Properties

Label 325.10.a.h.1.3
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 6453 x^{15} - 11965 x^{14} + 16673200 x^{13} + 68278926 x^{12} - 22023799708 x^{11} + \cdots + 22\!\cdots\!80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(32.7069\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-30.7069 q^{2} -116.164 q^{3} +430.914 q^{4} +3567.03 q^{6} -1957.66 q^{7} +2489.89 q^{8} -6188.99 q^{9} +27073.5 q^{11} -50056.6 q^{12} -28561.0 q^{13} +60113.8 q^{14} -297085. q^{16} +363224. q^{17} +190045. q^{18} -87100.6 q^{19} +227410. q^{21} -831345. q^{22} -224073. q^{23} -289235. q^{24} +877020. q^{26} +3.00539e6 q^{27} -843585. q^{28} -572339. q^{29} -7.95101e6 q^{31} +7.84774e6 q^{32} -3.14496e6 q^{33} -1.11535e7 q^{34} -2.66692e6 q^{36} +2.65011e6 q^{37} +2.67459e6 q^{38} +3.31775e6 q^{39} +4.68573e6 q^{41} -6.98304e6 q^{42} -2.42200e7 q^{43} +1.16664e7 q^{44} +6.88060e6 q^{46} -2.82299e7 q^{47} +3.45105e7 q^{48} -3.65212e7 q^{49} -4.21934e7 q^{51} -1.23073e7 q^{52} +7.40558e7 q^{53} -9.22861e7 q^{54} -4.87437e6 q^{56} +1.01179e7 q^{57} +1.75748e7 q^{58} +7.09261e7 q^{59} -1.89647e8 q^{61} +2.44151e8 q^{62} +1.21160e7 q^{63} -8.88723e7 q^{64} +9.65721e7 q^{66} -1.70010e7 q^{67} +1.56518e8 q^{68} +2.60292e7 q^{69} -1.52641e7 q^{71} -1.54099e7 q^{72} +3.62458e8 q^{73} -8.13766e7 q^{74} -3.75329e7 q^{76} -5.30009e7 q^{77} -1.01878e8 q^{78} +6.23908e7 q^{79} -2.27299e8 q^{81} -1.43884e8 q^{82} +6.45847e7 q^{83} +9.79940e7 q^{84} +7.43720e8 q^{86} +6.64851e7 q^{87} +6.74102e7 q^{88} +1.99711e8 q^{89} +5.59128e7 q^{91} -9.65564e7 q^{92} +9.23619e8 q^{93} +8.66852e8 q^{94} -9.11622e8 q^{96} +7.09268e8 q^{97} +1.12145e9 q^{98} -1.67558e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 33 q^{2} - 73 q^{3} + 4267 q^{4} - 1103 q^{6} + 10670 q^{7} - 11481 q^{8} + 47590 q^{9} - 130917 q^{11} - 32239 q^{12} - 485537 q^{13} - 292206 q^{14} + 1064251 q^{16} + 193953 q^{17} + 2026286 q^{18}+ \cdots - 3023832936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −30.7069 −1.35707 −0.678533 0.734570i \(-0.737384\pi\)
−0.678533 + 0.734570i \(0.737384\pi\)
\(3\) −116.164 −0.827990 −0.413995 0.910279i \(-0.635867\pi\)
−0.413995 + 0.910279i \(0.635867\pi\)
\(4\) 430.914 0.841630
\(5\) 0 0
\(6\) 3567.03 1.12364
\(7\) −1957.66 −0.308175 −0.154087 0.988057i \(-0.549244\pi\)
−0.154087 + 0.988057i \(0.549244\pi\)
\(8\) 2489.89 0.214919
\(9\) −6188.99 −0.314433
\(10\) 0 0
\(11\) 27073.5 0.557543 0.278771 0.960358i \(-0.410073\pi\)
0.278771 + 0.960358i \(0.410073\pi\)
\(12\) −50056.6 −0.696860
\(13\) −28561.0 −0.277350
\(14\) 60113.8 0.418214
\(15\) 0 0
\(16\) −297085. −1.13329
\(17\) 363224. 1.05476 0.527380 0.849629i \(-0.323174\pi\)
0.527380 + 0.849629i \(0.323174\pi\)
\(18\) 190045. 0.426707
\(19\) −87100.6 −0.153331 −0.0766655 0.997057i \(-0.524427\pi\)
−0.0766655 + 0.997057i \(0.524427\pi\)
\(20\) 0 0
\(21\) 227410. 0.255165
\(22\) −831345. −0.756622
\(23\) −224073. −0.166961 −0.0834805 0.996509i \(-0.526604\pi\)
−0.0834805 + 0.996509i \(0.526604\pi\)
\(24\) −289235. −0.177951
\(25\) 0 0
\(26\) 877020. 0.376383
\(27\) 3.00539e6 1.08834
\(28\) −843585. −0.259369
\(29\) −572339. −0.150267 −0.0751333 0.997173i \(-0.523938\pi\)
−0.0751333 + 0.997173i \(0.523938\pi\)
\(30\) 0 0
\(31\) −7.95101e6 −1.54630 −0.773151 0.634221i \(-0.781321\pi\)
−0.773151 + 0.634221i \(0.781321\pi\)
\(32\) 7.84774e6 1.32303
\(33\) −3.14496e6 −0.461640
\(34\) −1.11535e7 −1.43138
\(35\) 0 0
\(36\) −2.66692e6 −0.264636
\(37\) 2.65011e6 0.232464 0.116232 0.993222i \(-0.462918\pi\)
0.116232 + 0.993222i \(0.462918\pi\)
\(38\) 2.67459e6 0.208080
\(39\) 3.31775e6 0.229643
\(40\) 0 0
\(41\) 4.68573e6 0.258970 0.129485 0.991581i \(-0.458668\pi\)
0.129485 + 0.991581i \(0.458668\pi\)
\(42\) −6.98304e6 −0.346276
\(43\) −2.42200e7 −1.08035 −0.540176 0.841552i \(-0.681642\pi\)
−0.540176 + 0.841552i \(0.681642\pi\)
\(44\) 1.16664e7 0.469244
\(45\) 0 0
\(46\) 6.88060e6 0.226577
\(47\) −2.82299e7 −0.843856 −0.421928 0.906629i \(-0.638647\pi\)
−0.421928 + 0.906629i \(0.638647\pi\)
\(48\) 3.45105e7 0.938352
\(49\) −3.65212e7 −0.905028
\(50\) 0 0
\(51\) −4.21934e7 −0.873331
\(52\) −1.23073e7 −0.233426
\(53\) 7.40558e7 1.28919 0.644596 0.764524i \(-0.277026\pi\)
0.644596 + 0.764524i \(0.277026\pi\)
\(54\) −9.22861e7 −1.47695
\(55\) 0 0
\(56\) −4.87437e6 −0.0662327
\(57\) 1.01179e7 0.126956
\(58\) 1.75748e7 0.203922
\(59\) 7.09261e7 0.762030 0.381015 0.924569i \(-0.375575\pi\)
0.381015 + 0.924569i \(0.375575\pi\)
\(60\) 0 0
\(61\) −1.89647e8 −1.75372 −0.876861 0.480743i \(-0.840367\pi\)
−0.876861 + 0.480743i \(0.840367\pi\)
\(62\) 2.44151e8 2.09844
\(63\) 1.21160e7 0.0969004
\(64\) −8.88723e7 −0.662150
\(65\) 0 0
\(66\) 9.65721e7 0.626476
\(67\) −1.70010e7 −0.103071 −0.0515357 0.998671i \(-0.516412\pi\)
−0.0515357 + 0.998671i \(0.516412\pi\)
\(68\) 1.56518e8 0.887717
\(69\) 2.60292e7 0.138242
\(70\) 0 0
\(71\) −1.52641e7 −0.0712869 −0.0356435 0.999365i \(-0.511348\pi\)
−0.0356435 + 0.999365i \(0.511348\pi\)
\(72\) −1.54099e7 −0.0675778
