Properties

Label 65.10.b.a.14.6
Level $65$
Weight $10$
Character 65.14
Analytic conductor $33.477$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,10,Mod(14,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.14");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 65.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4773293507\)
Analytic rank: \(0\)
Dimension: \(54\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 14.6
Character \(\chi\) \(=\) 65.14
Dual form 65.10.b.a.14.49

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-37.2225i q^{2} +132.249i q^{3} -873.511 q^{4} +(-995.901 - 980.463i) q^{5} +4922.65 q^{6} -6816.48i q^{7} +13456.3i q^{8} +2193.09 q^{9} +(-36495.2 + 37069.9i) q^{10} -40762.4 q^{11} -115521. i q^{12} -28561.0i q^{13} -253726. q^{14} +(129666. - 131707. i) q^{15} +53640.4 q^{16} -491145. i q^{17} -81632.3i q^{18} -713534. q^{19} +(869931. + 856445. i) q^{20} +901476. q^{21} +1.51728e6i q^{22} +1.62288e6i q^{23} -1.77959e6 q^{24} +(30511.2 + 1.95289e6i) q^{25} -1.06311e6 q^{26} +2.89310e6i q^{27} +5.95427e6i q^{28} +2.06761e6 q^{29} +(-4.90247e6 - 4.82647e6i) q^{30} +7.21399e6 q^{31} +4.89302e6i q^{32} -5.39080e6i q^{33} -1.82816e7 q^{34} +(-6.68330e6 + 6.78854e6i) q^{35} -1.91569e6 q^{36} -6.13511e6i q^{37} +2.65595e7i q^{38} +3.77718e6 q^{39} +(1.31934e7 - 1.34012e7i) q^{40} -532270. q^{41} -3.35551e7i q^{42} +2.95343e7i q^{43} +3.56064e7 q^{44} +(-2.18410e6 - 2.15024e6i) q^{45} +6.04077e7 q^{46} -2.98650e7i q^{47} +7.09391e6i q^{48} -6.11080e6 q^{49} +(7.26912e7 - 1.13570e6i) q^{50} +6.49536e7 q^{51} +2.49484e7i q^{52} +1.01037e8i q^{53} +1.07688e8 q^{54} +(4.05953e7 + 3.99660e7i) q^{55} +9.17249e7 q^{56} -9.43645e7i q^{57} -7.69617e7i q^{58} -1.55968e8 q^{59} +(-1.13264e8 + 1.15048e8i) q^{60} -1.25023e7 q^{61} -2.68522e8i q^{62} -1.49492e7i q^{63} +2.09594e8 q^{64} +(-2.80030e7 + 2.84439e7i) q^{65} -2.00659e8 q^{66} +1.62345e8i q^{67} +4.29020e8i q^{68} -2.14625e8 q^{69} +(2.52686e8 + 2.48769e8i) q^{70} -2.03300e8 q^{71} +2.95110e7i q^{72} -1.19966e8i q^{73} -2.28364e8 q^{74} +(-2.58268e8 + 4.03508e6i) q^{75} +6.23280e8 q^{76} +2.77856e8i q^{77} -1.40596e8i q^{78} -1.36039e8 q^{79} +(-5.34205e7 - 5.25924e7i) q^{80} -3.39444e8 q^{81} +1.98124e7i q^{82} -6.00605e8i q^{83} -7.87449e8 q^{84} +(-4.81549e8 + 4.89131e8i) q^{85} +1.09934e9 q^{86} +2.73441e8i q^{87} -5.48513e8i q^{88} +2.21485e7 q^{89} +(-8.00374e7 + 8.12976e7i) q^{90} -1.94685e8 q^{91} -1.41761e9i q^{92} +9.54046e8i q^{93} -1.11165e9 q^{94} +(7.10609e8 + 6.99593e8i) q^{95} -6.47099e8 q^{96} +6.11371e8i q^{97} +2.27459e8i q^{98} -8.93957e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 13140 q^{4} - 2160 q^{5} - 3572 q^{6} - 428346 q^{9} + 74802 q^{10} - 132192 q^{11} + 718916 q^{14} + 339156 q^{15} + 1997244 q^{16} + 1523456 q^{19} + 4945180 q^{20} - 5377256 q^{21} + 7134424 q^{24}+ \cdots - 4284595264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 37.2225i 1.64502i −0.568754 0.822508i \(-0.692574\pi\)
