12 0.201158 0.100579 0.994929i \(-0.467931\pi\)
0.100579 + 0.994929i \(0.467931\pi\)
\(860\) 0 0
\(861\) −7.50226e12 −0.465241
\(862\) −7.45169e12 −0.459697
\(863\) 1.26590e13 0.776877 0.388438 0.921475i \(-0.373015\pi\)
0.388438 + 0.921475i \(0.373015\pi\)
\(864\) −2.34381e13 −1.43091
\(865\) 0 0
\(866\) 4.26545e12 0.257712
\(867\) 1.48611e13 0.893231
\(868\) −1.25572e12 −0.0750851
\(869\) −1.29058e13 −0.767709
\(870\) 0 0
\(871\) −4.64859e12 −0.273678
\(872\) 5.98136e11 0.0350329
\(873\) 4.52248e10 0.00263519
\(874\) 3.62344e13 2.10048
\(875\) 0 0
\(876\) −1.11073e13 −0.637295
\(877\) −1.27935e13 −0.730282 −0.365141 0.930952i \(-0.618979\pi\)
−0.365141 + 0.930952i \(0.618979\pi\)
\(878\) −3.03421e13 −1.72314
\(879\) 8.19348e12 0.462933
\(880\) 0 0
\(881\) −1.11000e13 −0.620773 −0.310387 0.950610i \(-0.600459\pi\)
−0.310387 + 0.950610i \(0.600459\pi\)
\(882\) 4.35850e10 0.00242509
\(883\) −6.70423e12 −0.371130 −0.185565 0.982632i \(-0.559412\pi\)
−0.185565 + 0.982632i \(0.559412\pi\)
\(884\) −1.73248e12 −0.0954184
\(885\) 0 0
\(886\) 4.29852e13 2.34351
\(887\) 1.42437e13 0.772624 0.386312 0.922368i \(-0.373749\pi\)
0.386312 + 0.922368i \(0.373749\pi\)
\(888\) 2.21050e12 0.119298
\(889\) 5.82862e12 0.312974
\(890\) 0 0
\(891\) −1.77620e13 −0.944153
\(892\) 1.08625e13 0.574498
\(893\) −2.39511e13 −1.26036
\(894\) 1.93450e13 1.01286
\(895\) 0 0
\(896\) 9.80980e11 0.0508480
\(897\) 7.74322e12 0.399352
\(898\) 1.05191e13 0.539805
\(899\) −1.91713e11 −0.00978888
\(900\) 0 0
\(901\) 5.83691e12 0.295067
\(902\) −4.03489e13 −2.02956
\(903\) 6.92826e12 0.346760
\(904\) −3.23864e12 −0.161289
\(905\) 0 0
\(906\) 2.33815e13 1.15291
\(907\) 1.67991e13 0.824241 0.412120 0.911129i \(-0.364788\pi\)
0.412120 + 0.911129i \(0.364788\pi\)
\(908\) 2.62905e13 1.28355
\(909\) 2.90001e10 0.00140884
\(910\) 0 0
\(911\) −1.56750e13 −0.754005 −0.377003 0.926212i \(-0.623045\pi\)
−0.377003 + 0.926212i \(0.623045\pi\)
\(912\) 1.99309e13 0.954003
\(913\) −7.67688e11 −0.0365650
\(914\) 4.35891e13 2.06595
\(915\) 0 0
\(916\) −8.58996e12 −0.403145
\(917\) −9.51934e12 −0.444575
\(918\) 1.00538e13 0.467240
\(919\) 2.05037e13 0.948228 0.474114 0.880464i \(-0.342769\pi\)
0.474114 + 0.880464i \(0.342769\pi\)
\(920\) 0 0
\(921\) 6.15729e12 0.281982
\(922\) −2.20605e13 −1.00537
\(923\) 4.34943e12 0.197253
\(924\) 6.89012e12 0.310959
\(925\) 0 0
\(926\) −5.46264e12 −0.244148
\(927\) −4.68022e10 −0.00208165
\(928\) 1.38549e12 0.0613250
\(929\) −2.19601e12 −0.0967307 −0.0483653 0.998830i \(-0.515401\pi\)
−0.0483653 + 0.998830i \(0.515401\pi\)
\(930\) 0 0
\(931\) −2.10365e13 −0.917698
\(932\) 1.60133e13 0.695199
\(933\) 1.89372e13 0.818181
