Properties

Label 325.10.a.k.1.4
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(27\)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-37.2225 q^{2} -132.249 q^{3} +873.511 q^{4} +4922.65 q^{6} -6816.48 q^{7} -13456.3 q^{8} -2193.09 q^{9} -40762.4 q^{11} -115521. q^{12} +28561.0 q^{13} +253726. q^{14} +53640.4 q^{16} -491145. q^{17} +81632.3 q^{18} +713534. q^{19} +901476. q^{21} +1.51728e6 q^{22} -1.62288e6 q^{23} +1.77959e6 q^{24} -1.06311e6 q^{26} +2.89310e6 q^{27} -5.95427e6 q^{28} -2.06761e6 q^{29} +7.21399e6 q^{31} +4.89302e6 q^{32} +5.39080e6 q^{33} +1.82816e7 q^{34} -1.91569e6 q^{36} -6.13511e6 q^{37} -2.65595e7 q^{38} -3.77718e6 q^{39} -532270. q^{41} -3.35551e7 q^{42} -2.95343e7 q^{43} -3.56064e7 q^{44} +6.04077e7 q^{46} -2.98650e7 q^{47} -7.09391e6 q^{48} +6.11080e6 q^{49} +6.49536e7 q^{51} +2.49484e7 q^{52} -1.01037e8 q^{53} -1.07688e8 q^{54} +9.17249e7 q^{56} -9.43645e7 q^{57} +7.69617e7 q^{58} +1.55968e8 q^{59} -1.25023e7 q^{61} -2.68522e8 q^{62} +1.49492e7 q^{63} -2.09594e8 q^{64} -2.00659e8 q^{66} +1.62345e8 q^{67} -4.29020e8 q^{68} +2.14625e8 q^{69} -2.03300e8 q^{71} +2.95110e7 q^{72} +1.19966e8 q^{73} +2.28364e8 q^{74} +6.23280e8 q^{76} +2.77856e8 q^{77} +1.40596e8 q^{78} +1.36039e8 q^{79} -3.39444e8 q^{81} +1.98124e7 q^{82} +6.00605e8 q^{83} +7.87449e8 q^{84} +1.09934e9 q^{86} +2.73441e8 q^{87} +5.48513e8 q^{88} -2.21485e7 q^{89} -1.94685e8 q^{91} -1.41761e9 q^{92} -9.54046e8 q^{93} +1.11165e9 q^{94} -6.47099e8 q^{96} +6.11371e8 q^{97} -2.27459e8 q^{98} +8.93957e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 48 q^{2} - 324 q^{3} + 6570 q^{4} - 1786 q^{6} - 3736 q^{7} - 36864 q^{8} + 214173 q^{9} - 66096 q^{11} - 114398 q^{12} + 771147 q^{13} - 359458 q^{14} + 998622 q^{16} - 779040 q^{17} - 1709648 q^{18}+ \cdots + 2142297632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −37.2225 −1.64502 −0.822508 0.568754i \(-0.807426\pi\)
−0.822508 + 0.568754i \(0.807426\pi\)
\(3\) −132.249 −0.942645 −0.471322 0.881961i \(-0.656223\pi\)
−0.471322 + 0.881961i \(0.656223\pi\)
\(4\) 873.511 1.70608
\(5\) 0 0
\(6\) 4922.65 1.55067
\(7\) −6816.48 −1.07305 −0.536524 0.843885i \(-0.680263\pi\)
−0.536524 + 0.843885i \(0.680263\pi\)
\(8\) −13456.3 −1.16151
\(9\) −2193.09 −0.111421
\(10\) 0 0
\(11\) −40762.4 −0.839446 −0.419723 0.907652i \(-0.637873\pi\)
−0.419723 + 0.907652i \(0.637873\pi\)
\(12\) −115521. −1.60822
\(13\) 28561.0 0.277350
\(14\) 253726. 1.76518
\(15\) 0 0
\(16\) 53640.4 0.204622
\(17\) −491145. −1.42623 −0.713114 0.701048i \(-0.752716\pi\)
−0.713114 + 0.701048i \(0.752716\pi\)
\(18\) 81632.3 0.183289
\(19\) 713534. 1.25610 0.628049 0.778174i \(-0.283854\pi\)
0.628049 + 0.778174i \(0.283854\pi\)
\(20\) 0 0
\(21\) 901476. 1.01150
\(22\) 1.51728e6 1.38090
\(23\) −1.62288e6 −1.20924 −0.604620 0.796514i \(-0.706675\pi\)
−0.604620 + 0.796514i \(0.706675\pi\)
\(24\) 1.77959e6 1.09489
\(25\) 0 0
\(26\) −1.06311e6 −0.456245
\(27\) 2.89310e6 1.04767
\(28\) −5.95427e6 −1.83070
\(29\) −2.06761e6 −0.542848 −0.271424 0.962460i \(-0.587495\pi\)
−0.271424 + 0.962460i \(0.587495\pi\)
\(30\) 0 0
\(31\) 7.21399e6 1.40297 0.701484 0.712685i \(-0.252521\pi\)
0.701484 + 0.712685i \(0.252521\pi\)
\(32\) 4.89302e6 0.824902
\(33\) 5.39080e6 0.791299
\(34\) 1.82816e7 2.34617
\(35\) 0 0
\(36\) −1.91569e6 −0.190092
\(37\) −6.13511e6 −0.538164 −0.269082 0.963117i \(-0.586720\pi\)
−0.269082 + 0.963117i \(0.586720\pi\)
\(38\) −2.65595e7 −2.06630
\(39\) −3.77718e6 −0.261443
\(40\) 0 0
\(41\) −532270. −0.0294174 −0.0147087 0.999892i \(-0.504682\pi\)
−0.0147087 + 0.999892i \(0.504682\pi\)
\(42\) −3.35551e7 −1.66394
\(43\) −2.95343e7 −1.31740 −0.658701 0.752405i \(-0.728894\pi\)
−0.658701 + 0.752405i \(0.728894\pi\)
\(44\) −3.56064e7 −1.43216
\(45\) 0 0
\(46\) 6.04077e7 1.98922
\(47\) −2.98650e7 −0.892735 −0.446368 0.894850i \(-0.647283\pi\)
−0.446368 + 0.894850i \(0.647283\pi\)
\(48\) −7.09391e6 −0.192886
\(49\) 6.11080e6 0.151431
\(50\) 0 0
\(51\) 6.49536e7 1.34443
\(52\) 2.49484e7 0.473181
\(53\) −1.01037e8 −1.75890 −0.879449 0.475994i \(-0.842088\pi\)
−0.879449 + 0.475994i \(0.842088\pi\)
\(54\) −1.07688e8 −1.72344
\(55\) 0 0
\(56\) 9.17249e7 1.24635
\(57\) −9.43645e7 −1.18405
\(58\) 7.69617e7 0.892994
\(59\) 1.55968e8 1.67572 0.837860 0.545886i \(-0.183807\pi\)
0.837860 + 0.545886i \(0.183807\pi\)
\(60\) 0 0
\(61\) −1.25023e7 −0.115612 −0.0578062 0.998328i \(-0.518411\pi\)
−0.0578062 + 0.998328i \(0.518411\pi\)
\(62\) −2.68522e8 −2.30790
\(63\) 1.49492e7 0.119560
\(64\) −2.09594e8 −1.56160
\(65\) 0 0
\(66\) −2.00659e8 −1.30170
\(67\) 1.62345e8 0.984240 0.492120 0.870527i \(-0.336222\pi\)
0.492120 + 0.870527i \(0.336222\pi\)
\(68\) −4.29020e8 −2.43326
\(69\) 2.14625e8 1.13988
\(70\) 0 0
\(71\) −2.03300e8 −0.949457 −0.474728 0.880132i \(-0.657454\pi\)
−0.474728 + 0.880132i \(0.657454\pi\)
\(72\) 2.95110e7 0.129416
\(73\) 1.19966e8 0.494431 0.247215 0.968961i \(-0.420484\pi\)
0.247215 + 0.968961i \(0.420484\pi\)
\(74\) 2.28364e8 0.885289
\(75\) 0 0