0.568754 0.822508i \(-0.307426\pi\)
\(3\) 132.249i 0.942645i 0.881961 + 0.471322i \(0.156223\pi\)
−0.881961 + 0.471322i \(0.843777\pi\)
\(4\) −873.511 −1.70608
\(5\) −995.901 980.463i −0.712608 0.701562i
\(6\) 4922.65 1.55067
\(7\) 6816.48i 1.07305i −0.843885 0.536524i \(-0.819737\pi\)
0.843885 0.536524i \(-0.180263\pi\)
\(8\) 13456.3i 1.16151i
\(9\) 2193.09 0.111421
\(10\) −36495.2 + 37069.9i −1.15408 + 1.17225i
\(11\) −40762.4 −0.839446 −0.419723 0.907652i \(-0.637873\pi\)
−0.419723 + 0.907652i \(0.637873\pi\)
\(12\) 115521.i 1.60822i
\(13\) 28561.0i 0.277350i
\(14\) −253726. −1.76518
\(15\) 129666. 131707.i 0.661324 0.671737i
\(16\) 53640.4 0.204622
\(17\) 491145.i 1.42623i −0.701048 0.713114i \(-0.747284\pi\)
0.701048 0.713114i \(-0.252716\pi\)
\(18\) 81632.3i 0.183289i
\(19\) −713534. −1.25610 −0.628049 0.778174i \(-0.716146\pi\)
−0.628049 + 0.778174i \(0.716146\pi\)
\(20\) 869931. + 856445.i 1.21576 + 1.19692i
\(21\) 901476. 1.01150
\(22\) 1.51728e6i 1.38090i
\(23\) 1.62288e6i 1.20924i 0.796514 + 0.604620i \(0.206675\pi\)
−0.796514 + 0.604620i \(0.793325\pi\)
\(24\) −1.77959e6 −1.09489
\(25\) 30511.2 + 1.95289e6i 0.0156217 + 0.999878i
\(26\) −1.06311e6 −0.456245
\(27\) 2.89310e6i 1.04767i
\(28\) 5.95427e6i 1.83070i
\(29\) 2.06761e6 0.542848 0.271424 0.962460i \(-0.412505\pi\)
0.271424 + 0.962460i \(0.412505\pi\)
\(30\) −4.90247e6 4.82647e6i −1.10502 1.08789i
\(31\) 7.21399e6 1.40297 0.701484 0.712685i \(-0.252521\pi\)
0.701484 + 0.712685i \(0.252521\pi\)
\(32\) 4.89302e6i 0.824902i
\(33\) 5.39080e6i 0.791299i
\(34\) −1.82816e7 −2.34617
\(35\) −6.68330e6 + 6.78854e6i −0.752809 + 0.764663i
\(36\) −1.91569e6 −0.190092
\(37\) 6.13511e6i 0.538164i −0.963117 0.269082i \(-0.913280\pi\)
0.963117 0.269082i \(-0.0867203\pi\)
\(38\) 2.65595e7i 2.06630i
\(39\) 3.77718e6 0.261443
\(40\) 1.31934e7 1.34012e7i 0.814870 0.827700i
\(41\) −532270. −0.0294174 −0.0147087 0.999892i \(-0.504682\pi\)
−0.0147087 + 0.999892i \(0.504682\pi\)
\(42\) 3.35551e7i 1.66394i
\(43\) 2.95343e7i 1.31740i 0.752405 + 0.658701i \(0.228894\pi\)
−0.752405 + 0.658701i \(0.771106\pi\)
\(44\) 3.56064e7 1.43216
\(45\) −2.18410e6 2.15024e6i −0.0793993 0.0781685i
\(46\) 6.04077e7 1.98922
\(47\) 2.98650e7i 0.892735i −0.894850 0.446368i \(-0.852717\pi\)
0.894850 0.446368i \(-0.147283\pi\)
\(48\) 7.09391e6i 0.192886i
\(49\) −6.11080e6 −0.151431