\(73\) 3.62458e8 1.49384 0.746922 0.664912i \(-0.231531\pi\)
0.746922 + 0.664912i \(0.231531\pi\)
\(74\) −8.13766e7 −0.315469
\(75\) 0 0
\(76\) −3.75329e7 −0.129048
\(77\) −5.30009e7 −0.171821
\(78\) −1.01878e8 −0.311641
\(79\) 6.23908e7 0.180218 0.0901092 0.995932i \(-0.471278\pi\)
0.0901092 + 0.995932i \(0.471278\pi\)
\(80\) 0 0
\(81\) −2.27299e8 −0.586699
\(82\) −1.43884e8 −0.351440
\(83\) 6.45847e7 0.149375 0.0746875 0.997207i \(-0.476204\pi\)
0.0746875 + 0.997207i \(0.476204\pi\)
\(84\) 9.79940e7 0.214755
\(85\) 0 0
\(86\) 7.43720e8 1.46611
\(87\) 6.64851e7 0.124419
\(88\) 6.74102e7 0.119827
\(89\) 1.99711e8 0.337402 0.168701 0.985667i \(-0.446043\pi\)
0.168701 + 0.985667i \(0.446043\pi\)
\(90\) 0 0
\(91\) 5.59128e7 0.0854723
\(92\) −9.65564e7 −0.140519
\(93\) 9.23619e8 1.28032
\(94\) 8.66852e8 1.14517
\(95\) 0 0
\(96\) −9.11622e8 −1.09545
\(97\) 7.09268e8 0.813462 0.406731 0.913548i \(-0.366669\pi\)
0.406731 + 0.913548i \(0.366669\pi\)
\(98\) 1.12145e9 1.22818
\(99\) −1.67558e8 −0.175310
\(100\) 0 0
\(101\) 1.34545e9 1.28653 0.643267 0.765642i \(-0.277579\pi\)
0.643267 + 0.765642i \(0.277579\pi\)
\(102\) 1.29563e9 1.18517
\(103\) −2.61682e8 −0.229090 −0.114545 0.993418i \(-0.536541\pi\)
−0.114545 + 0.993418i \(0.536541\pi\)
\(104\) −7.11138e7 −0.0596079
\(105\) 0 0
\(106\) −2.27402e9 −1.74952
\(107\) 2.56252e9 1.88991 0.944955 0.327201i \(-0.106105\pi\)
0.944955 + 0.327201i \(0.106105\pi\)
\(108\) 1.29506e9 0.915977
\(109\) 1.28736e9 0.873534 0.436767 0.899575i \(-0.356124\pi\)
0.436767 + 0.899575i \(0.356124\pi\)
\(110\) 0 0
\(111\) −3.07846e8 −0.192478
\(112\) 5.81593e8 0.349251
\(113\) −2.24508e8 −0.129533 −0.0647663 0.997900i \(-0.520630\pi\)
−0.0647663 + 0.997900i \(0.520630\pi\)
\(114\) −3.10690e8 −0.172288
\(115\) 0 0
\(116\) −2.46629e8 −0.126469
\(117\) 1.76764e8 0.0872081
\(118\) −2.17792e9 −1.03413
\(119\) −7.11070e8 −0.325050
\(120\) 0 0
\(121\) −1.62497e9 −0.689146
\(122\) 5.82346e9 2.37992
\(123\) −5.44312e8 −0.214425
\(124\) −3.42620e9 −1.30141
\(125\) 0 0
\(126\) −3.72044e8 −0.131500
\(127\) 4.03635e9 1.37680 0.688401 0.725330i \(-0.258313\pi\)
0.688401 + 0.725330i \(0.258313\pi\)
\(128\) −1.28905e9 −0.424448
\(129\) 2.81348e9 0.894520
\(130\) 0 0
\(131\) 4.42094e8 0.131158 0.0655789 0.997847i \(-0.479111\pi\)
0.0655789 + 0.997847i \(0.479111\pi\)
\(132\) −1.35521e9 −0.388529
\(133\) 1.70514e8 0.0472527
\(134\) 5.22048e8 0.139875
\(135\) 0 0
\(136\) 9.04387e8 0.226688
\(137\) 2.60112e9 0.630839 0.315420 0.948952i \(-0.397855\pi\)
0.315420 + 0.948952i \(0.397855\pi\)
\(138\) −7.99276e8 −0.187603
\(139\) 1.09708e9 0.249271 0.124635 0.992203i \(-0.460224\pi\)
0.124635 + 0.992203i \(0.460224\pi\)
\(140\) 0 0
\(141\) 3.27929e9 0.698704
\(142\) 4.68715e8 0.0967411
\(143\) −7.73248e8 −0.154635
\(144\) 1.83866e9 0.356344
\(145\) 0 0
\(146\) −1.11300e10 −2.02725
\(147\) 4.24243e9 0.749354
\(148\) 1.14197e9 0.195649
\(149\) 3.71549e9 0.617558 0.308779 0.951134i \(-0.400080\pi\)
0.308779 + 0.951134i \(0.400080\pi\)
\(150\) 0 0
\(151\) −6.65481e9 −1.04169 −0.520846 0.853651i \(-0.674383\pi\)
−0.520846 + 0.853651i \(0.674383\pi\)
\(152\) −2.16871e8 −0.0329538
\(153\) −2.24799e9 −0.331652
\(154\) 1.62749e9 0.233172
\(155\) 0 0
\(156\) 1.42967e9 0.193274
\(157\) 7.11165e9 0.934162 0.467081 0.884215i \(-0.345306\pi\)
0.467081 + 0.884215i \(0.345306\pi\)
\(158\) −1.91583e9 −0.244568
\(159\) −8.60259e9 −1.06744
\(160\) 0 0
\(161\) 4.38660e8 0.0514531
\(162\) 6.97965e9 0.796189
\(163\) −5.89815e9 −0.654443 −0.327221 0.944948i \(-0.606112\pi\)
−0.327221 + 0.944948i \(0.606112\pi\)
\(164\) 2.01915e9 0.217957
\(165\) 0 0
\(166\) −1.98320e9 −0.202712
\(167\) 4.90068e8 0.0487565 0.0243782 0.999703i \(-0.492239\pi\)
0.0243782 + 0.999703i \(0.492239\pi\)
\(168\) 5.66225e8 0.0548400
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 5.39065e8 0.0482124
\(172\) −1.04367e10 −0.909256
\(173\) −4.97367e9 −0.422152 −0.211076 0.977470i \(-0.567697\pi\)
−0.211076 + 0.977470i \(0.567697\pi\)
\(174\) −2.04155e9 −0.168845
\(175\) 0 0
\(176\) −8.04314e9 −0.631857
\(177\) −8.23904e9 −0.630953
\(178\) −6.13251e9 −0.457876
\(179\) 1.86761e10 1.35972 0.679858 0.733344i \(-0.262041\pi\)
0.679858 + 0.733344i \(0.262041\pi\)
\(180\) 0 0
\(181\) −9.46092e9 −0.655209 −0.327604 0.944815i \(-0.606241\pi\)
−0.327604 + 0.944815i \(0.606241\pi\)
\(182\) −1.71691e9 −0.115992
\(183\) 2.20301e10 1.45206
\(184\) −5.57918e8 −0.0358831
\(185\) 0 0
\(186\) −2.83615e10 −1.73748
\(187\) 9.83375e9 0.588074
\(188\) −1.21647e10 −0.710214
\(189\) −5.88354e9 −0.335398
\(190\) 0 0
\(191\) 1.69581e10 0.921994 0.460997 0.887402i \(-0.347492\pi\)
0.460997 + 0.887402i \(0.347492\pi\)
\(192\) 1.03237e10 0.548253
\(193\) −1.79066e10 −0.928979 −0.464490 0.885579i \(-0.653762\pi\)
−0.464490 + 0.885579i \(0.653762\pi\)
\(194\) −2.17794e10 −1.10392
\(195\) 0 0
\(196\) −1.57375e10 −0.761699
\(197\) 8.40094e9 0.397402 0.198701 0.980060i \(-0.436328\pi\)
0.198701 + 0.980060i \(0.436328\pi\)
\(198\) 5.14519e9 0.237907