\(76\) 6.23280e8 2.14300
\(77\) 2.77856e8 0.900766
\(78\) 1.40596e8 0.430077
\(79\) 1.36039e8 0.392953 0.196477 0.980509i \(-0.437050\pi\)
0.196477 + 0.980509i \(0.437050\pi\)
\(80\) 0 0
\(81\) −3.39444e8 −0.876165
\(82\) 1.98124e7 0.0483921
\(83\) 6.00605e8 1.38911 0.694557 0.719438i \(-0.255601\pi\)
0.694557 + 0.719438i \(0.255601\pi\)
\(84\) 7.87449e8 1.72570
\(85\) 0 0
\(86\) 1.09934e9 2.16715
\(87\) 2.73441e8 0.511713
\(88\) 5.48513e8 0.975023
\(89\) −2.21485e7 −0.0374188 −0.0187094 0.999825i \(-0.505956\pi\)
−0.0187094 + 0.999825i \(0.505956\pi\)
\(90\) 0 0
\(91\) −1.94685e8 −0.297610
\(92\) −1.41761e9 −2.06306
\(93\) −9.54046e8 −1.32250
\(94\) 1.11165e9 1.46856
\(95\) 0 0
\(96\) −6.47099e8 −0.777589
\(97\) 6.11371e8 0.701185 0.350592 0.936528i \(-0.385980\pi\)
0.350592 + 0.936528i \(0.385980\pi\)
\(98\) −2.27459e8 −0.249107
\(99\) 8.93957e7 0.0935316
\(100\) 0 0
\(101\) 1.26038e9 1.20519 0.602595 0.798047i \(-0.294133\pi\)
0.602595 + 0.798047i \(0.294133\pi\)
\(102\) −2.41773e9 −2.21160
\(103\) 4.51112e8 0.394927 0.197463 0.980310i \(-0.436730\pi\)
0.197463 + 0.980310i \(0.436730\pi\)
\(104\) −3.84327e8 −0.322144
\(105\) 0 0
\(106\) 3.76086e9 2.89341
\(107\) 1.12075e9 0.826571 0.413286 0.910601i \(-0.364381\pi\)
0.413286 + 0.910601i \(0.364381\pi\)
\(108\) 2.52716e9 1.78741
\(109\) 1.23127e9 0.835474 0.417737 0.908568i \(-0.362823\pi\)
0.417737 + 0.908568i \(0.362823\pi\)
\(110\) 0 0
\(111\) 8.11365e8 0.507298
\(112\) −3.65639e8 −0.219569
\(113\) 2.16070e9 1.24664 0.623319 0.781967i \(-0.285784\pi\)
0.623319 + 0.781967i \(0.285784\pi\)
\(114\) 3.51248e9 1.94779
\(115\) 0 0
\(116\) −1.80608e9 −0.926141
\(117\) −6.26369e7 −0.0309025
\(118\) −5.80551e9 −2.75658
\(119\) 3.34788e9 1.53041
\(120\) 0 0
\(121\) −6.96374e8 −0.295330
\(122\) 4.65365e8 0.190184
\(123\) 7.03924e7 0.0277302
\(124\) 6.30150e9 2.39357
\(125\) 0 0
\(126\) −5.56445e8 −0.196678
\(127\) 3.64303e9 1.24264 0.621321 0.783556i \(-0.286596\pi\)
0.621321 + 0.783556i \(0.286596\pi\)
\(128\) 5.29638e9 1.74395
\(129\) 3.90589e9 1.24184
\(130\) 0 0
\(131\) −4.88121e9 −1.44813 −0.724064 0.689733i \(-0.757728\pi\)
−0.724064 + 0.689733i \(0.757728\pi\)
\(132\) 4.70893e9 1.35002
\(133\) −4.86379e9 −1.34785
\(134\) −6.04286e9 −1.61909
\(135\) 0 0
\(136\) 6.60901e9 1.65658
\(137\) 1.73487e9 0.420749 0.210375 0.977621i \(-0.432532\pi\)
0.210375 + 0.977621i \(0.432532\pi\)
\(138\) −7.98889e9 −1.87513
\(139\) 6.60807e8 0.150144 0.0750720 0.997178i \(-0.476081\pi\)
0.0750720 + 0.997178i \(0.476081\pi\)
\(140\) 0 0
\(141\) 3.94963e9 0.841532
\(142\) 7.56733e9 1.56187
\(143\) −1.16422e9 −0.232820
\(144\) −1.17638e8 −0.0227991
\(145\) 0 0
\(146\) −4.46543e9 −0.813346
\(147\) −8.08150e8 −0.142746
\(148\) −5.35909e9 −0.918150
\(149\) −5.03914e9 −0.837565 −0.418782 0.908087i \(-0.637543\pi\)
−0.418782 + 0.908087i \(0.637543\pi\)
\(150\) 0 0
\(151\) −3.22365e8 −0.0504606 −0.0252303 0.999682i \(-0.508032\pi\)
−0.0252303 + 0.999682i \(0.508032\pi\)
\(152\) −9.60156e9 −1.45897
\(153\) 1.07713e9 0.158911
\(154\) −1.03425e10 −1.48177
\(155\) 0 0
\(156\) −3.29941e9 −0.446041
\(157\) 2.20422e9 0.289539 0.144769 0.989465i \(-0.453756\pi\)
0.144769 + 0.989465i \(0.453756\pi\)
\(158\) −5.06370e9 −0.646414
\(159\) 1.33621e10 1.65802
\(160\) 0 0
\(161\) 1.10624e10 1.29757
\(162\) 1.26349e10 1.44130
\(163\) 3.76557e9 0.417818 0.208909 0.977935i \(-0.433009\pi\)
0.208909 + 0.977935i \(0.433009\pi\)
\(164\) −4.64944e8 −0.0501884
\(165\) 0 0
\(166\) −2.23560e10 −2.28511
\(167\) −1.63486e10 −1.62651 −0.813256 0.581906i \(-0.802307\pi\)
−0.813256 + 0.581906i \(0.802307\pi\)
\(168\) −1.21306e10 −1.17487
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.56485e9 −0.139955
\(172\) −2.57985e10 −2.24759
\(173\) 1.35401e10 1.14925 0.574624 0.818418i \(-0.305148\pi\)
0.574624 + 0.818418i \(0.305148\pi\)
\(174\) −1.01781e10 −0.841776
\(175\) 0 0
\(176\) −2.18651e9 −0.171769
\(177\) −2.06267e10 −1.57961
\(178\) 8.24422e8 0.0615544
\(179\) 1.49939e10 1.09163 0.545817 0.837905i \(-0.316219\pi\)
0.545817 + 0.837905i \(0.316219\pi\)
\(180\) 0 0
\(181\) 1.82087e10 1.26103 0.630514 0.776178i \(-0.282844\pi\)
0.630514 + 0.776178i \(0.282844\pi\)
\(182\) 7.24667e9 0.489573
\(183\) 1.65342e9 0.108981
\(184\) 2.18381e10 1.40454
\(185\) 0 0
\(186\) 3.55119e10 2.17553
\(187\) 2.00202e10 1.19724
\(188\) −2.60874e10 −1.52307
\(189\) −1.97208e10 −1.12421
\(190\) 0 0
\(191\) 9.54730e9 0.519075 0.259538 0.965733i \(-0.416430\pi\)
0.259538 + 0.965733i \(0.416430\pi\)
\(192\) 2.77187e10 1.47203
\(193\) −6.05753e8 −0.0314259 −0.0157129 0.999877i \(-0.505002\pi\)
−0.0157129 + 0.999877i \(0.505002\pi\)
\(194\) −2.27567e10 −1.15346
\(195\) 0 0
\(196\) 5.33785e9 0.258353
\(197\) 4.53488e9 0.214520 0.107260 0.994231i \(-0.465792\pi\)
0.107260 + 0.994231i \(0.465792\pi\)
\(198\) −3.32753e9 −0.153861
\(199\) 2.63037e10 1.18899 0.594494 0.804100i \(-0.297352\pi\)
0.594494 + 0.804100i \(0.297352\pi\)
\(200\) 0 0
\(201\) −2.14700e10 −0.927789