\(50\) 7.26912e7 1.13570e6i 1.64482 0.0256980i
\(51\) 6.49536e7 1.34443
\(52\) 2.49484e7i 0.473181i
\(53\) 1.01037e8i 1.75890i 0.475994 + 0.879449i \(0.342088\pi\)
−0.475994 + 0.879449i \(0.657912\pi\)
\(54\) 1.07688e8 1.72344
\(55\) 4.05953e7 + 3.99660e7i 0.598196 + 0.588923i
\(56\) 9.17249e7 1.24635
\(57\) 9.43645e7i 1.18405i
\(58\) 7.69617e7i 0.892994i
\(59\) −1.55968e8 −1.67572 −0.837860 0.545886i \(-0.816193\pi\)
−0.837860 + 0.545886i \(0.816193\pi\)
\(60\) −1.13264e8 + 1.15048e8i −1.12827 + 1.14603i
\(61\) −1.25023e7 −0.115612 −0.0578062 0.998328i \(-0.518411\pi\)
−0.0578062 + 0.998328i \(0.518411\pi\)
\(62\) 2.68522e8i 2.30790i
\(63\) 1.49492e7i 0.119560i
\(64\) 2.09594e8 1.56160
\(65\) −2.80030e7 + 2.84439e7i −0.194578 + 0.197642i
\(66\) −2.00659e8 −1.30170
\(67\) 1.62345e8i 0.984240i 0.870527 + 0.492120i \(0.163778\pi\)
−0.870527 + 0.492120i \(0.836222\pi\)
\(68\) 4.29020e8i 2.43326i
\(69\) −2.14625e8 −1.13988
\(70\) 2.52686e8 + 2.48769e8i 1.25788 + 1.23838i
\(71\) −2.03300e8 −0.949457 −0.474728 0.880132i \(-0.657454\pi\)
−0.474728 + 0.880132i \(0.657454\pi\)
\(72\) 2.95110e7i 0.129416i
\(73\) 1.19966e8i 0.494431i −0.968961 0.247215i \(-0.920484\pi\)
0.968961 0.247215i \(-0.0795155\pi\)
\(74\) −2.28364e8 −0.885289
\(75\) −2.58268e8 + 4.03508e6i −0.942530 + 0.0147257i
\(76\) 6.23280e8 2.14300
\(77\) 2.77856e8i 0.900766i
\(78\) 1.40596e8i 0.430077i
\(79\) −1.36039e8 −0.392953 −0.196477 0.980509i \(-0.562950\pi\)
−0.196477 + 0.980509i \(0.562950\pi\)
\(80\) −5.34205e7 5.25924e7i −0.145815 0.143555i
\(81\) −3.39444e8 −0.876165
\(82\) 1.98124e7i 0.0483921i
\(83\) 6.00605e8i 1.38911i −0.719438 0.694557i \(-0.755601\pi\)
0.719438 0.694557i \(-0.244399\pi\)
\(84\) −7.87449e8 −1.72570
\(85\) −4.81549e8 + 4.89131e8i −1.00059 + 1.01634i
\(86\) 1.09934e9 2.16715
\(87\) 2.73441e8i 0.511713i
\(88\) 5.48513e8i 0.975023i
\(89\) 2.21485e7 0.0374188 0.0187094 0.999825i \(-0.494044\pi\)
0.0187094 + 0.999825i \(0.494044\pi\)
\(90\) −8.00374e7 + 8.12976e7i −0.128588 + 0.130613i
\(91\) −1.94685e8 −0.297610
\(92\) 1.41761e9i 2.06306i
\(93\) 9.54046e8i 1.32250i
\(94\) −1.11165e9 −1.46856
\(95\) 7.10609e8 + 6.99593e8i 0.895106 + 0.881230i
\(96\) −6.47099e8 −0.777589
\(97\) 6.11371e8i 0.701185i 0.936528 + 0.350592i \(0.114020\pi\)
−0.936528 + 0.350592i \(0.885980\pi\)
\(98\) 2.27459e8i 0.249107i
\(99\) −8.93957e7 −0.0935316
\(100\) −2.66519e7 1.70587e9i −0.0266519 1.70587i
\(101\) 1.26038e9 1.20519 0.602595 0.798047i \(-0.294133\pi\)
0.602595 + 0.798047i \(0.294133\pi\)
\(102\) 2.41773e9i 2.21160i
\(103\) 4.51112e8i 0.394927i −0.980310 0.197463i \(-0.936730\pi\)
0.980310 0.197463i \(-0.0632703\pi\)
\(104\) 3.84327e8 0.322144