\(199\) 1.27713e10 0.577292 0.288646 0.957436i \(-0.406795\pi\)
0.288646 + 0.957436i \(0.406795\pi\)
\(200\) 0 0
\(201\) 1.97490e9 0.0853420
\(202\) −4.13146e10 −1.74591
\(203\) 1.12045e9 0.0463084
\(204\) −1.81817e10 −0.735021
\(205\) 0 0
\(206\) 8.03544e9 0.310890
\(207\) 1.38679e9 0.0524981
\(208\) 8.48504e9 0.314318
\(209\) −2.35812e9 −0.0854886
\(210\) 0 0
\(211\) −2.25817e10 −0.784308 −0.392154 0.919900i \(-0.628270\pi\)
−0.392154 + 0.919900i \(0.628270\pi\)
\(212\) 3.19117e10 1.08502
\(213\) 1.77314e9 0.0590248
\(214\) −7.86872e10 −2.56473
\(215\) 0 0
\(216\) 7.48308e9 0.233905
\(217\) 1.55654e10 0.476531
\(218\) −3.95307e10 −1.18544
\(219\) −4.21045e10 −1.23689
\(220\) 0 0
\(221\) −1.03740e10 −0.292538
\(222\) 9.45301e9 0.261205
\(223\) −5.98447e10 −1.62052 −0.810259 0.586071i \(-0.800674\pi\)
−0.810259 + 0.586071i \(0.800674\pi\)
\(224\) −1.53632e10 −0.407724
\(225\) 0 0
\(226\) 6.89395e9 0.175784
\(227\) −5.84969e10 −1.46223 −0.731116 0.682253i \(-0.761000\pi\)
−0.731116 + 0.682253i \(0.761000\pi\)
\(228\) 4.35996e9 0.106850
\(229\) −2.99677e10 −0.720102 −0.360051 0.932933i \(-0.617241\pi\)
−0.360051 + 0.932933i \(0.617241\pi\)
\(230\) 0 0
\(231\) 6.15678e9 0.142266
\(232\) −1.42506e9 −0.0322952
\(233\) 2.27856e7 0.000506475 0 0.000253238 1.00000i \(-0.499919\pi\)
0.000253238 1.00000i \(0.499919\pi\)
\(234\) −5.42787e9 −0.118347
\(235\) 0 0
\(236\) 3.05631e10 0.641347
\(237\) −7.24755e9 −0.149219
\(238\) 2.18347e10 0.441115
\(239\) −6.05149e10 −1.19970 −0.599849 0.800114i \(-0.704773\pi\)
−0.599849 + 0.800114i \(0.704773\pi\)
\(240\) 0 0
\(241\) −2.52017e9 −0.0481231 −0.0240616 0.999710i \(-0.507660\pi\)
−0.0240616 + 0.999710i \(0.507660\pi\)
\(242\) 4.98978e10 0.935217
\(243\) −3.27511e10 −0.602557
\(244\) −8.17215e10 −1.47598
\(245\) 0 0
\(246\) 1.67141e10 0.290989
\(247\) 2.48768e9 0.0425264
\(248\) −1.97971e10 −0.332330
\(249\) −7.50240e9 −0.123681
\(250\) 0 0
\(251\) 3.51793e10 0.559442 0.279721 0.960081i \(-0.409758\pi\)
0.279721 + 0.960081i \(0.409758\pi\)
\(252\) 5.22094e9 0.0815542
\(253\) −6.06646e9 −0.0930878
\(254\) −1.23944e11 −1.86841
\(255\) 0 0
\(256\) 8.50853e10 1.23815
\(257\) 8.55003e10 1.22256 0.611278 0.791416i \(-0.290656\pi\)
0.611278 + 0.791416i \(0.290656\pi\)
\(258\) −8.63933e10 −1.21392
\(259\) −5.18802e9 −0.0716395
\(260\) 0 0
\(261\) 3.54220e9 0.0472488
\(262\) −1.35754e10 −0.177990
\(263\) −6.50520e10 −0.838416 −0.419208 0.907890i \(-0.637692\pi\)
−0.419208 + 0.907890i \(0.637692\pi\)
\(264\) −7.83062e9 −0.0992152
\(265\) 0 0
\(266\) −5.23595e9 −0.0641251
\(267\) −2.31992e10 −0.279365
\(268\) −7.32598e9 −0.0867479
\(269\) −6.07953e10 −0.707921 −0.353961 0.935260i \(-0.615165\pi\)
−0.353961 + 0.935260i \(0.615165\pi\)
\(270\) 0 0
\(271\) 1.47895e11 1.66568 0.832839 0.553516i \(-0.186714\pi\)
0.832839 + 0.553516i \(0.186714\pi\)
\(272\) −1.07908e11 −1.19535
\(273\) −6.49504e9 −0.0707702
\(274\) −7.98725e10 −0.856091
\(275\) 0 0
\(276\) 1.12163e10 0.116348
\(277\) 4.40418e10 0.449475 0.224738 0.974419i \(-0.427848\pi\)
0.224738 + 0.974419i \(0.427848\pi\)
\(278\) −3.36879e10 −0.338277
\(279\) 4.92087e10 0.486209
\(280\) 0 0
\(281\) −9.41646e10 −0.900968 −0.450484 0.892785i \(-0.648749\pi\)
−0.450484 + 0.892785i \(0.648749\pi\)
\(282\) −1.00697e11 −0.948188
\(283\) 1.46961e11 1.36196 0.680978 0.732304i \(-0.261555\pi\)
0.680978 + 0.732304i \(0.261555\pi\)
\(284\) −6.57754e9 −0.0599972
\(285\) 0 0
\(286\) 2.37440e10 0.209849
\(287\) −9.17308e9 −0.0798081
\(288\) −4.85696e10 −0.416004
\(289\) 1.33434e10 0.112519
\(290\) 0 0
\(291\) −8.23912e10 −0.673538
\(292\) 1.56189e11 1.25726
\(293\) 3.85762e10 0.305784 0.152892 0.988243i \(-0.451141\pi\)
0.152892 + 0.988243i \(0.451141\pi\)
\(294\) −1.30272e11 −1.01692
\(295\) 0 0
\(296\) 6.59848e9 0.0499610
\(297\) 8.13665e10 0.606794
\(298\) −1.14091e11 −0.838068
\(299\) 6.39976e9 0.0463066
\(300\) 0 0
\(301\) 4.74145e10 0.332937
\(302\) 2.04349e11 1.41365
\(303\) −1.56292e11 −1.06524
\(304\) 2.58763e10 0.173768
\(305\) 0 0
\(306\) 6.90287e10 0.450073
\(307\) −1.51568e11 −0.973836 −0.486918 0.873448i \(-0.661879\pi\)
−0.486918 + 0.873448i \(0.661879\pi\)
\(308\) −2.28388e10 −0.144609
\(309\) 3.03980e10 0.189684
\(310\) 0 0
\(311\) −1.17012e11 −0.709268 −0.354634 0.935005i \(-0.615395\pi\)
−0.354634 + 0.935005i \(0.615395\pi\)
\(312\) 8.26084e9 0.0493547
\(313\) −1.78793e11 −1.05294 −0.526468 0.850195i \(-0.676484\pi\)
−0.526468 + 0.850195i \(0.676484\pi\)
\(314\) −2.18377e11 −1.26772
\(315\) 0 0
\(316\) 2.68851e10 0.151677
\(317\) −9.91584e10 −0.551522 −0.275761 0.961226i \(-0.588930\pi\)
−0.275761 + 0.961226i \(0.588930\pi\)
\(318\) 2.64159e11 1.44858
\(319\) −1.54953e10 −0.0837801
\(320\) 0 0
\(321\) −2.97672e11 −1.56483
\(322\) −1.34699e10 −0.0698253
\(323\) −3.16370e10 −0.161727
\(324\) −9.79464e10 −0.493783
\(325\) 0 0
\(326\) 1.81114e11 0.888122
\(327\) −1.49544e11 −0.723277
\(328\) 1.16670e10 0.0556577
\(329\) 5.52646e10 0.260055
\(330\) 0 0
\(331\) −2.03975e11 −0.934011 −0.467005 0.884255i \(-0.654667\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(332\) 2.78305e10 0.125718