\(202\) −4.69145e10 −1.98256
\(203\) 1.40938e10 0.582502
\(204\) 5.67377e10 2.29370
\(205\) 0 0
\(206\) −1.67915e10 −0.649661
\(207\) 3.55913e9 0.134734
\(208\) 1.53202e9 0.0567519
\(209\) −2.90854e10 −1.05443
\(210\) 0 0
\(211\) −4.77575e10 −1.65871 −0.829355 0.558721i \(-0.811292\pi\)
−0.829355 + 0.558721i \(0.811292\pi\)
\(212\) −8.82573e10 −3.00081
\(213\) 2.68863e10 0.895001
\(214\) −4.17169e10 −1.35972
\(215\) 0 0
\(216\) −3.89306e10 −1.21688
\(217\) −4.91740e10 −1.50545
\(218\) −4.58308e10 −1.37437
\(219\) −1.58654e10 −0.466073
\(220\) 0 0
\(221\) −1.40276e10 −0.395565
\(222\) −3.02010e10 −0.834513
\(223\) −6.38736e10 −1.72961 −0.864807 0.502104i \(-0.832559\pi\)
−0.864807 + 0.502104i \(0.832559\pi\)
\(224\) −3.33532e10 −0.885159
\(225\) 0 0
\(226\) −8.04264e10 −2.05074
\(227\) 4.22941e10 1.05722 0.528608 0.848866i \(-0.322714\pi\)
0.528608 + 0.848866i \(0.322714\pi\)
\(228\) −8.24284e10 −2.02009
\(229\) 2.40369e10 0.577588 0.288794 0.957391i \(-0.406746\pi\)
0.288794 + 0.957391i \(0.406746\pi\)
\(230\) 0 0
\(231\) −3.67463e10 −0.849102
\(232\) 2.78225e10 0.630522
\(233\) 6.02252e10 1.33868 0.669339 0.742957i \(-0.266577\pi\)
0.669339 + 0.742957i \(0.266577\pi\)
\(234\) 2.33150e9 0.0508351
\(235\) 0 0
\(236\) 1.36240e11 2.85891
\(237\) −1.79911e10 −0.370415
\(238\) −1.24616e11 −2.51755
\(239\) −1.55942e9 −0.0309153 −0.0154577 0.999881i \(-0.504921\pi\)
−0.0154577 + 0.999881i \(0.504921\pi\)
\(240\) 0 0
\(241\) −3.22896e10 −0.616575 −0.308288 0.951293i \(-0.599756\pi\)
−0.308288 + 0.951293i \(0.599756\pi\)
\(242\) 2.59207e10 0.485823
\(243\) −1.20536e10 −0.221763
\(244\) −1.09209e10 −0.197244
\(245\) 0 0
\(246\) −2.62018e9 −0.0456166
\(247\) 2.03792e10 0.348379
\(248\) −9.70739e10 −1.62956
\(249\) −7.94297e10 −1.30944
\(250\) 0 0
\(251\) 1.05445e11 1.67685 0.838424 0.545019i \(-0.183478\pi\)
0.838424 + 0.545019i \(0.183478\pi\)
\(252\) 1.30583e10 0.203978
\(253\) 6.61527e10 1.01509
\(254\) −1.35602e11 −2.04416
\(255\) 0 0
\(256\) −8.98322e10 −1.30723
\(257\) −8.39088e10 −1.19980 −0.599900 0.800075i \(-0.704793\pi\)
−0.599900 + 0.800075i \(0.704793\pi\)
\(258\) −1.45387e11 −2.04285
\(259\) 4.18199e10 0.577476
\(260\) 0 0
\(261\) 4.53447e9 0.0604845
\(262\) 1.81691e11 2.38219
\(263\) 7.08565e10 0.913227 0.456613 0.889665i \(-0.349062\pi\)
0.456613 + 0.889665i \(0.349062\pi\)
\(264\) −7.25405e10 −0.919101
\(265\) 0 0
\(266\) 1.81042e11 2.21724
\(267\) 2.92913e9 0.0352726
\(268\) 1.41810e11 1.67919
\(269\) 9.05787e9 0.105473 0.0527364 0.998608i \(-0.483206\pi\)
0.0527364 + 0.998608i \(0.483206\pi\)
\(270\) 0 0
\(271\) −9.36362e10 −1.05459 −0.527293 0.849683i \(-0.676793\pi\)
−0.527293 + 0.849683i \(0.676793\pi\)
\(272\) −2.63452e10 −0.291837
\(273\) 2.57470e10 0.280540
\(274\) −6.45760e10 −0.692139
\(275\) 0 0
\(276\) 1.87478e11 1.94473
\(277\) 1.77801e11 1.81458 0.907288 0.420511i \(-0.138149\pi\)
0.907288 + 0.420511i \(0.138149\pi\)
\(278\) −2.45969e10 −0.246989
\(279\) −1.58209e10 −0.156320
\(280\) 0 0
\(281\) −5.62732e10 −0.538422 −0.269211 0.963081i \(-0.586763\pi\)
−0.269211 + 0.963081i \(0.586763\pi\)
\(282\) −1.47015e11 −1.38433
\(283\) −8.99873e10 −0.833955 −0.416977 0.908917i \(-0.636911\pi\)
−0.416977 + 0.908917i \(0.636911\pi\)
\(284\) −1.77585e11 −1.61985
\(285\) 0 0
\(286\) 4.33350e10 0.382993
\(287\) 3.62821e9 0.0315663
\(288\) −1.07308e10 −0.0919111
\(289\) 1.22635e11 1.03413
\(290\) 0 0
\(291\) −8.08535e10 −0.660968
\(292\) 1.04792e11 0.843537
\(293\) −9.29810e10 −0.737038 −0.368519 0.929620i \(-0.620135\pi\)
−0.368519 + 0.929620i \(0.620135\pi\)
\(294\) 3.00813e10 0.234819
\(295\) 0 0
\(296\) 8.25562e10 0.625082
\(297\) −1.17930e11 −0.879467
\(298\) 1.87569e11 1.37781
\(299\) −4.63512e10 −0.335383
\(300\) 0 0
\(301\) 2.01320e11 1.41363
\(302\) 1.19992e10 0.0830084
\(303\) −1.66685e11 −1.13607
\(304\) 3.82742e10 0.257025
\(305\) 0 0
\(306\) −4.00933e10 −0.261412
\(307\) −2.69852e10 −0.173381 −0.0866907 0.996235i \(-0.527629\pi\)
−0.0866907 + 0.996235i \(0.527629\pi\)
\(308\) 2.42711e11 1.53678
\(309\) −5.96592e10 −0.372276
\(310\) 0 0
\(311\) −2.25101e11 −1.36445 −0.682223 0.731144i \(-0.738987\pi\)
−0.682223 + 0.731144i \(0.738987\pi\)
\(312\) 5.08270e10 0.303668
\(313\) −4.35700e10 −0.256589 −0.128295 0.991736i \(-0.540950\pi\)
−0.128295 + 0.991736i \(0.540950\pi\)
\(314\) −8.20466e10 −0.476296
\(315\) 0 0
\(316\) 1.18831e11 0.670408
\(317\) 2.47102e11 1.37439 0.687193 0.726475i \(-0.258843\pi\)
0.687193 + 0.726475i \(0.258843\pi\)
\(318\) −4.97371e11 −2.72746
\(319\) 8.42809e10 0.455692
\(320\) 0 0
\(321\) −1.48218e11 −0.779163
\(322\) −4.11768e11 −2.13453
\(323\) −3.50448e11 −1.79148
\(324\) −2.96508e11 −1.49480
\(325\) 0 0
\(326\) −1.40164e11 −0.687316
\(327\) −1.62834e11 −0.787555
\(328\) 7.16241e9 0.0341686
\(329\) 2.03574e11 0.957947
\(330\) 0 0
\(331\) −2.07256e11 −0.949032 −0.474516 0.880247i \(-0.657377\pi\)
−0.474516 + 0.880247i \(0.657377\pi\)
\(332\) 5.24635e11 2.36993
\(333\) 1.34549e10 0.0599626
\(334\) 6.08536e11 2.67564