\(105\) −8.97780e8 8.83863e8i −0.720806 0.709632i
\(106\) 3.76086e9 2.89341
\(107\) 1.12075e9i 0.826571i 0.910601 + 0.413286i \(0.135619\pi\)
−0.910601 + 0.413286i \(0.864381\pi\)
\(108\) 2.52716e9i 1.78741i
\(109\) −1.23127e9 −0.835474 −0.417737 0.908568i \(-0.637177\pi\)
−0.417737 + 0.908568i \(0.637177\pi\)
\(110\) 1.48763e9 1.51106e9i 0.968788 0.984042i
\(111\) 8.11365e8 0.507298
\(112\) 3.65639e8i 0.219569i
\(113\) 2.16070e9i 1.24664i −0.781967 0.623319i \(-0.785784\pi\)
0.781967 0.623319i \(-0.214216\pi\)
\(114\) −3.51248e9 −1.94779
\(115\) 1.59118e9 1.61623e9i 0.848356 0.861714i
\(116\) −1.80608e9 −0.926141
\(117\) 6.26369e7i 0.0309025i
\(118\) 5.80551e9i 2.75658i
\(119\) −3.34788e9 −1.53041
\(120\) 1.77230e9 + 1.74483e9i 0.780228 + 0.768133i
\(121\) −6.96374e8 −0.295330
\(122\) 4.65365e8i 0.190184i
\(123\) 7.03924e7i 0.0277302i
\(124\) −6.30150e9 −2.39357
\(125\) 1.88435e9 1.97480e9i 0.690344 0.723481i
\(126\) −5.56445e8 −0.196678
\(127\) 3.64303e9i 1.24264i 0.783556 + 0.621321i \(0.213404\pi\)
−0.783556 + 0.621321i \(0.786596\pi\)
\(128\) 5.29638e9i 1.74395i
\(129\) −3.90589e9 −1.24184
\(130\) 1.05875e9 + 1.04234e9i 0.325124 + 0.320084i
\(131\) −4.88121e9 −1.44813 −0.724064 0.689733i \(-0.757728\pi\)
−0.724064 + 0.689733i \(0.757728\pi\)
\(132\) 4.70893e9i 1.35002i
\(133\) 4.86379e9i 1.34785i
\(134\) 6.04286e9 1.61909
\(135\) 2.83658e9 2.88124e9i 0.735009 0.746582i
\(136\) 6.60901e9 1.65658
\(137\) 1.73487e9i 0.420749i 0.977621 + 0.210375i \(0.0674684\pi\)
−0.977621 + 0.210375i \(0.932532\pi\)
\(138\) 7.98889e9i 1.87513i
\(139\) −6.60807e8 −0.150144 −0.0750720 0.997178i \(-0.523919\pi\)
−0.0750720 + 0.997178i \(0.523919\pi\)
\(140\) 5.83794e9 5.92986e9i 1.28435 1.30457i
\(141\) 3.94963e9 0.841532
\(142\) 7.56733e9i 1.56187i
\(143\) 1.16422e9i 0.232820i
\(144\) 1.17638e8 0.0227991
\(145\) −2.05914e9 2.02722e9i −0.386838 0.380842i
\(146\) −4.46543e9 −0.813346
\(147\) 8.08150e8i 0.142746i
\(148\) 5.35909e9i 0.918150i
\(149\) 5.03914e9 0.837565 0.418782 0.908087i \(-0.362457\pi\)
0.418782 + 0.908087i \(0.362457\pi\)
\(150\) 1.50196e8 + 9.61337e9i 0.0242241 + 1.55048i
\(151\) −3.22365e8 −0.0504606 −0.0252303 0.999682i \(-0.508032\pi\)
−0.0252303 + 0.999682i \(0.508032\pi\)
\(152\) 9.60156e9i 1.45897i
\(153\) 1.07713e9i 0.158911i
\(154\) 1.03425e10 1.48177
\(155\) −7.18442e9 7.07305e9i −0.999767 0.984269i
\(156\) −3.29941e9 −0.446041
\(157\) 2.20422e9i 0.289539i 0.989465 + 0.144769i \(0.0462440\pi\)
−0.989465 + 0.144769i \(0.953756\pi\)
\(158\) 5.06370e9i 0.646414i
\(159\) −1.33621e10 −1.65802
\(160\) 4.79742e9 4.87296e9i 0.578720 0.587832i
\(161\) 1.10624e10 1.29757
\(162\) 1.26349e10i 1.44130i