\(333\) −1.64015e10 −0.0730944
\(334\) −1.50485e10 −0.0661658
\(335\) 0 0
\(336\) −6.75600e10 −0.289176
\(337\) 7.79569e10 0.329246 0.164623 0.986357i \(-0.447359\pi\)
0.164623 + 0.986357i \(0.447359\pi\)
\(338\) −2.50486e10 −0.104390
\(339\) 2.60797e10 0.107252
\(340\) 0 0
\(341\) −2.15262e11 −0.862130
\(342\) −1.65530e10 −0.0654274
\(343\) 1.50495e11 0.587081
\(344\) −6.03051e10 −0.232189
\(345\) 0 0
\(346\) 1.52726e11 0.572889
\(347\) 1.42399e11 0.527260 0.263630 0.964624i \(-0.415080\pi\)
0.263630 + 0.964624i \(0.415080\pi\)
\(348\) 2.86494e10 0.104715
\(349\) 3.21774e11 1.16101 0.580505 0.814257i \(-0.302855\pi\)
0.580505 + 0.814257i \(0.302855\pi\)
\(350\) 0 0
\(351\) −8.58368e10 −0.301850
\(352\) 2.12466e11 0.737645
\(353\) 7.71921e10 0.264598 0.132299 0.991210i \(-0.457764\pi\)
0.132299 + 0.991210i \(0.457764\pi\)
\(354\) 2.52995e11 0.856245
\(355\) 0 0
\(356\) 8.60584e10 0.283967
\(357\) 8.26005e10 0.269138
\(358\) −5.73486e11 −1.84522
\(359\) 8.53202e10 0.271098 0.135549 0.990771i \(-0.456720\pi\)
0.135549 + 0.990771i \(0.456720\pi\)
\(360\) 0 0
\(361\) −3.15101e11 −0.976490
\(362\) 2.90515e11 0.889162
\(363\) 1.88763e11 0.570606
\(364\) 2.40936e10 0.0719360
\(365\) 0 0
\(366\) −6.76475e11 −1.97055
\(367\) 4.03079e11 1.15983 0.579913 0.814678i \(-0.303086\pi\)
0.579913 + 0.814678i \(0.303086\pi\)
\(368\) 6.65688e10 0.189215
\(369\) −2.89999e10 −0.0814289
\(370\) 0 0
\(371\) −1.44976e11 −0.397296
\(372\) 3.98001e11 1.07756
\(373\) −2.43635e11 −0.651703 −0.325851 0.945421i \(-0.605651\pi\)
−0.325851 + 0.945421i \(0.605651\pi\)
\(374\) −3.01964e11 −0.798055
\(375\) 0 0
\(376\) −7.02893e10 −0.181361
\(377\) 1.63466e10 0.0416765
\(378\) 1.80665e11 0.455157
\(379\) 1.88570e11 0.469458 0.234729 0.972061i \(-0.424580\pi\)
0.234729 + 0.972061i \(0.424580\pi\)
\(380\) 0 0
\(381\) −4.68877e11 −1.13998
\(382\) −5.20732e11 −1.25121
\(383\) −1.88684e11 −0.448065 −0.224033 0.974582i \(-0.571922\pi\)
−0.224033 + 0.974582i \(0.571922\pi\)
\(384\) 1.49741e11 0.351439
\(385\) 0 0
\(386\) 5.49857e11 1.26069
\(387\) 1.49897e11 0.339699
\(388\) 3.05634e11 0.684634
\(389\) −3.57962e11 −0.792618 −0.396309 0.918117i \(-0.629709\pi\)
−0.396309 + 0.918117i \(0.629709\pi\)
\(390\) 0 0
\(391\) −8.13887e10 −0.176104
\(392\) −9.09337e10 −0.194508
\(393\) −5.13553e10 −0.108597
\(394\) −2.57967e11 −0.539301
\(395\) 0 0
\(396\) −7.22031e10 −0.147546
\(397\) 2.60956e11 0.527242 0.263621 0.964626i \(-0.415083\pi\)
0.263621 + 0.964626i \(0.415083\pi\)
\(398\) −3.92167e11 −0.783424
\(399\) −1.98075e10 −0.0391248
\(400\) 0 0
\(401\) −6.13426e11 −1.18471 −0.592355 0.805677i \(-0.701802\pi\)
−0.592355 + 0.805677i \(0.701802\pi\)
\(402\) −6.06431e10 −0.115815
\(403\) 2.27089e11 0.428867
\(404\) 5.79774e11 1.08279
\(405\) 0 0
\(406\) −3.44055e10 −0.0628435
\(407\) 7.17478e10 0.129609
\(408\) −1.05057e11 −0.187696
\(409\) 4.44382e11 0.785238 0.392619 0.919701i \(-0.371569\pi\)
0.392619 + 0.919701i \(0.371569\pi\)
\(410\) 0 0
\(411\) −3.02156e11 −0.522328
\(412\) −1.12763e11 −0.192809
\(413\) −1.38849e11 −0.234838
\(414\) −4.25839e10 −0.0712434
\(415\) 0 0
\(416\) −2.24139e11 −0.366942
\(417\) −1.27441e11 −0.206393
\(418\) 7.24107e10 0.116014
\(419\) 9.07812e11 1.43891 0.719454 0.694541i \(-0.244392\pi\)
0.719454 + 0.694541i \(0.244392\pi\)
\(420\) 0 0
\(421\) 7.68297e11 1.19195 0.595977 0.803001i \(-0.296765\pi\)
0.595977 + 0.803001i \(0.296765\pi\)
\(422\) 6.93416e11 1.06436
\(423\) 1.74714e11 0.265336
\(424\) 1.84391e11 0.277072
\(425\) 0 0
\(426\) −5.44477e10 −0.0801006
\(427\) 3.71264e11 0.540453
\(428\) 1.10423e12 1.59060
\(429\) 8.98233e10 0.128036
\(430\) 0 0
\(431\) 6.60645e11 0.922190 0.461095 0.887351i \(-0.347457\pi\)
0.461095 + 0.887351i \(0.347457\pi\)
\(432\) −8.92855e11 −1.23340
\(433\) 7.19098e8 0.000983089 0 0.000491544 1.00000i \(-0.499844\pi\)
0.000491544 1.00000i \(0.499844\pi\)
\(434\) −4.77965e11 −0.646685
\(435\) 0 0
\(436\) 5.54740e11 0.735192
\(437\) 1.95169e10 0.0256003
\(438\) 1.29290e12 1.67854
\(439\) 3.93610e11 0.505797 0.252898 0.967493i \(-0.418616\pi\)
0.252898 + 0.967493i \(0.418616\pi\)
\(440\) 0 0
\(441\) 2.26029e11 0.284571
\(442\) 3.18554e11 0.396993
\(443\) −4.99039e11 −0.615628 −0.307814 0.951447i \(-0.599597\pi\)
−0.307814 + 0.951447i \(0.599597\pi\)
\(444\) −1.32655e11 −0.161995
\(445\) 0 0
\(446\) 1.83765e12 2.19915
\(447\) −4.31605e11 −0.511332
\(448\) 1.73982e11 0.204058
\(449\) 1.05750e12 1.22793 0.613963 0.789335i \(-0.289574\pi\)
0.613963 + 0.789335i \(0.289574\pi\)
\(450\) 0 0
\(451\) 1.26859e11 0.144387
\(452\) −9.67438e10 −0.109018
\(453\) 7.73047e11 0.862510
\(454\) 1.79626e12 1.98435
\(455\) 0 0
\(456\) 2.51925e10 0.0272854
\(457\) −1.14326e12 −1.22609 −0.613046 0.790047i \(-0.710056\pi\)
−0.613046 + 0.790047i \(0.710056\pi\)
\(458\) 9.20216e11 0.977226
\(459\) 1.09163e12 1.14793
\(460\) 0 0
\(461\) 6.86468e11 0.707890 0.353945 0.935266i \(-0.384840\pi\)
0.353945 + 0.935266i \(0.384840\pi\)