\(335\) 0 0
\(336\) 4.83555e10 0.206976
\(337\) −7.53957e10 −0.318429 −0.159214 0.987244i \(-0.550896\pi\)
−0.159214 + 0.987244i \(0.550896\pi\)
\(338\) −3.03635e10 −0.126540
\(339\) −2.85751e11 −1.17514
\(340\) 0 0
\(341\) −2.94060e11 −1.17772
\(342\) 5.82474e10 0.230229
\(343\) 2.33415e11 0.910555
\(344\) 3.97423e11 1.53017
\(345\) 0 0
\(346\) −5.03995e11 −1.89053
\(347\) −3.72852e11 −1.38056 −0.690278 0.723545i \(-0.742512\pi\)
−0.690278 + 0.723545i \(0.742512\pi\)
\(348\) 2.38854e11 0.873022
\(349\) 1.75594e11 0.633570 0.316785 0.948497i \(-0.397397\pi\)
0.316785 + 0.948497i \(0.397397\pi\)
\(350\) 0 0
\(351\) 8.26298e10 0.290573
\(352\) −1.99451e11 −0.692460
\(353\) −4.04373e11 −1.38610 −0.693052 0.720887i \(-0.743735\pi\)
−0.693052 + 0.720887i \(0.743735\pi\)
\(354\) 7.67775e11 2.59848
\(355\) 0 0
\(356\) −1.93470e10 −0.0638393
\(357\) −4.42755e11 −1.44263
\(358\) −5.58111e11 −1.79575
\(359\) 1.84093e11 0.584941 0.292471 0.956275i \(-0.405523\pi\)
0.292471 + 0.956275i \(0.405523\pi\)
\(360\) 0 0
\(361\) 1.86443e11 0.577782
\(362\) −6.77771e11 −2.07441
\(363\) 9.20950e10 0.278392
\(364\) −1.70060e11 −0.507745
\(365\) 0 0
\(366\) −6.15442e10 −0.179276
\(367\) 2.79309e11 0.803689 0.401845 0.915708i \(-0.368369\pi\)
0.401845 + 0.915708i \(0.368369\pi\)
\(368\) −8.70521e10 −0.247437
\(369\) 1.16732e9 0.00327771
\(370\) 0 0
\(371\) 6.88719e11 1.88738
\(372\) −8.33370e11 −2.25629
\(373\) 5.69504e11 1.52338 0.761688 0.647944i \(-0.224371\pi\)
0.761688 + 0.647944i \(0.224371\pi\)
\(374\) −7.45202e11 −1.96948
\(375\) 0 0
\(376\) 4.01874e11 1.03692
\(377\) −5.90531e10 −0.150559
\(378\) 7.34055e11 1.84934
\(379\) 5.46281e10 0.136000 0.0680001 0.997685i \(-0.478338\pi\)
0.0680001 + 0.997685i \(0.478338\pi\)
\(380\) 0 0
\(381\) −4.81788e11 −1.17137
\(382\) −3.55374e11 −0.853887
\(383\) −5.83372e11 −1.38532 −0.692661 0.721263i \(-0.743562\pi\)
−0.692661 + 0.721263i \(0.743562\pi\)
\(384\) −7.00444e11 −1.64393
\(385\) 0 0
\(386\) 2.25476e10 0.0516961
\(387\) 6.47714e10 0.146786
\(388\) 5.34040e11 1.19627
\(389\) 4.24751e11 0.940506 0.470253 0.882532i \(-0.344163\pi\)
0.470253 + 0.882532i \(0.344163\pi\)
\(390\) 0 0
\(391\) 7.97071e11 1.72465
\(392\) −8.22290e10 −0.175889
\(393\) 6.45538e11 1.36507
\(394\) −1.68799e11 −0.352889
\(395\) 0 0
\(396\) 7.80882e10 0.159572
\(397\) 1.61966e11 0.327241 0.163620 0.986523i \(-0.447683\pi\)
0.163620 + 0.986523i \(0.447683\pi\)
\(398\) −9.79088e11 −1.95590
\(399\) 6.43233e11 1.27055
\(400\) 0 0
\(401\) 1.70193e11 0.328695 0.164347 0.986403i \(-0.447448\pi\)
0.164347 + 0.986403i \(0.447448\pi\)
\(402\) 7.99165e11 1.52623
\(403\) 2.06039e11 0.389113
\(404\) 1.10096e12 2.05615
\(405\) 0 0
\(406\) −5.24608e11 −0.958225
\(407\) 2.50082e11 0.451760
\(408\) −8.74038e11 −1.56156
\(409\) −4.66309e11 −0.823985 −0.411992 0.911187i \(-0.635167\pi\)
−0.411992 + 0.911187i \(0.635167\pi\)
\(410\) 0 0
\(411\) −2.29435e11 −0.396617
\(412\) 3.94051e11 0.673775
\(413\) −1.06315e12 −1.79813
\(414\) −1.32480e11 −0.221640
\(415\) 0 0
\(416\) 1.39750e11 0.228787
\(417\) −8.73913e10 −0.141532
\(418\) 1.08263e12 1.73455
\(419\) −1.12343e12 −1.78066 −0.890331 0.455313i \(-0.849527\pi\)
−0.890331 + 0.455313i \(0.849527\pi\)
\(420\) 0 0
\(421\) 1.85868e11 0.288361 0.144180 0.989551i \(-0.453945\pi\)
0.144180 + 0.989551i \(0.453945\pi\)
\(422\) 1.77765e12 2.72861
\(423\) 6.54968e10 0.0994691
\(424\) 1.35959e12 2.04297
\(425\) 0 0
\(426\) −1.00078e12 −1.47229
\(427\) 8.52214e10 0.124058
\(428\) 9.78984e11 1.41019
\(429\) 1.53967e11 0.219467
\(430\) 0 0
\(431\) −9.96119e11 −1.39048 −0.695238 0.718780i \(-0.744701\pi\)
−0.695238 + 0.718780i \(0.744701\pi\)
\(432\) 1.55187e11 0.214377
\(433\) −7.07735e11 −0.967554 −0.483777 0.875191i \(-0.660735\pi\)
−0.483777 + 0.875191i \(0.660735\pi\)
\(434\) 1.83038e12 2.47649
\(435\) 0 0
\(436\) 1.07553e12 1.42538
\(437\) −1.15798e12 −1.51892
\(438\) 5.90551e11 0.766697
\(439\) 5.59583e11 0.719075 0.359537 0.933131i \(-0.382934\pi\)
0.359537 + 0.933131i \(0.382934\pi\)
\(440\) 0 0
\(441\) −1.34015e10 −0.0168726
\(442\) 5.22141e11 0.650710
\(443\) 9.38157e11 1.15733 0.578667 0.815564i \(-0.303573\pi\)
0.578667 + 0.815564i \(0.303573\pi\)
\(444\) 7.08737e11 0.865489
\(445\) 0 0
\(446\) 2.37753e12 2.84524
\(447\) 6.66424e11 0.789526
\(448\) 1.42869e12 1.67567
\(449\) 9.59461e11 1.11409 0.557043 0.830484i \(-0.311936\pi\)
0.557043 + 0.830484i \(0.311936\pi\)
\(450\) 0 0
\(451\) 2.16966e10 0.0246943
\(452\) 1.88739e12 2.12686
\(453\) 4.26326e10 0.0475664
\(454\) −1.57429e12 −1.73914
\(455\) 0 0
\(456\) 1.26980e12 1.37529
\(457\) 1.57983e12 1.69429 0.847144 0.531364i \(-0.178320\pi\)
0.847144 + 0.531364i \(0.178320\pi\)
\(458\) −8.94711e11 −0.950141
\(459\) −1.42093e12 −1.49422
\(460\) 0 0
\(461\) −8.03099e10 −0.0828161 −0.0414080 0.999142i \(-0.513184\pi\)
−0.0414080 + 0.999142i \(0.513184\pi\)
\(462\) 1.36779e12 1.39679
\(463\) 1.49606e12 1.51299 0.756494 0.654001i \(-0.226911\pi\)
0.756494 + 0.654001i \(0.226911\pi\)