\(163\) 3.76557e9i 0.417818i −0.977935 0.208909i \(-0.933009\pi\)
0.977935 0.208909i \(-0.0669912\pi\)
\(164\) 4.64944e8 0.0501884
\(165\) −5.28548e9 + 5.36871e9i −0.555146 + 0.563887i
\(166\) −2.23560e10 −2.28511
\(167\) 1.63486e10i 1.62651i −0.581906 0.813256i \(-0.697693\pi\)
0.581906 0.813256i \(-0.302307\pi\)
\(168\) 1.21306e10i 1.17487i
\(169\) −8.15731e8 −0.0769231
\(170\) 1.82067e10 + 1.79244e10i 1.67190 + 1.64598i
\(171\) −1.56485e9 −0.139955
\(172\) 2.57985e10i 2.24759i
\(173\) 1.35401e10i 1.14925i −0.818418 0.574624i \(-0.805148\pi\)
0.818418 0.574624i \(-0.194852\pi\)
\(174\) 1.01781e10 0.841776
\(175\) 1.33118e10 2.07979e8i 1.07292 0.0167629i
\(176\) −2.18651e9 −0.171769
\(177\) 2.06267e10i 1.57961i
\(178\) 8.24422e8i 0.0615544i
\(179\) −1.49939e10 −1.09163 −0.545817 0.837905i \(-0.683781\pi\)
−0.545817 + 0.837905i \(0.683781\pi\)
\(180\) 1.90784e9 + 1.87826e9i 0.135461 + 0.133361i
\(181\) 1.82087e10 1.26103 0.630514 0.776178i \(-0.282844\pi\)
0.630514 + 0.776178i \(0.282844\pi\)
\(182\) 7.24667e9i 0.489573i
\(183\) 1.65342e9i 0.108981i
\(184\) −2.18381e10 −1.40454
\(185\) −6.01525e9 + 6.10996e9i −0.377556 + 0.383500i
\(186\) 3.55119e10 2.17553
\(187\) 2.00202e10i 1.19724i
\(188\) 2.60874e10i 1.52307i
\(189\) 1.97208e10 1.12421
\(190\) 2.60406e10 2.64506e10i 1.44964 1.47246i
\(191\) 9.54730e9 0.519075 0.259538 0.965733i \(-0.416430\pi\)
0.259538 + 0.965733i \(0.416430\pi\)
\(192\) 2.77187e10i 1.47203i
\(193\) 6.05753e8i 0.0314259i 0.999877 + 0.0157129i \(0.00500179\pi\)
−0.999877 + 0.0157129i \(0.994998\pi\)
\(194\) 2.27567e10 1.15346
\(195\) −3.76169e9 3.70338e9i −0.186306 0.183418i
\(196\) 5.33785e9 0.258353
\(197\) 4.53488e9i 0.214520i 0.994231 + 0.107260i \(0.0342077\pi\)
−0.994231 + 0.107260i \(0.965792\pi\)
\(198\) 3.32753e9i 0.153861i
\(199\) −2.63037e10 −1.18899 −0.594494 0.804100i \(-0.702648\pi\)
−0.594494 + 0.804100i \(0.702648\pi\)
\(200\) −2.62787e10 + 4.10569e8i −1.16137 + 0.0181448i
\(201\) −2.14700e10 −0.927789
\(202\) 4.69145e10i 1.98256i
\(203\) 1.40938e10i 0.582502i
\(204\) −5.67377e10 −2.29370
\(205\) 5.30088e8 + 5.21871e8i 0.0209631 + 0.0206382i
\(206\) −1.67915e10 −0.649661
\(207\) 3.55913e9i 0.134734i
\(208\) 1.53202e9i 0.0567519i
\(209\) 2.90854e10 1.05443
\(210\) −3.28996e10 + 3.34176e10i −1.16736 + 1.18574i
\(211\) −4.77575e10 −1.65871 −0.829355 0.558721i \(-0.811292\pi\)
−0.829355 + 0.558721i \(0.811292\pi\)
\(212\) 8.82573e10i 3.00081i
\(213\) 2.68863e10i 0.895001i
\(214\) 4.17169e10 1.35972
\(215\) 2.89572e10 2.94132e10i 0.924239 0.938792i
\(216\) −3.89306e10 −1.21688
\(217\) 4.91740e10i 1.50545i
\(218\) 4.58308e10i 1.37437i
\(219\) 1.58654e10 0.466073