\(934\) 2.27118e13 0.976541
\(935\) 0 0
\(936\) 9.97541e8 4.24805e−5 0
\(937\) 7.12914e12 0.302141 0.151070 0.988523i \(-0.451728\pi\)
0.151070 + 0.988523i \(0.451728\pi\)
\(938\) −1.04450e13 −0.440549
\(939\) 3.28785e13 1.38012
\(940\) 0 0
\(941\) 2.63088e13 1.09382 0.546912 0.837190i \(-0.315803\pi\)
0.546912 + 0.837190i \(0.315803\pi\)
\(942\) 5.05021e13 2.08968
\(943\) −5.23552e13 −2.15604
\(944\) 7.69630e12 0.315434
\(945\) 0 0
\(946\) 3.72618e13 1.51270
\(947\) −9.27952e12 −0.374930 −0.187465 0.982271i \(-0.560027\pi\)
−0.187465 + 0.982271i \(0.560027\pi\)
\(948\) 2.13138e13 0.857083
\(949\) −4.18199e12 −0.167373
\(950\) 0 0
\(951\) −2.94040e13 −1.16572
\(952\) −2.10054e11 −0.00828828
\(953\) 1.22837e13 0.482403 0.241201 0.970475i \(-0.422459\pi\)
0.241201 + 0.970475i \(0.422459\pi\)
\(954\) −6.22829e10 −0.00243445
\(955\) 0 0
\(956\) 1.44885e13 0.561002
\(957\) 1.05193e12 0.0405399
\(958\) −3.83818e13 −1.47225
\(959\) 1.05915e13 0.404365
\(960\) 0 0
\(961\) −2.50629e13 −0.947928
\(962\) 1.54236e13 0.580630
\(963\) 2.32200e10 0.000870049 0
\(964\) −4.20083e12 −0.156671
\(965\) 0 0
\(966\) 1.73983e13 0.642851
\(967\) −9.86879e12 −0.362948 −0.181474 0.983396i \(-0.558087\pi\)
−0.181474 + 0.983396i \(0.558087\pi\)
\(968\) −2.35145e11 −0.00860788
\(969\) −9.06832e12 −0.330423
\(970\) 0 0
\(971\) 3.16958e13 1.14424 0.572118 0.820172i \(-0.306122\pi\)
0.572118 + 0.820172i \(0.306122\pi\)
\(972\) −1.10151e11 −0.00395814
\(973\) 1.82902e12 0.0654200
\(974\) −1.74970e13 −0.622944
\(975\) 0 0
\(976\) −1.41120e13 −0.497812
\(977\) −3.23312e13 −1.13526 −0.567631 0.823283i \(-0.692140\pi\)
−0.567631 + 0.823283i \(0.692140\pi\)
\(978\) −1.79516e13 −0.627450
\(979\) −1.52449e13 −0.530399
\(980\) 0 0
\(981\) −2.32578e10 −0.000801784 0
\(982\) −3.87891e12 −0.133109
\(983\) 3.93183e13 1.34309 0.671543 0.740965i \(-0.265632\pi\)
0.671543 + 0.740965i \(0.265632\pi\)
\(984\) 3.59570e12 0.122266
\(985\) 0 0
\(986\) −5.94309e11 −0.0200247
\(987\) −1.15004e13 −0.385731
\(988\) −8.92256e12 −0.297909
\(989\) 4.83496e13 1.60698
\(990\) 0 0
\(991\) −5.00414e13 −1.64816 −0.824078 0.566476i \(-0.808306\pi\)
−0.824078 + 0.566476i \(0.808306\pi\)
\(992\) −9.94970e12 −0.326218
\(993\) 4.70666e12 0.153618
\(994\) 9.77277e12 0.317526
\(995\) 0 0
\(996\) 1.26782e12 0.0408218
\(997\) −5.09356e13 −1.63265 −0.816326 0.577592i \(-0.803993\pi\)
−0.816326 + 0.577592i \(0.803993\pi\)
\(998\) 8.12556e13 2.59278
\(999\) −4.59938e13 −1.46102
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.h.1.14 yes 17
5.4 even 2 325.10.a.g.1.4 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.10.a.g.1.4 17 5.4 even 2
325.10.a.h.1.14 yes 17 1.1 even 1 trivial