\(464\) −1.10908e11 −0.111079
\(465\) 0 0
\(466\) −2.24173e12 −2.20215
\(467\) 5.13408e11 0.499501 0.249750 0.968310i \(-0.419651\pi\)
0.249750 + 0.968310i \(0.419651\pi\)
\(468\) −5.47141e10 −0.0527221
\(469\) −1.10662e12 −1.05614
\(470\) 0 0
\(471\) −2.91507e11 −0.272932
\(472\) −2.09876e12 −1.94636
\(473\) 1.20389e12 1.10589
\(474\) 6.69671e11 0.609339
\(475\) 0 0
\(476\) 2.92441e12 2.61100
\(477\) 2.21584e11 0.195977
\(478\) 5.80456e10 0.0508562
\(479\) −2.14608e12 −1.86267 −0.931335 0.364163i \(-0.881355\pi\)
−0.931335 + 0.364163i \(0.881355\pi\)
\(480\) 0 0
\(481\) −1.75225e11 −0.149260
\(482\) 1.20190e12 1.01428
\(483\) −1.46299e12 −1.22315
\(484\) −6.08290e11 −0.503857
\(485\) 0 0
\(486\) 4.48665e11 0.364803
\(487\) −1.20344e12 −0.969489 −0.484745 0.874656i \(-0.661087\pi\)
−0.484745 + 0.874656i \(0.661087\pi\)
\(488\) 1.68235e11 0.134285
\(489\) −4.97995e11 −0.393854
\(490\) 0 0
\(491\) −1.67385e12 −1.29972 −0.649858 0.760055i \(-0.725172\pi\)
−0.649858 + 0.760055i \(0.725172\pi\)
\(492\) 6.14886e10 0.0473098
\(493\) 1.01550e12 0.774226
\(494\) −7.58566e11 −0.573089
\(495\) 0 0
\(496\) 3.86961e11 0.287078
\(497\) 1.38579e12 1.01881
\(498\) 2.95657e12 2.15405
\(499\) −5.48884e11 −0.396304 −0.198152 0.980171i \(-0.563494\pi\)
−0.198152 + 0.980171i \(0.563494\pi\)
\(500\) 0 0
\(501\) 2.16210e12 1.53322
\(502\) −3.92492e12 −2.75844
\(503\) −1.49726e12 −1.04289 −0.521447 0.853283i \(-0.674608\pi\)
−0.521447 + 0.853283i \(0.674608\pi\)
\(504\) −2.01161e11 −0.138869
\(505\) 0 0
\(506\) −2.46236e12 −1.66984
\(507\) −1.07880e11 −0.0725111
\(508\) 3.18223e12 2.12004
\(509\) 3.00504e12 1.98436 0.992179 0.124822i \(-0.0398359\pi\)
0.992179 + 0.124822i \(0.0398359\pi\)
\(510\) 0 0
\(511\) −8.17746e11 −0.530548
\(512\) 6.32027e11 0.406463
\(513\) 2.06433e12 1.31598
\(514\) 3.12329e12 1.97369
\(515\) 0 0
\(516\) 3.41184e12 2.11868
\(517\) 1.21737e12 0.749403
\(518\) −1.55664e12 −0.949957
\(519\) −1.79067e12 −1.08333
\(520\) 0 0
\(521\) −1.15582e12 −0.687258 −0.343629 0.939105i \(-0.611656\pi\)
−0.343629 + 0.939105i \(0.611656\pi\)
\(522\) −1.68784e11 −0.0994979
\(523\) −1.64038e12 −0.958710 −0.479355 0.877621i \(-0.659129\pi\)
−0.479355 + 0.877621i \(0.659129\pi\)
\(524\) −4.26380e12 −2.47062
\(525\) 0 0
\(526\) −2.63745e12 −1.50227
\(527\) −3.54311e12 −2.00095
\(528\) 2.89165e11 0.161917
\(529\) 8.32600e11 0.462260
\(530\) 0 0
\(531\) −3.42052e11 −0.186710
\(532\) −4.24858e12 −2.29954
\(533\) −1.52022e10 −0.00815893
\(534\) −1.09029e11 −0.0580240
\(535\) 0 0
\(536\) −2.18456e12 −1.14320
\(537\) −1.98294e12 −1.02902
\(538\) −3.37156e11 −0.173504
\(539\) −2.49091e11 −0.127118
\(540\) 0 0
\(541\) −6.56694e11 −0.329591 −0.164796 0.986328i \(-0.552696\pi\)
−0.164796 + 0.986328i \(0.552696\pi\)
\(542\) 3.48537e12 1.73481
\(543\) −2.40809e12 −1.18870
\(544\) −2.40318e12 −1.17650
\(545\) 0 0
\(546\) −9.58368e11 −0.461493
\(547\) 1.75594e12 0.838621 0.419311 0.907843i \(-0.362272\pi\)
0.419311 + 0.907843i \(0.362272\pi\)
\(548\) 1.51543e12 0.717831
\(549\) 2.74186e10 0.0128816
\(550\) 0 0
\(551\) −1.47531e12 −0.681870
\(552\) −2.88807e12 −1.32398
\(553\) −9.27306e11 −0.421658
\(554\) −6.61819e12 −2.98500
\(555\) 0 0
\(556\) 5.77222e11 0.256157
\(557\) 7.12754e11 0.313755 0.156878 0.987618i \(-0.449857\pi\)
0.156878 + 0.987618i \(0.449857\pi\)
\(558\) 5.88894e11 0.257148
\(559\) −8.43528e11 −0.365381
\(560\) 0 0
\(561\) −2.64766e12 −1.12857
\(562\) 2.09463e12 0.885713
\(563\) −1.27950e12 −0.536725 −0.268362 0.963318i \(-0.586482\pi\)
−0.268362 + 0.963318i \(0.586482\pi\)
\(564\) 3.45005e12 1.43572
\(565\) 0 0
\(566\) 3.34955e12 1.37187
\(567\) 2.31381e12 0.940167
\(568\) 2.73568e12 1.10280
\(569\) −1.72251e12 −0.688901 −0.344450 0.938804i \(-0.611935\pi\)
−0.344450 + 0.938804i \(0.611935\pi\)
\(570\) 0 0
\(571\) −3.40060e12 −1.33873 −0.669366 0.742933i \(-0.733434\pi\)
−0.669366 + 0.742933i \(0.733434\pi\)
\(572\) −1.01696e12 −0.397210
\(573\) −1.26262e12 −0.489304
\(574\) −1.35051e11 −0.0519271
\(575\) 0 0
\(576\) 4.59659e11 0.173994
\(577\) 1.32866e11 0.0499027 0.0249513 0.999689i \(-0.492057\pi\)
0.0249513 + 0.999689i \(0.492057\pi\)
\(578\) −4.56478e12 −1.70116
\(579\) 8.01104e10 0.0296234
\(580\) 0 0
\(581\) −4.09401e12 −1.49058
\(582\) 3.00957e12 1.08730
\(583\) 4.11853e12 1.47650
\(584\) −1.61430e12 −0.574285
\(585\) 0 0
\(586\) 3.46098e12 1.21244
\(587\) −1.22335e12 −0.425284 −0.212642 0.977130i \(-0.568207\pi\)
−0.212642 + 0.977130i \(0.568207\pi\)
\(588\) −7.05928e11 −0.243536
\(589\) 5.14743e12 1.76227
\(590\) 0 0
\(591\) −5.99736e11 −0.202216
\(592\) −3.29090e11 −0.110120
\(593\) −3.47329e11 −0.115344 −0.0576720 0.998336i \(-0.518368\pi\)
−0.0576720 + 0.998336i \(0.518368\pi\)
\(594\) 4.38963e12 1.44674
\(595\) 0 0
\(596\) −4.40175e12 −1.42895
\(597\) −3.47865e12 −1.12079
\(598\) 1.72531e12 0.551710
\(599\) −1.75228e12 −0.556137 −0.278069 0.960561i \(-0.589694\pi\)
−0.278069 + 0.960561i \(0.589694\pi\)
\(600\) 0 0
\(601\) 2.93977e12 0.919133 0.459567 0.888143i \(-0.348005\pi\)