\(462\) −1.89056e11 −0.193064
\(463\) 2.80081e10 0.0283250 0.0141625 0.999900i \(-0.495492\pi\)
0.0141625 + 0.999900i \(0.495492\pi\)
\(464\) 1.70033e11 0.170296
\(465\) 0 0
\(466\) −6.99675e8 −0.000687321 0
\(467\) 1.60767e12 1.56412 0.782061 0.623202i \(-0.214168\pi\)
0.782061 + 0.623202i \(0.214168\pi\)
\(468\) 7.61700e10 0.0733969
\(469\) 3.32823e10 0.0317640
\(470\) 0 0
\(471\) −8.26116e11 −0.773476
\(472\) 1.76598e11 0.163775
\(473\) −6.55720e11 −0.602342
\(474\) 2.22550e11 0.202500
\(475\) 0 0
\(476\) −3.06410e11 −0.273572
\(477\) −4.58330e11 −0.405365
\(478\) 1.85822e12 1.62807
\(479\) −4.86376e11 −0.422145 −0.211073 0.977470i \(-0.567696\pi\)
−0.211073 + 0.977470i \(0.567696\pi\)
\(480\) 0 0
\(481\) −7.56897e10 −0.0644739
\(482\) 7.73867e10 0.0653063
\(483\) −5.09564e10 −0.0426027
\(484\) −7.00223e11 −0.580006
\(485\) 0 0
\(486\) 1.00569e12 0.817710
\(487\) −4.44103e11 −0.357769 −0.178885 0.983870i \(-0.557249\pi\)
−0.178885 + 0.983870i \(0.557249\pi\)
\(488\) −4.72200e11 −0.376909
\(489\) 6.85151e11 0.541872
\(490\) 0 0
\(491\) 3.58783e11 0.278590 0.139295 0.990251i \(-0.455516\pi\)
0.139295 + 0.990251i \(0.455516\pi\)
\(492\) −2.34552e11 −0.180466
\(493\) −2.07887e11 −0.158495
\(494\) −7.63890e10 −0.0577111
\(495\) 0 0
\(496\) 2.36213e12 1.75241
\(497\) 2.98821e10 0.0219688
\(498\) 2.30375e11 0.167843
\(499\) 2.87985e11 0.207930 0.103965 0.994581i \(-0.466847\pi\)
0.103965 + 0.994581i \(0.466847\pi\)
\(500\) 0 0
\(501\) −5.69281e10 −0.0403699
\(502\) −1.08025e12 −0.759200
\(503\) −2.11191e12 −1.47103 −0.735513 0.677511i \(-0.763059\pi\)
−0.735513 + 0.677511i \(0.763059\pi\)
\(504\) 3.01674e10 0.0208258
\(505\) 0 0
\(506\) 1.86282e11 0.126326
\(507\) −9.47583e10 −0.0636915
\(508\) 1.73932e12 1.15876
\(509\) −2.39142e12 −1.57916 −0.789581 0.613646i \(-0.789702\pi\)
−0.789581 + 0.613646i \(0.789702\pi\)
\(510\) 0 0
\(511\) −7.09572e11 −0.460365
\(512\) −1.95271e12 −1.25581
\(513\) −2.61771e11 −0.166876
\(514\) −2.62545e12 −1.65909
\(515\) 0 0
\(516\) 1.21237e12 0.752855
\(517\) −7.64283e11 −0.470486
\(518\) 1.59308e11 0.0972196
\(519\) 5.77760e11 0.349538
\(520\) 0 0
\(521\) −1.83163e12 −1.08910 −0.544549 0.838729i \(-0.683299\pi\)
−0.544549 + 0.838729i \(0.683299\pi\)
\(522\) −1.08770e11 −0.0641198
\(523\) −1.97276e12 −1.15297 −0.576483 0.817109i \(-0.695575\pi\)
−0.576483 + 0.817109i \(0.695575\pi\)
\(524\) 1.90505e11 0.110386
\(525\) 0 0
\(526\) 1.99755e12 1.13779
\(527\) −2.88799e12 −1.63098
\(528\) 9.34322e11 0.523171
\(529\) −1.75094e12 −0.972124
\(530\) 0 0
\(531\) −4.38961e11 −0.239607
\(532\) 7.34768e10 0.0397693
\(533\) −1.33829e11 −0.0718254
\(534\) 7.12375e11 0.379117
\(535\) 0 0
\(536\) −4.23307e10 −0.0221520
\(537\) −2.16949e12 −1.12583
\(538\) 1.86684e12 0.960696
\(539\) −9.88757e11 −0.504592
\(540\) 0 0
\(541\) 2.73309e12 1.37172 0.685862 0.727731i \(-0.259425\pi\)
0.685862 + 0.727731i \(0.259425\pi\)
\(542\) −4.54139e12 −2.26044
\(543\) 1.09902e12 0.542506
\(544\) 2.85048e12 1.39548
\(545\) 0 0
\(546\) 1.99443e11 0.0960398
\(547\) −3.61895e12 −1.72838 −0.864192 0.503163i \(-0.832170\pi\)
−0.864192 + 0.503163i \(0.832170\pi\)
\(548\) 1.12086e12 0.530933
\(549\) 1.17372e12 0.551429
\(550\) 0 0
\(551\) 4.98511e10 0.0230405
\(552\) 6.48098e10 0.0297109
\(553\) −1.22140e11 −0.0555387
\(554\) −1.35239e12 −0.609968
\(555\) 0 0
\(556\) 4.72747e11 0.209794
\(557\) 2.72407e12 1.19914 0.599570 0.800322i \(-0.295338\pi\)
0.599570 + 0.800322i \(0.295338\pi\)
\(558\) −1.51105e12 −0.659818
\(559\) 6.91746e11 0.299636
\(560\) 0 0
\(561\) −1.14232e12 −0.486919
\(562\) 2.89150e12 1.22267
\(563\) −1.23357e12 −0.517457 −0.258729 0.965950i \(-0.583304\pi\)
−0.258729 + 0.965950i \(0.583304\pi\)
\(564\) 1.41309e12 0.588050
\(565\) 0 0
\(566\) −4.51272e12 −1.84827
\(567\) 4.44975e11 0.180806
\(568\) −3.80061e10 −0.0153209
\(569\) −1.70088e11 −0.0680250 −0.0340125 0.999421i \(-0.510829\pi\)
−0.0340125 + 0.999421i \(0.510829\pi\)
\(570\) 0 0
\(571\) 1.02034e12 0.401684 0.200842 0.979624i \(-0.435632\pi\)
0.200842 + 0.979624i \(0.435632\pi\)
\(572\) −3.33203e11 −0.130145
\(573\) −1.96992e12 −0.763401
\(574\) 2.81677e11 0.108305
\(575\) 0 0
\(576\) 5.50029e11 0.208202
\(577\) −1.54010e12 −0.578438 −0.289219 0.957263i \(-0.593396\pi\)
−0.289219 + 0.957263i \(0.593396\pi\)
\(578\) −4.09736e11 −0.152696
\(579\) 2.08010e12 0.769185
\(580\) 0 0
\(581\) −1.26435e11 −0.0460336
\(582\) 2.52998e12 0.914036
\(583\) 2.00495e12 0.718779
\(584\) 9.02482e11 0.321056
\(585\) 0 0
\(586\) −1.18455e12 −0.414969
\(587\) −2.72445e12 −0.947126 −0.473563 0.880760i \(-0.657032\pi\)
−0.473563 + 0.880760i \(0.657032\pi\)
\(588\) 1.82813e12 0.630679
\(589\) 6.92538e11 0.237096
\(590\) 0 0
\(591\) −9.75885e11 −0.329045
\(592\) −7.87307e11 −0.263449
\(593\) −1.50341e12 −0.499266 −0.249633 0.968341i \(-0.580310\pi\)
−0.249633 + 0.968341i \(0.580310\pi\)
\(594\) −2.49851e12 −0.823460
\(595\) 0 0
\(596\) 1.60106e12 0.519755
\(597\) −1.48356e12 −0.477992
\(598\) −1.96517e11 −0.0628412
\(599\) 1.53971e12 0.488672 0.244336 0.969691i \(-0.421430\pi\)