\(220\) −3.54605e10 3.49108e10i −1.02057 1.00475i
\(221\) −1.40276e10 −0.395565
\(222\) 3.02010e10i 0.834513i
\(223\) 6.38736e10i 1.72961i 0.502104 + 0.864807i \(0.332559\pi\)
−0.502104 + 0.864807i \(0.667441\pi\)
\(224\) 3.33532e10 0.885159
\(225\) 6.69138e7 + 4.28286e9i 0.00174058 + 0.111407i
\(226\) −8.04264e10 −2.05074
\(227\) 4.22941e10i 1.05722i 0.848866 + 0.528608i \(0.177286\pi\)
−0.848866 + 0.528608i \(0.822714\pi\)
\(228\) 8.24284e10i 2.02009i
\(229\) −2.40369e10 −0.577588 −0.288794 0.957391i \(-0.593254\pi\)
−0.288794 + 0.957391i \(0.593254\pi\)
\(230\) −6.01601e10 5.92275e10i −1.41753 1.39556i
\(231\) −3.67463e10 −0.849102
\(232\) 2.78225e10i 0.630522i
\(233\) 6.02252e10i 1.33868i −0.742957 0.669339i \(-0.766577\pi\)
0.742957 0.669339i \(-0.233423\pi\)
\(234\) −2.33150e9 −0.0508351
\(235\) −2.92815e10 + 2.97426e10i −0.626309 + 0.636171i
\(236\) 1.36240e11 2.85891
\(237\) 1.79911e10i 0.370415i
\(238\) 1.24616e11i 2.51755i
\(239\) 1.55942e9 0.0309153 0.0154577 0.999881i \(-0.495079\pi\)
0.0154577 + 0.999881i \(0.495079\pi\)
\(240\) 6.95531e9 7.06483e9i 0.135321 0.137452i
\(241\) −3.22896e10 −0.616575 −0.308288 0.951293i \(-0.599756\pi\)
−0.308288 + 0.951293i \(0.599756\pi\)
\(242\) 2.59207e10i 0.485823i
\(243\) 1.20536e10i 0.221763i
\(244\) 1.09209e10 0.197244
\(245\) 6.08575e9 + 5.99141e9i 0.107911 + 0.106238i
\(246\) −2.62018e9 −0.0456166
\(247\) 2.03792e10i 0.348379i
\(248\) 9.70739e10i 1.62956i
\(249\) 7.94297e10 1.30944
\(250\) −7.35068e10 7.01400e10i −1.19014 1.13563i
\(251\) 1.05445e11 1.67685 0.838424 0.545019i \(-0.183478\pi\)
0.838424 + 0.545019i \(0.183478\pi\)
\(252\) 1.30583e10i 0.203978i
\(253\) 6.61527e10i 1.01509i
\(254\) 1.35602e11 2.04416
\(255\) −6.46873e10 6.36846e10i −0.958050 0.943199i
\(256\) −8.98322e10 −1.30723
\(257\) 8.39088e10i 1.19980i −0.800075 0.599900i \(-0.795207\pi\)
0.800075 0.599900i \(-0.204793\pi\)
\(258\) 1.45387e11i 2.04285i
\(259\) −4.18199e10 −0.577476
\(260\) 2.44609e10 2.48461e10i 0.331966 0.337193i
\(261\) 4.53447e9 0.0604845
\(262\) 1.81691e11i 2.38219i
\(263\) 7.08565e10i 0.913227i −0.889665 0.456613i \(-0.849062\pi\)
0.889665 0.456613i \(-0.150938\pi\)
\(264\) 7.25405e10 0.919101
\(265\) 9.90633e10 1.00623e11i 1.23398 1.25341i
\(266\) 1.81042e11 2.21724
\(267\) 2.92913e9i 0.0352726i
\(268\) 1.41810e11i 1.67919i
\(269\) −9.05787e9 −0.105473 −0.0527364 0.998608i \(-0.516794\pi\)
−0.0527364 + 0.998608i \(0.516794\pi\)
\(270\) −1.07247e11 1.05584e11i −1.22814 1.20910i
\(271\) −9.36362e10 −1.05459 −0.527293 0.849683i \(-0.676793\pi\)
−0.527293 + 0.849683i \(0.676793\pi\)
\(272\) 2.63452e10i 0.291837i
\(273\) 2.57470e10i 0.280540i
\(274\) 6.45760e10 0.692139