0.459567 + 0.888143i \(0.348005\pi\)
\(602\) −7.49362e12 −2.32545
\(603\) −3.56036e11 −0.109665
\(604\) −2.81590e11 −0.0860896
\(605\) 0 0
\(606\) 6.20441e12 1.86885
\(607\) 2.63365e12 0.787425 0.393712 0.919234i \(-0.371191\pi\)
0.393712 + 0.919234i \(0.371191\pi\)
\(608\) 3.49134e12 1.03616
\(609\) −1.86390e12 −0.549092
\(610\) 0 0
\(611\) −8.52975e11 −0.247600
\(612\) 9.40881e11 0.271115
\(613\) 1.15480e11 0.0330321 0.0165160 0.999864i \(-0.494743\pi\)
0.0165160 + 0.999864i \(0.494743\pi\)
\(614\) 1.00445e12 0.285215
\(615\) 0 0
\(616\) −3.73893e12 −1.04625
\(617\) −3.75780e12 −1.04388 −0.521939 0.852983i \(-0.674791\pi\)
−0.521939 + 0.852983i \(0.674791\pi\)
\(618\) 2.22066e12 0.612399
\(619\) −2.17044e12 −0.594210 −0.297105 0.954845i \(-0.596021\pi\)
−0.297105 + 0.954845i \(0.596021\pi\)
\(620\) 0 0
\(621\) −4.69517e12 −1.26689
\(622\) 8.37883e12 2.24454
\(623\) 1.50975e11 0.0401521
\(624\) −2.02609e11 −0.0534969
\(625\) 0 0
\(626\) 1.62178e12 0.422093
\(627\) 3.84652e12 0.993950
\(628\) 1.92541e12 0.493976
\(629\) 3.01323e12 0.767545
\(630\) 0 0
\(631\) −5.99337e12 −1.50501 −0.752505 0.658587i \(-0.771154\pi\)
−0.752505 + 0.658587i \(0.771154\pi\)
\(632\) −1.83058e12 −0.456418
\(633\) 6.31590e12 1.56358
\(634\) −9.19773e12 −2.26089
\(635\) 0 0
\(636\) 1.16720e13 2.82870
\(637\) 1.74531e11 0.0419995
\(638\) −3.13714e12 −0.749620
\(639\) 4.45856e11 0.105789
\(640\) 0 0
\(641\) −6.26847e12 −1.46656 −0.733281 0.679926i \(-0.762012\pi\)
−0.733281 + 0.679926i \(0.762012\pi\)
\(642\) 5.51704e12 1.28174
\(643\) 9.05874e11 0.208987 0.104493 0.994526i \(-0.466678\pi\)
0.104493 + 0.994526i \(0.466678\pi\)
\(644\) 9.66310e12 2.21376
\(645\) 0 0
\(646\) 1.30445e13 2.94702
\(647\) −5.25490e12 −1.17895 −0.589474 0.807787i \(-0.700665\pi\)
−0.589474 + 0.807787i \(0.700665\pi\)
\(648\) 4.56768e12 1.01767
\(649\) −6.35763e12 −1.40668
\(650\) 0 0
\(651\) 6.50323e12 1.41911
\(652\) 3.28927e12 0.712829
\(653\) −4.71722e12 −1.01526 −0.507630 0.861575i \(-0.669478\pi\)
−0.507630 + 0.861575i \(0.669478\pi\)
\(654\) 6.06109e12 1.29554
\(655\) 0 0
\(656\) −2.85512e10 −0.00601945
\(657\) −2.63097e11 −0.0550898
\(658\) −7.57754e12 −1.57584
\(659\) −8.11959e12 −1.67707 −0.838533 0.544852i \(-0.816586\pi\)
−0.838533 + 0.544852i \(0.816586\pi\)
\(660\) 0 0
\(661\) −9.75841e12 −1.98826 −0.994128 0.108211i \(-0.965488\pi\)
−0.994128 + 0.108211i \(0.965488\pi\)
\(662\) 7.71457e12 1.56117
\(663\) 1.85514e12 0.372877
\(664\) −8.08195e12 −1.61347
\(665\) 0 0
\(666\) −5.00823e11 −0.0986394
\(667\) 3.35550e12 0.656433
\(668\) −1.42807e13 −2.77495
\(669\) 8.44724e12 1.63041
\(670\) 0 0
\(671\) 5.09622e11 0.0970503
\(672\) 4.41094e12 0.834391
\(673\) 6.37456e12 1.19779 0.598897 0.800826i \(-0.295606\pi\)
0.598897 + 0.800826i \(0.295606\pi\)
\(674\) 2.80641e12 0.523820
\(675\) 0 0
\(676\) 7.12550e11 0.131237
\(677\) −9.25132e12 −1.69260 −0.846301 0.532706i \(-0.821175\pi\)
−0.846301 + 0.532706i \(0.821175\pi\)
\(678\) 1.06363e13 1.93312
\(679\) −4.16740e12 −0.752404
\(680\) 0 0
\(681\) −5.59337e12 −0.996579
\(682\) 1.09456e13 1.93736
\(683\) 4.14563e12 0.728949 0.364474 0.931213i \(-0.381249\pi\)
0.364474 + 0.931213i \(0.381249\pi\)
\(684\) −1.36691e12 −0.238774
\(685\) 0 0
\(686\) −8.68830e12 −1.49788
\(687\) −3.17886e12 −0.544460
\(688\) −1.58423e12 −0.269569
\(689\) −2.88573e12 −0.487830
\(690\) 0 0
\(691\) 7.23801e12 1.20772 0.603862 0.797089i \(-0.293628\pi\)
0.603862 + 0.797089i \(0.293628\pi\)
\(692\) 1.18274e13 1.96071
\(693\) −6.09364e11 −0.100364
\(694\) 1.38785e13 2.27104
\(695\) 0 0
\(696\) −3.67951e12 −0.594359
\(697\) 2.61422e11 0.0419560
\(698\) −6.53603e12 −1.04223
\(699\) −7.96474e12 −1.26190
\(700\) 0 0
\(701\) 1.11053e13 1.73700 0.868502 0.495685i \(-0.165083\pi\)
0.868502 + 0.495685i \(0.165083\pi\)
\(702\) −3.07569e12 −0.477997
\(703\) −4.37761e12 −0.675987
\(704\) 8.54356e12 1.31088
\(705\) 0 0
\(706\) 1.50518e13 2.28016
\(707\) −8.59137e12 −1.29323
\(708\) −1.80176e13 −2.69493
\(709\) 1.24916e13 1.85656 0.928280 0.371882i \(-0.121288\pi\)
0.928280 + 0.371882i \(0.121288\pi\)
\(710\) 0 0
\(711\) −2.98346e11 −0.0437831
\(712\) 2.98038e11 0.0434622
\(713\) −1.17075e13 −1.69652
\(714\) 1.64804e13 2.37316
\(715\) 0 0
\(716\) 1.30974e13 1.86241
\(717\) 2.06233e11 0.0291422
\(718\) −6.85239e12 −0.962238
\(719\) 1.65992e12 0.231636 0.115818 0.993270i \(-0.463051\pi\)
0.115818 + 0.993270i \(0.463051\pi\)
\(720\) 0 0
\(721\) −3.07499e12 −0.423775
\(722\) −6.93987e12 −0.950460
\(723\) 4.27028e12 0.581211
\(724\) 1.59055e13 2.15141
\(725\) 0 0
\(726\) −3.42800e12 −0.457959
\(727\) −5.15944e11 −0.0685011 −0.0342506 0.999413i \(-0.510904\pi\)
−0.0342506 + 0.999413i \(0.510904\pi\)
\(728\) 2.61976e12 0.345676
\(729\) 8.27536e12 1.08521
\(730\) 0 0
\(731\) 1.45056e13 1.87892
\(732\) 1.44428e12 0.185931
\(733\) −1.45685e12 −0.186400 −0.0932000 0.995647i \(-0.529710\pi\)
−0.0932000 + 0.995647i \(0.529710\pi\)
\(734\) −1.03966e13 −1.32208
\(735\) 0 0