0.244336 + 0.969691i \(0.421430\pi\)
\(600\) 0 0
\(601\) −4.93363e12 −1.54252 −0.771261 0.636519i \(-0.780374\pi\)
−0.771261 + 0.636519i \(0.780374\pi\)
\(602\) −1.45595e12 −0.451818
\(603\) 1.05219e11 0.0324091
\(604\) −2.86765e12 −0.876719
\(605\) 0 0
\(606\) 4.79926e12 1.44560
\(607\) −5.30962e12 −1.58750 −0.793751 0.608243i \(-0.791875\pi\)
−0.793751 + 0.608243i \(0.791875\pi\)
\(608\) −6.83543e11 −0.202861
\(609\) −1.30155e11 −0.0383428
\(610\) 0 0
\(611\) 8.06273e11 0.234044
\(612\) −9.68690e11 −0.279128
\(613\) −2.24135e12 −0.641116 −0.320558 0.947229i \(-0.603870\pi\)
−0.320558 + 0.947229i \(0.603870\pi\)
\(614\) 4.65420e12 1.32156
\(615\) 0 0
\(616\) −1.31966e11 −0.0369275
\(617\) −3.06345e12 −0.850995 −0.425497 0.904960i \(-0.639901\pi\)
−0.425497 + 0.904960i \(0.639901\pi\)
\(618\) −9.33427e11 −0.257414
\(619\) 1.59329e12 0.436202 0.218101 0.975926i \(-0.430014\pi\)
0.218101 + 0.975926i \(0.430014\pi\)
\(620\) 0 0
\(621\) −6.73427e11 −0.181710
\(622\) 3.59309e12 0.962524
\(623\) −3.90967e11 −0.103979
\(624\) −9.85654e11 −0.260252
\(625\) 0 0
\(626\) 5.49019e12 1.42890
\(627\) 2.73928e11 0.0707836
\(628\) 3.06451e12 0.786218
\(629\) 9.62582e11 0.245194
\(630\) 0 0
\(631\) 1.22287e12 0.307077 0.153538 0.988143i \(-0.450933\pi\)
0.153538 + 0.988143i \(0.450933\pi\)
\(632\) 1.55346e11 0.0387324
\(633\) 2.62318e12 0.649398
\(634\) 3.04485e12 0.748452
\(635\) 0 0
\(636\) −3.70698e12 −0.898387
\(637\) 1.04308e12 0.251010
\(638\) 4.75811e11 0.113695
\(639\) 9.44696e10 0.0224150
\(640\) 0 0
\(641\) −1.17908e12 −0.275856 −0.137928 0.990442i \(-0.544044\pi\)
−0.137928 + 0.990442i \(0.544044\pi\)
\(642\) 9.14060e12 2.12357
\(643\) −4.45678e12 −1.02819 −0.514093 0.857734i \(-0.671871\pi\)
−0.514093 + 0.857734i \(0.671871\pi\)
\(644\) 1.89025e11 0.0433045
\(645\) 0 0
\(646\) 9.71474e11 0.219475
\(647\) 3.56755e12 0.800389 0.400194 0.916430i \(-0.368943\pi\)
0.400194 + 0.916430i \(0.368943\pi\)
\(648\) −5.65950e11 −0.126093
\(649\) 1.92022e12 0.424864
\(650\) 0 0
\(651\) −1.80813e12 −0.394563
\(652\) −2.54160e12 −0.550798
\(653\) −1.21320e12 −0.261109 −0.130554 0.991441i \(-0.541676\pi\)
−0.130554 + 0.991441i \(0.541676\pi\)
\(654\) 4.59204e12 0.981535
\(655\) 0 0
\(656\) −1.39206e12 −0.293488
\(657\) −2.24325e12 −0.469714
\(658\) −1.69700e12 −0.352912
\(659\) −7.70957e12 −1.59238 −0.796188 0.605049i \(-0.793154\pi\)
−0.796188 + 0.605049i \(0.793154\pi\)
\(660\) 0 0
\(661\) 1.79581e12 0.365892 0.182946 0.983123i \(-0.441437\pi\)
0.182946 + 0.983123i \(0.441437\pi\)
\(662\) 6.26345e12 1.26751
\(663\) 1.20509e12 0.242218
\(664\) 1.60809e11 0.0321036
\(665\) 0 0
\(666\) 5.03639e11 0.0991940
\(667\) 1.28246e11 0.0250887
\(668\) 2.11177e11 0.0410349
\(669\) 6.95179e12 1.34177
\(670\) 0 0
\(671\) −5.13441e12 −0.977775
\(672\) 1.78465e12 0.337591
\(673\) 8.00387e12 1.50395 0.751973 0.659194i \(-0.229102\pi\)
0.751973 + 0.659194i \(0.229102\pi\)
\(674\) −2.39382e12 −0.446808
\(675\) 0 0
\(676\) 3.51510e11 0.0647407
\(677\) 6.40368e12 1.17160 0.585802 0.810454i \(-0.300780\pi\)
0.585802 + 0.810454i \(0.300780\pi\)
\(678\) −8.00827e11 −0.145548
\(679\) −1.38851e12 −0.250688
\(680\) 0 0
\(681\) 6.79522e12 1.21071
\(682\) 6.61003e12 1.16997
\(683\) −9.26091e12 −1.62840 −0.814199 0.580587i \(-0.802823\pi\)
−0.814199 + 0.580587i \(0.802823\pi\)
\(684\) 2.32291e11 0.0405769
\(685\) 0 0
\(686\) −4.62123e12 −0.796709
\(687\) 3.48116e12 0.596237
\(688\) 7.19539e12 1.22435
\(689\) −2.11511e12 −0.357557
\(690\) 0 0
\(691\) 1.32532e12 0.221142 0.110571 0.993868i \(-0.464732\pi\)
0.110571 + 0.993868i \(0.464732\pi\)
\(692\) −2.14322e12 −0.355296
\(693\) 3.28022e11 0.0540261
\(694\) −4.37264e12 −0.715527
\(695\) 0 0
\(696\) 1.65541e11 0.0267401
\(697\) 1.70197e12 0.273152
\(698\) −9.88067e12 −1.57557
\(699\) −2.64686e9 −0.000419356 0
\(700\) 0 0
\(701\) −1.04308e13 −1.63149 −0.815747 0.578409i \(-0.803674\pi\)
−0.815747 + 0.578409i \(0.803674\pi\)
\(702\) 2.63578e12 0.409631
\(703\) −2.30826e11 −0.0356440
\(704\) −2.40609e12 −0.369177
\(705\) 0 0
\(706\) −2.37033e12 −0.359077
\(707\) −2.63394e12 −0.396477
\(708\) −3.55032e12 −0.531028
\(709\) 1.48226e12 0.220301 0.110150 0.993915i \(-0.464867\pi\)
0.110150 + 0.993915i \(0.464867\pi\)
\(710\) 0 0
\(711\) −3.86136e11 −0.0566666
\(712\) 4.97259e11 0.0725141
\(713\) 1.78161e12 0.258172
\(714\) −2.53641e12 −0.365239
\(715\) 0 0
\(716\) 8.04781e12 1.14438
\(717\) 7.02963e12 0.993337
\(718\) −2.61992e12 −0.367898
\(719\) −3.56718e12 −0.497788 −0.248894 0.968531i \(-0.580067\pi\)
−0.248894 + 0.968531i \(0.580067\pi\)
\(720\) 0 0
\(721\) 5.12285e11 0.0705998
\(722\) 9.67578e12 1.32516
\(723\) 2.92753e11 0.0398454
\(724\) −4.07684e12 −0.551443
\(725\) 0 0
\(726\) −5.79632e12 −0.774350
\(727\) 1.65301e12 0.219468 0.109734 0.993961i \(-0.465000\pi\)
0.109734 + 0.993961i \(0.465000\pi\)
\(728\) 1.39217e11 0.0183696
\(729\) 8.27842e12 1.08561
\(730\) 0 0
\(731\) −8.79726e12 −1.13951
\(732\) 9.49307e12 1.22210
\(733\) 9.83874e12 1.25884 0.629421 0.777064i \(-0.283292\pi\)