\(275\) −1.24371e9 7.96044e10i −0.0131136 0.839344i
\(276\) 1.87478e11 1.94473
\(277\) 1.77801e11i 1.81458i 0.420511 + 0.907288i \(0.361851\pi\)
−0.420511 + 0.907288i \(0.638149\pi\)
\(278\) 2.45969e10i 0.246989i
\(279\) 1.58209e10 0.156320
\(280\) −9.13489e10 8.99328e10i −0.888162 0.874394i
\(281\) −5.62732e10 −0.538422 −0.269211 0.963081i \(-0.586763\pi\)
−0.269211 + 0.963081i \(0.586763\pi\)
\(282\) 1.47015e11i 1.38433i
\(283\) 8.99873e10i 0.833955i 0.908917 + 0.416977i \(0.136911\pi\)
−0.908917 + 0.416977i \(0.863089\pi\)
\(284\) 1.77585e11 1.61985
\(285\) −9.25208e10 + 9.39776e10i −0.830687 + 0.843767i
\(286\) 4.33350e10 0.382993
\(287\) 3.62821e9i 0.0315663i
\(288\) 1.07308e10i 0.0919111i
\(289\) −1.22635e11 −1.03413
\(290\) −7.54580e10 + 7.66462e10i −0.626490 + 0.636355i
\(291\) −8.08535e10 −0.660968
\(292\) 1.04792e11i 0.843537i
\(293\) 9.29810e10i 0.737038i 0.929620 + 0.368519i \(0.120135\pi\)
−0.929620 + 0.368519i \(0.879865\pi\)
\(294\) −3.00813e10 −0.234819
\(295\) 1.55329e11 + 1.52921e11i 1.19413 + 1.17562i
\(296\) 8.25562e10 0.625082
\(297\) 1.17930e11i 0.879467i
\(298\) 1.87569e11i 1.37781i
\(299\) 4.63512e10 0.335383
\(300\) 2.25600e11 3.52469e9i 1.60803 0.0251232i
\(301\) 2.01320e11 1.41363
\(302\) 1.19992e10i 0.0830084i
\(303\) 1.66685e11i 1.13607i
\(304\) −3.82742e10 −0.257025
\(305\) 1.24510e10 + 1.22580e10i 0.0823864 + 0.0811092i
\(306\) −4.00933e10 −0.261412
\(307\) 2.69852e10i 0.173381i −0.996235 0.0866907i \(-0.972371\pi\)
0.996235 0.0866907i \(-0.0276292\pi\)
\(308\) 2.42711e11i 1.53678i
\(309\) 5.96592e10 0.372276
\(310\) −2.63276e11 + 2.67422e11i −1.61914 + 1.64463i
\(311\) −2.25101e11 −1.36445 −0.682223 0.731144i \(-0.738987\pi\)
−0.682223 + 0.731144i \(0.738987\pi\)
\(312\) 5.08270e10i 0.303668i
\(313\) 4.35700e10i 0.256589i 0.991736 + 0.128295i \(0.0409503\pi\)
−0.991736 + 0.128295i \(0.959050\pi\)
\(314\) 8.20466e10 0.476296
\(315\) −1.46571e10 + 1.48879e10i −0.0838785 + 0.0851992i
\(316\) 1.18831e11 0.670408
\(317\) 2.47102e11i 1.37439i 0.726475 + 0.687193i \(0.241157\pi\)
−0.726475 + 0.687193i \(0.758843\pi\)
\(318\) 4.97371e11i 2.72746i
\(319\) −8.42809e10 −0.455692
\(320\) −2.08735e11 2.05499e11i −1.11281 1.09556i
\(321\) −1.48218e11 −0.779163
\(322\) 4.11768e11i 2.13453i
\(323\) 3.50448e11i 1.79148i
\(324\) 2.96508e11 1.49480
\(325\) 5.57764e10 8.71430e8i 0.277316 0.00433269i
\(326\) −1.40164e11 −0.687316
\(327\) 1.62834e11i 0.787555i
\(328\) 7.16241e9i 0.0341686i
\(329\) −2.03574e11 −0.957947
\(330\) 1.99836e11 + 1.96739e11i 0.927603 + 0.913223i
\(331\) −2.07256e11 −0.949032 −0.474516 0.880247i \(-0.657377\pi\)
−0.474516 + 0.880247i \(0.657377\pi\)
\(332\) 5.24635e11i 2.36993i