\(736\) −7.94081e12 −0.997504
\(737\) −6.61755e12 −0.826216
\(738\) −4.34504e10 −0.00539188
\(739\) 8.71221e12 1.07455 0.537277 0.843406i \(-0.319453\pi\)
0.537277 + 0.843406i \(0.319453\pi\)
\(740\) 0 0
\(741\) −2.69514e12 −0.328398
\(742\) −2.56358e13 −3.10477
\(743\) −3.64808e12 −0.439152 −0.219576 0.975595i \(-0.570467\pi\)
−0.219576 + 0.975595i \(0.570467\pi\)
\(744\) 1.28380e13 1.53610
\(745\) 0 0
\(746\) −2.11983e13 −2.50598
\(747\) −1.31718e12 −0.154776
\(748\) 1.74879e13 2.04259
\(749\) −7.63954e12 −0.886950
\(750\) 0 0
\(751\) −1.41139e12 −0.161908 −0.0809538 0.996718i \(-0.525797\pi\)
−0.0809538 + 0.996718i \(0.525797\pi\)
\(752\) −1.60197e12 −0.182673
\(753\) −1.39450e13 −1.58067
\(754\) 2.19810e12 0.247672
\(755\) 0 0
\(756\) −1.72263e13 −1.91798
\(757\) −1.11659e13 −1.23584 −0.617918 0.786243i \(-0.712024\pi\)
−0.617918 + 0.786243i \(0.712024\pi\)
\(758\) −2.03339e12 −0.223722
\(759\) −8.74865e12 −0.956870
\(760\) 0 0
\(761\) 1.74660e13 1.88783 0.943916 0.330185i \(-0.107111\pi\)
0.943916 + 0.330185i \(0.107111\pi\)
\(762\) 1.79333e13 1.92692
\(763\) −8.39291e12 −0.896503
\(764\) 8.33968e12 0.885583
\(765\) 0 0
\(766\) 2.17145e13 2.27888
\(767\) 4.45460e12 0.464761
\(768\) 1.18803e13 1.23225
\(769\) −6.53695e12 −0.674073 −0.337036 0.941492i \(-0.609425\pi\)
−0.337036 + 0.941492i \(0.609425\pi\)
\(770\) 0 0
\(771\) 1.10969e13 1.13098
\(772\) −5.29132e11 −0.0536150
\(773\) 1.43446e13 1.44504 0.722522 0.691348i \(-0.242983\pi\)
0.722522 + 0.691348i \(0.242983\pi\)
\(774\) −2.41095e12 −0.241465
\(775\) 0 0
\(776\) −8.22682e12 −0.814431
\(777\) −5.53066e12 −0.544355
\(778\) −1.58103e13 −1.54715
\(779\) −3.79793e11 −0.0369512
\(780\) 0 0
\(781\) 8.28700e12 0.797018
\(782\) −2.96689e13 −2.83708
\(783\) −5.98181e12 −0.568728
\(784\) 3.27786e11 0.0309861
\(785\) 0 0
\(786\) −2.40285e13 −2.24556
\(787\) 1.15418e13 1.07248 0.536239 0.844066i \(-0.319845\pi\)
0.536239 + 0.844066i \(0.319845\pi\)
\(788\) 3.96127e12 0.365988
\(789\) −9.37073e12 −0.860849
\(790\) 0 0
\(791\) −1.47283e13 −1.33770
\(792\) −1.20294e12 −0.108638
\(793\) −3.57077e11 −0.0320651
\(794\) −6.02878e12 −0.538316
\(795\) 0 0
\(796\) 2.29766e13 2.02851
\(797\) −2.04626e13 −1.79638 −0.898189 0.439609i \(-0.855117\pi\)
−0.898189 + 0.439609i \(0.855117\pi\)
\(798\) −2.39427e13 −2.09007
\(799\) 1.46680e13 1.27324
\(800\) 0 0
\(801\) 4.85737e10 0.00416922
\(802\) −6.33502e12 −0.540708
\(803\) −4.89010e12 −0.415048
\(804\) −1.87543e13 −1.58288
\(805\) 0 0
\(806\) −7.66927e12 −0.640098
\(807\) −1.19790e12 −0.0994234
\(808\) −1.69601e13 −1.39984
\(809\) −9.11347e12 −0.748024 −0.374012 0.927424i \(-0.622018\pi\)
−0.374012 + 0.927424i \(0.622018\pi\)
\(810\) 0 0
\(811\) −6.43474e12 −0.522321 −0.261160 0.965295i \(-0.584105\pi\)
−0.261160 + 0.965295i \(0.584105\pi\)
\(812\) 1.23111e13 0.993793
\(813\) 1.23833e13 0.994100
\(814\) −9.30867e12 −0.743152
\(815\) 0 0
\(816\) 3.48413e12 0.275099
\(817\) −2.10737e13 −1.65479
\(818\) 1.73572e13 1.35547
\(819\) 4.26963e11 0.0331599
\(820\) 0 0
\(821\) 1.49394e13 1.14759 0.573796 0.818998i \(-0.305470\pi\)
0.573796 + 0.818998i \(0.305470\pi\)
\(822\) 8.54014e12 0.652442
\(823\) −6.42394e11 −0.0488093 −0.0244046 0.999702i \(-0.507769\pi\)
−0.0244046 + 0.999702i \(0.507769\pi\)
\(824\) −6.07031e12 −0.458710
\(825\) 0 0
\(826\) 3.95731e13 2.95795
\(827\) 1.16049e13 0.862715 0.431358 0.902181i \(-0.358035\pi\)
0.431358 + 0.902181i \(0.358035\pi\)
\(828\) 3.10894e12 0.229867
\(829\) 1.57628e13 1.15914 0.579572 0.814921i \(-0.303220\pi\)
0.579572 + 0.814921i \(0.303220\pi\)
\(830\) 0 0
\(831\) −2.35141e13 −1.71050
\(832\) −5.98622e12 −0.433109
\(833\) −3.00129e12 −0.215976
\(834\) 3.25292e12 0.232823
\(835\) 0 0
\(836\) −2.54064e13 −1.79893
\(837\) 2.08708e13 1.46985
\(838\) 4.18167e13 2.92922
\(839\) −6.01495e12 −0.419086 −0.209543 0.977799i \(-0.567198\pi\)
−0.209543 + 0.977799i \(0.567198\pi\)
\(840\) 0 0
\(841\) −1.02321e13 −0.705316
\(842\) −6.91848e12 −0.474358
\(843\) 7.44209e12 0.507541
\(844\) −4.17167e13 −2.82989
\(845\) 0 0
\(846\) −2.43795e12 −0.163628
\(847\) 4.74682e12 0.316904
\(848\) −5.41968e12 −0.359909
\(849\) 1.19008e13 0.786123
\(850\) 0 0
\(851\) 9.95658e12 0.650769
\(852\) 2.34855e13 1.52694
\(853\) 7.80932e12 0.505059 0.252530 0.967589i \(-0.418737\pi\)
0.252530 + 0.967589i \(0.418737\pi\)
\(854\) −3.17215e12 −0.204077
\(855\) 0 0
\(856\) −1.50811e13 −0.960069
\(857\) −7.77957e12 −0.492654 −0.246327 0.969187i \(-0.579224\pi\)
−0.246327 + 0.969187i \(0.579224\pi\)
\(858\) −5.73102e12 −0.361027
\(859\) 7.85737e12 0.492389 0.246194 0.969220i \(-0.420820\pi\)
0.246194 + 0.969220i \(0.420820\pi\)
\(860\) 0 0
\(861\) −4.79829e11 −0.0297558
\(862\) 3.70780e13 2.28736
\(863\) −2.65186e13 −1.62743 −0.813713 0.581266i \(-0.802557\pi\)
−0.813713 + 0.581266i \(0.802557\pi\)
\(864\) 1.41560e13 0.864229
\(865\) 0 0
\(866\) 2.63436e13 1.59164
\(867\) −1.62184e13 −0.974816
\(868\) −4.29541e13 −2.56842
\(869\) −5.54527e12 −0.329863
\(870\) 0 0