0.629421 + 0.777064i \(0.283292\pi\)
\(734\) −1.23773e13 −1.57396
\(735\) 0 0
\(736\) −1.75847e12 −0.220894
\(737\) −4.60278e11 −0.0574667
\(738\) 8.90498e11 0.110504
\(739\) −1.45950e13 −1.80014 −0.900068 0.435749i \(-0.856484\pi\)
−0.900068 + 0.435749i \(0.856484\pi\)
\(740\) 0 0
\(741\) −2.88978e11 −0.0352114
\(742\) 4.45177e12 0.539157
\(743\) 2.18759e12 0.263340 0.131670 0.991294i \(-0.457966\pi\)
0.131670 + 0.991294i \(0.457966\pi\)
\(744\) 2.29971e12 0.275166
\(745\) 0 0
\(746\) 7.48127e12 0.884404
\(747\) −3.99714e11 −0.0469685
\(748\) 4.23750e12 0.494940
\(749\) −5.01656e12 −0.582422
\(750\) 0 0
\(751\) −2.92254e12 −0.335259 −0.167630 0.985850i \(-0.553611\pi\)
−0.167630 + 0.985850i \(0.553611\pi\)
\(752\) 8.38667e12 0.956333
\(753\) −4.08656e12 −0.463212
\(754\) −5.01953e11 −0.0565577
\(755\) 0 0
\(756\) −2.53530e12 −0.282281
\(757\) 1.25903e11 0.0139350 0.00696748 0.999976i \(-0.497782\pi\)
0.00696748 + 0.999976i \(0.497782\pi\)
\(758\) −5.79041e12 −0.637085
\(759\) 7.04702e11 0.0770758
\(760\) 0 0
\(761\) −1.56609e13 −1.69272 −0.846361 0.532610i \(-0.821211\pi\)
−0.846361 + 0.532610i \(0.821211\pi\)
\(762\) 1.43978e13 1.54703
\(763\) −2.52021e12 −0.269201
\(764\) 7.30750e12 0.775977
\(765\) 0 0
\(766\) 5.79391e12 0.608055
\(767\) −2.02572e12 −0.211349
\(768\) −9.88383e12 −1.02518
\(769\) −1.36642e13 −1.40902 −0.704508 0.709696i \(-0.748832\pi\)
−0.704508 + 0.709696i \(0.748832\pi\)
\(770\) 0 0
\(771\) −9.93203e12 −1.01226
\(772\) −7.71622e12 −0.781856
\(773\) 1.13099e13 1.13933 0.569665 0.821877i \(-0.307073\pi\)
0.569665 + 0.821877i \(0.307073\pi\)
\(774\) −4.60288e12 −0.460994
\(775\) 0 0
\(776\) 1.76600e12 0.174829
\(777\) 6.02660e11 0.0593168
\(778\) 1.09919e13 1.07564
\(779\) −4.08130e11 −0.0397082
\(780\) 0 0
\(781\) −4.13255e11 −0.0397455
\(782\) 2.49920e12 0.238985
\(783\) −1.72010e12 −0.163541
\(784\) 1.08499e13 1.02566
\(785\) 0 0
\(786\) 1.57696e12 0.147374
\(787\) −1.23575e13 −1.14827 −0.574133 0.818762i \(-0.694661\pi\)
−0.574133 + 0.818762i \(0.694661\pi\)
\(788\) 3.62009e12 0.334465
\(789\) 7.55668e12 0.694200
\(790\) 0 0
\(791\) 4.39511e11 0.0399187
\(792\) −4.17201e11 −0.0376775
\(793\) 5.41650e12 0.486395
\(794\) −8.01315e12 −0.715502
\(795\) 0 0
\(796\) 5.50333e12 0.485866
\(797\) −1.28829e13 −1.13097 −0.565485 0.824758i \(-0.691311\pi\)
−0.565485 + 0.824758i \(0.691311\pi\)
\(798\) 6.08227e11 0.0530949
\(799\) −1.02538e13 −0.890066
\(800\) 0 0
\(801\) −1.23601e12 −0.106090
\(802\) 1.88364e13 1.60773
\(803\) 9.81303e12 0.832882
\(804\) 8.51013e11 0.0718264
\(805\) 0 0
\(806\) −6.97319e12 −0.582001
\(807\) 7.06221e12 0.586152
\(808\) 3.35002e12 0.276501
\(809\) 2.53503e12 0.208072 0.104036 0.994574i \(-0.466824\pi\)
0.104036 + 0.994574i \(0.466824\pi\)
\(810\) 0 0
\(811\) −2.05903e12 −0.167135 −0.0835677 0.996502i \(-0.526631\pi\)
−0.0835677 + 0.996502i \(0.526631\pi\)
\(812\) 4.82817e11 0.0389745
\(813\) −1.71800e13 −1.37916
\(814\) −2.20315e12 −0.175888
\(815\) 0 0
\(816\) 1.25350e13 0.989736
\(817\) 2.10957e12 0.165651
\(818\) −1.36456e13 −1.06562
\(819\) −3.46044e11 −0.0268753
\(820\) 0 0
\(821\) 3.30701e12 0.254034 0.127017 0.991901i \(-0.459460\pi\)
0.127017 + 0.991901i \(0.459460\pi\)
\(822\) 9.27829e12 0.708834
\(823\) 7.30832e11 0.0555288 0.0277644 0.999614i \(-0.491161\pi\)
0.0277644 + 0.999614i \(0.491161\pi\)
\(824\) −6.51560e11 −0.0492359
\(825\) 0 0
\(826\) 4.26364e12 0.318691
\(827\) −9.77172e12 −0.726434 −0.363217 0.931705i \(-0.618322\pi\)
−0.363217 + 0.931705i \(0.618322\pi\)
\(828\) 5.97586e11 0.0441839
\(829\) −2.50861e13 −1.84475 −0.922374 0.386299i \(-0.873753\pi\)
−0.922374 + 0.386299i \(0.873753\pi\)
\(830\) 0 0
\(831\) −5.11606e12 −0.372161
\(832\) 2.53828e12 0.183647
\(833\) −1.32653e13 −0.954588
\(834\) 3.91331e12 0.280090
\(835\) 0 0
\(836\) −1.01615e12 −0.0719497
\(837\) −2.38959e13 −1.68290
\(838\) −2.78761e13 −1.95269
\(839\) −1.88412e12 −0.131274 −0.0656370 0.997844i \(-0.520908\pi\)
−0.0656370 + 0.997844i \(0.520908\pi\)
\(840\) 0 0
\(841\) −1.41796e13 −0.977420
\(842\) −2.35920e13 −1.61756
\(843\) 1.09385e13 0.745992
\(844\) −9.73080e12 −0.660096
\(845\) 0 0
\(846\) −5.36494e12 −0.360079
\(847\) 3.18115e12 0.212377
\(848\) −2.20009e13 −1.46103
\(849\) −1.70715e13 −1.12769
\(850\) 0 0
\(851\) −5.93819e11 −0.0388124
\(852\) 7.64071e11 0.0496771
\(853\) 2.94969e13 1.90768 0.953842 0.300309i \(-0.0970899\pi\)
0.953842 + 0.300309i \(0.0970899\pi\)
\(854\) −1.14004e13 −0.733431
\(855\) 0 0
\(856\) 6.38041e12 0.406178
\(857\) −2.50876e12 −0.158871 −0.0794356 0.996840i \(-0.525312\pi\)
−0.0794356 + 0.996840i \(0.525312\pi\)
\(858\) −2.75820e12 −0.173753
\(859\) 1.92591e13 1.20689 0.603444 0.797405i \(-0.293795\pi\)
0.603444 + 0.797405i \(0.293795\pi\)
\(860\) 0 0
\(861\) 1.06558e12 0.0660802
\(862\) −2.02864e13 −1.25147
\(863\) 2.06285e13 1.26596 0.632980 0.774168i \(-0.281831\pi\)
0.632980 + 0.774168i \(0.281831\pi\)
\(864\) 2.35855e13 1.43990
\(865\) 0 0
\(866\) −2.20813e10 −0.00133412