\(871\) 4.63672e12 0.272979
\(872\) −1.65684e13 −0.970410
\(873\) −1.34079e12 −0.0781264
\(874\) 4.31030e13 2.49865
\(875\) 0 0
\(876\) −1.38586e13 −0.795156
\(877\) 6.14488e12 0.350764 0.175382 0.984500i \(-0.443884\pi\)
0.175382 + 0.984500i \(0.443884\pi\)
\(878\) −2.08291e13 −1.18289
\(879\) 1.22967e13 0.694765
\(880\) 0 0
\(881\) −2.66681e13 −1.49142 −0.745711 0.666269i \(-0.767890\pi\)
−0.745711 + 0.666269i \(0.767890\pi\)
\(882\) 4.98838e11 0.0277556
\(883\) −4.25527e12 −0.235561 −0.117781 0.993040i \(-0.537578\pi\)
−0.117781 + 0.993040i \(0.537578\pi\)
\(884\) −1.22533e13 −0.674864
\(885\) 0 0
\(886\) −3.49205e13 −1.90383
\(887\) 1.61561e13 0.876355 0.438177 0.898889i \(-0.355624\pi\)
0.438177 + 0.898889i \(0.355624\pi\)
\(888\) −1.09180e13 −0.589230
\(889\) −2.48326e13 −1.33341
\(890\) 0 0
\(891\) 1.38366e13 0.735493
\(892\) −5.57943e13 −2.95086
\(893\) −2.13097e13 −1.12136
\(894\) −2.48059e13 −1.29878
\(895\) 0 0
\(896\) −3.61027e13 −1.87134
\(897\) 6.12992e12 0.316147
\(898\) −3.57135e13 −1.83269
\(899\) −1.49157e13 −0.761599
\(900\) 0 0
\(901\) 4.96239e13 2.50859
\(902\) −8.07601e11 −0.0406226
\(903\) −2.66244e13 −1.33256
\(904\) −2.90751e13 −1.44798
\(905\) 0 0
\(906\) −1.58689e12 −0.0782475
\(907\) 1.61349e13 0.791651 0.395826 0.918326i \(-0.370458\pi\)
0.395826 + 0.918326i \(0.370458\pi\)
\(908\) 3.69444e13 1.80369
\(909\) −2.76413e12 −0.134283
\(910\) 0 0
\(911\) 1.70662e13 0.820924 0.410462 0.911878i \(-0.365367\pi\)
0.410462 + 0.911878i \(0.365367\pi\)
\(912\) −5.06175e12 −0.242283
\(913\) −2.44821e13 −1.16609
\(914\) −5.88051e13 −2.78713
\(915\) 0 0
\(916\) 2.09965e13 0.985410
\(917\) 3.32727e13 1.55391
\(918\) 5.28905e13 2.45802
\(919\) −2.39159e13 −1.10603 −0.553015 0.833171i \(-0.686523\pi\)
−0.553015 + 0.833171i \(0.686523\pi\)
\(920\) 0 0
\(921\) 3.56877e12 0.163437
\(922\) 2.98933e12 0.136234
\(923\) −5.80646e12 −0.263332
\(924\) −3.20983e13 −1.44863
\(925\) 0 0
\(926\) −5.56871e13 −2.48889
\(927\) −9.89329e11 −0.0440030
\(928\) −1.01169e13 −0.447796
\(929\) 3.53859e12 0.155869 0.0779345 0.996958i \(-0.475168\pi\)
0.0779345 + 0.996958i \(0.475168\pi\)
\(930\) 0 0
\(931\) 4.36026e12 0.190213
\(932\) 5.26074e13 2.28389
\(933\) 2.97695e13 1.28619
\(934\) −1.91103e13 −0.821687
\(935\) 0 0
\(936\) 8.42864e11 0.0358935
\(937\) 6.50586e12 0.275725 0.137863 0.990451i \(-0.455977\pi\)
0.137863 + 0.990451i \(0.455977\pi\)
\(938\) 4.11910e13 1.73736
\(939\) 5.76211e12 0.241873
\(940\) 0 0
\(941\) −2.57328e13 −1.06988 −0.534939 0.844891i \(-0.679665\pi\)
−0.534939 + 0.844891i \(0.679665\pi\)
\(942\) 1.08506e13 0.448978
\(943\) 8.63813e11 0.0355727
\(944\) 8.36618e12 0.342889
\(945\) 0 0
\(946\) −4.48117e13 −1.81920
\(947\) 1.90853e13 0.771123 0.385562 0.922682i \(-0.374008\pi\)
0.385562 + 0.922682i \(0.374008\pi\)
\(948\) −1.57154e13 −0.631957
\(949\) 3.42635e12 0.137130
\(950\) 0 0
\(951\) −3.26790e13 −1.29556
\(952\) −4.50502e13 −1.77758
\(953\) 3.48712e13 1.36946 0.684729 0.728798i \(-0.259921\pi\)
0.684729 + 0.728798i \(0.259921\pi\)
\(954\) −8.24791e12 −0.322386
\(955\) 0 0
\(956\) −1.36217e12 −0.0527439
\(957\) −1.11461e13 −0.429555
\(958\) 7.98823e13 3.06412
\(959\) −1.18257e13 −0.451484
\(960\) 0 0
\(961\) 2.56020e13 0.968320
\(962\) 6.52231e12 0.245535
\(963\) −2.45790e12 −0.0920971
\(964\) −2.82053e13 −1.05192
\(965\) 0 0
\(966\) 5.44561e13 2.01210
\(967\) −9.08047e12 −0.333956 −0.166978 0.985961i \(-0.553401\pi\)
−0.166978 + 0.985961i \(0.553401\pi\)
\(968\) 9.37065e12 0.343029
\(969\) 4.63466e13 1.68873
\(970\) 0 0
\(971\) −4.96409e12 −0.179206 −0.0896032 0.995978i \(-0.528560\pi\)
−0.0896032 + 0.995978i \(0.528560\pi\)
\(972\) −1.05290e13 −0.378344
\(973\) −4.50438e12 −0.161112
\(974\) 4.47949e13 1.59483
\(975\) 0 0
\(976\) −6.70626e11 −0.0236568
\(977\) −3.59885e13 −1.26368 −0.631842 0.775098i \(-0.717701\pi\)
−0.631842 + 0.775098i \(0.717701\pi\)
\(978\) 1.85366e13 0.647895
\(979\) 9.02826e11 0.0314110
\(980\) 0 0
\(981\) −2.70028e12 −0.0930890
\(982\) 6.23046e13 2.13805
\(983\) 3.04093e13 1.03876 0.519381 0.854543i \(-0.326163\pi\)
0.519381 + 0.854543i \(0.326163\pi\)
\(984\) −9.47225e11 −0.0322088
\(985\) 0 0
\(986\) −3.77993e13 −1.27361
\(987\) −2.69226e13 −0.903004
\(988\) 1.78015e13 0.594361
\(989\) 4.79307e13 1.59305
\(990\) 0 0
\(991\) 5.24412e13 1.72719 0.863597 0.504182i \(-0.168206\pi\)
0.863597 + 0.504182i \(0.168206\pi\)
\(992\) 3.52982e13 1.15731
\(993\) 2.74095e13 0.894600
\(994\) −5.15826e13 −1.67596
\(995\) 0 0
\(996\) −6.93827e13 −2.23401
\(997\) 2.53718e13 0.813248 0.406624 0.913596i \(-0.366706\pi\)
0.406624 + 0.913596i \(0.366706\pi\)
\(998\) 2.04308e13 0.651926
\(999\) −1.77495e13 −0.563821
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.k.1.4 27
5.2 odd 4 65.10.b.a.14.6 54
5.3 odd 4 65.10.b.a.14.49 yes 54
5.4 even 2 325.10.a.l.1.24 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.10.b.a.14.6 54 5.2 odd 4
65.10.b.a.14.49 yes 54 5.3 odd 4
325.10.a.k.1.4 27 1.1 even 1 trivial
325.10.a.l.1.24 27 5.4 even 2