\(867\) −1.55002e12 −0.0931649
\(868\) 6.70735e12 0.401063
\(869\) 1.68914e12 0.100479
\(870\) 0 0
\(871\) 4.85566e11 0.0285869
\(872\) 3.20538e12 0.187739
\(873\) −4.38965e12 −0.255779
\(874\) −5.99304e11 −0.0347413
\(875\) 0 0
\(876\) −1.81434e13 −1.04100
\(877\) 3.02157e13 1.72478 0.862390 0.506244i \(-0.168966\pi\)
0.862390 + 0.506244i \(0.168966\pi\)
\(878\) −1.20865e13 −0.686400
\(879\) −4.48115e12 −0.253186
\(880\) 0 0
\(881\) 1.85017e13 1.03471 0.517356 0.855770i \(-0.326916\pi\)
0.517356 + 0.855770i \(0.326916\pi\)
\(882\) −6.94065e12 −0.386182
\(883\) −1.38720e13 −0.767921 −0.383961 0.923349i \(-0.625440\pi\)
−0.383961 + 0.923349i \(0.625440\pi\)
\(884\) −4.47032e12 −0.246209
\(885\) 0 0
\(886\) 1.53240e13 0.835448
\(887\) −2.20852e13 −1.19797 −0.598984 0.800761i \(-0.704429\pi\)
−0.598984 + 0.800761i \(0.704429\pi\)
\(888\) −7.66504e11 −0.0413672
\(889\) −7.90181e12 −0.424296
\(890\) 0 0
\(891\) −6.15379e12 −0.327109
\(892\) −2.57880e13 −1.36388
\(893\) 2.45884e12 0.129389
\(894\) 1.32533e13 0.693911
\(895\) 0 0
\(896\) 2.52352e12 0.130804
\(897\) −7.43420e11 −0.0383414
\(898\) −3.24726e13 −1.66638
\(899\) 4.55067e12 0.232358
\(900\) 0 0
\(901\) 2.68988e13 1.35979
\(902\) −3.89546e12 −0.195943
\(903\) −5.50785e12 −0.275668
\(904\) −5.59001e11 −0.0278391
\(905\) 0 0
\(906\) −2.37379e13 −1.17048
\(907\) 1.50279e13 0.737336 0.368668 0.929561i \(-0.379814\pi\)
0.368668 + 0.929561i \(0.379814\pi\)
\(908\) −2.52071e13 −1.23066
\(909\) −8.32697e12 −0.404529
\(910\) 0 0
\(911\) 2.02336e13 0.973288 0.486644 0.873600i \(-0.338221\pi\)
0.486644 + 0.873600i \(0.338221\pi\)
\(912\) −3.00589e12 −0.143878
\(913\) 1.74854e12 0.0832830
\(914\) 3.51061e13 1.66389
\(915\) 0 0
\(916\) −1.29135e13 −0.606059
\(917\) −8.65472e11 −0.0404195
\(918\) −3.35205e13 −1.55782
\(919\) −2.10036e13 −0.971347 −0.485673 0.874140i \(-0.661426\pi\)
−0.485673 + 0.874140i \(0.661426\pi\)
\(920\) 0 0
\(921\) 1.76068e13 0.806326
\(922\) −2.10793e13 −0.960654
\(923\) 4.35959e11 0.0197714
\(924\) 2.65305e12 0.119735
\(925\) 0 0
\(926\) −8.60043e11 −0.0384389
\(927\) 1.61955e12 0.0720335
\(928\) −4.49157e12 −0.198807
\(929\) −2.02768e13 −0.893159 −0.446580 0.894744i \(-0.647358\pi\)
−0.446580 + 0.894744i \(0.647358\pi\)
\(930\) 0 0
\(931\) 3.18102e12 0.138769
\(932\) 9.81863e9 0.000426265 0
\(933\) 1.35926e13 0.587267
\(934\) −4.93665e13 −2.12262
\(935\) 0 0
\(936\) 4.40122e11 0.0187427
\(937\) −3.63175e13 −1.53917 −0.769587 0.638542i \(-0.779538\pi\)
−0.769587 + 0.638542i \(0.779538\pi\)
\(938\) −1.02200e12 −0.0431058
\(939\) 2.07693e13 0.871819
\(940\) 0 0
\(941\) −8.42040e12 −0.350090 −0.175045 0.984560i \(-0.556007\pi\)
−0.175045 + 0.984560i \(0.556007\pi\)
\(942\) 2.53675e13 1.04966
\(943\) −1.04995e12 −0.0432379
\(944\) −2.10711e13 −0.863600
\(945\) 0 0
\(946\) 2.01351e13 0.817419
\(947\) 3.79409e12 0.153297 0.0766484 0.997058i \(-0.475578\pi\)
0.0766484 + 0.997058i \(0.475578\pi\)
\(948\) −3.12307e12 −0.125587
\(949\) −1.03522e13 −0.414318
\(950\) 0 0
\(951\) 1.15186e13 0.456655
\(952\) −1.77049e12 −0.0698596
\(953\) −9.45158e11 −0.0371182 −0.0185591 0.999828i \(-0.505908\pi\)
−0.0185591 + 0.999828i \(0.505908\pi\)
\(954\) 1.40739e13 0.550107
\(955\) 0 0
\(956\) −2.60767e13 −1.00970
\(957\) 1.79999e12 0.0693690
\(958\) 1.49351e13 0.572879
\(959\) −5.09213e12 −0.194409
\(960\) 0 0
\(961\) 3.67789e13 1.39105
\(962\) 2.32420e12 0.0874954
\(963\) −1.58594e13 −0.594250
\(964\) −1.08598e12 −0.0405018
\(965\) 0 0
\(966\) 1.56471e12 0.0578146
\(967\) 1.49914e13 0.551344 0.275672 0.961252i \(-0.411100\pi\)
0.275672 + 0.961252i \(0.411100\pi\)
\(968\) −4.04600e12 −0.148111
\(969\) 3.67507e12 0.133909
\(970\) 0 0
\(971\) −2.36113e13 −0.852381 −0.426191 0.904633i \(-0.640145\pi\)
−0.426191 + 0.904633i \(0.640145\pi\)
\(972\) −1.41129e13 −0.507130
\(973\) −2.14771e12 −0.0768189
\(974\) 1.36370e13 0.485517
\(975\) 0 0
\(976\) 5.63412e13 1.98748
\(977\) 3.20135e13 1.12411 0.562053 0.827101i \(-0.310012\pi\)
0.562053 + 0.827101i \(0.310012\pi\)
\(978\) −2.10389e13 −0.735356
\(979\) 5.40689e12 0.188116
\(980\) 0 0
\(981\) −7.96744e12 −0.274668
\(982\) −1.10171e13 −0.378065
\(983\) −8.83785e12 −0.301895 −0.150948 0.988542i \(-0.548232\pi\)
−0.150948 + 0.988542i \(0.548232\pi\)
\(984\) −1.35528e12 −0.0460840
\(985\) 0 0
\(986\) 6.38357e12 0.215089
\(987\) −6.41974e12 −0.215323
\(988\) 1.07198e12 0.0357914
\(989\) 5.42705e12 0.180377
\(990\) 0 0
\(991\) −1.68042e12 −0.0553459 −0.0276729 0.999617i \(-0.508810\pi\)
−0.0276729 + 0.999617i \(0.508810\pi\)
\(992\) −6.23974e13 −2.04580
\(993\) 2.36945e13 0.773351
\(994\) −9.17586e11 −0.0298132
\(995\) 0 0
\(996\) −3.23289e12 −0.104094
\(997\) 3.62155e13 1.16082 0.580412 0.814323i \(-0.302892\pi\)
0.580412 + 0.814323i \(0.302892\pi\)
\(998\) −8.84314e12 −0.282175
\(999\) 7.96460e12 0.252999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.h.1.3 yes 17
5.4 even 2 325.10.a.g.1.15 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.10.a.g.1.15 17 5.4 even 2
325.10.a.h.1.3 yes 17 1.1 even 1 trivial