\(333\) 1.34549e10i 0.0599626i
\(334\) −6.08536e11 −2.67564
\(335\) 1.59173e11 1.61679e11i 0.690505 0.701378i
\(336\) 4.83555e10 0.206976
\(337\) 7.53957e10i 0.318429i −0.987244 0.159214i \(-0.949104\pi\)
0.987244 0.159214i \(-0.0508961\pi\)
\(338\) 3.03635e10i 0.126540i
\(339\) 2.85751e11 1.17514
\(340\) 4.20638e11 4.27262e11i 1.70708 1.73396i
\(341\) −2.94060e11 −1.17772
\(342\) 5.82474e10i 0.230229i
\(343\) 2.33415e11i 0.910555i
\(344\) −3.97423e11 −1.53017
\(345\) 2.13746e11 + 2.10432e11i 0.812290 + 0.799699i
\(346\) −5.03995e11 −1.89053
\(347\) 3.72852e11i 1.38056i −0.723545 0.690278i \(-0.757488\pi\)
0.723545 0.690278i \(-0.242512\pi\)
\(348\) 2.38854e11i 0.873022i
\(349\) −1.75594e11 −0.633570 −0.316785 0.948497i \(-0.602603\pi\)
−0.316785 + 0.948497i \(0.602603\pi\)
\(350\) −7.74148e9 4.95498e11i −0.0275752 1.76496i
\(351\) 8.26298e10 0.290573
\(352\) 1.99451e11i 0.692460i
\(353\) 4.04373e11i 1.38610i 0.720887 + 0.693052i \(0.243735\pi\)
−0.720887 + 0.693052i \(0.756265\pi\)
\(354\) −7.67775e11 −2.59848
\(355\) 2.02467e11 + 1.99328e11i 0.676591 + 0.666103i
\(356\) −1.93470e10 −0.0638393
\(357\) 4.42755e11i 1.44263i
\(358\) 5.58111e11i 1.79575i
\(359\) −1.84093e11 −0.584941 −0.292471 0.956275i \(-0.594477\pi\)
−0.292471 + 0.956275i \(0.594477\pi\)
\(360\) 2.89344e10 2.93900e10i 0.0907933 0.0922229i
\(361\) 1.86443e11 0.577782
\(362\) 6.77771e11i 2.07441i
\(363\) 9.20950e10i 0.278392i
\(364\) 1.70060e11 0.507745
\(365\) −1.17622e11 + 1.19474e11i −0.346874 + 0.352335i
\(366\) −6.15442e10 −0.179276
\(367\) 2.79309e11i 0.803689i 0.915708 + 0.401845i \(0.131631\pi\)
−0.915708 + 0.401845i \(0.868369\pi\)
\(368\) 8.70521e10i 0.247437i
\(369\) −1.16732e9 −0.00327771
\(370\) 2.27428e11 + 2.23902e11i 0.630864 + 0.621085i
\(371\) 6.88719e11 1.88738
\(372\) 8.33370e11i 2.25629i
\(373\) 5.69504e11i 1.52338i −0.647944 0.761688i \(-0.724371\pi\)
0.647944 0.761688i \(-0.275629\pi\)
\(374\) 7.45202e11 1.96948
\(375\) 2.61166e11 + 2.49204e11i 0.681986 + 0.650749i
\(376\) 4.01874e11 1.03692
\(377\) 5.90531e10i 0.150559i
\(378\) 7.34055e11i 1.84934i
\(379\) −5.46281e10 −0.136000 −0.0680001 0.997685i \(-0.521662\pi\)
−0.0680001 + 0.997685i \(0.521662\pi\)
\(380\) −6.20725e11 6.11103e11i −1.52712 1.50345i
\(381\) −4.81788e11 −1.17137
\(382\) 3.55374e11i 0.853887i
\(383\) 5.83372e11i 1.38532i 0.721263 + 0.692661i \(0.243562\pi\)
−0.721263 + 0.692661i \(0.756438\pi\)
\(384\) 7.00444e11 1.64393
\(385\) 2.72428e11 2.76717e11i 0.631943 0.641893i
\(386\) 2.25476e10 0.0516961
\(387\) 6.47714e10i 0.146786i
\(388\) 5.34040e11i 1.19627i
\(389\) −4.24751e11 −0.940506 −0.470253 0.882532i \(-0.655837\pi\)
−0.470253 + 0.882532i \(0.655837\pi\)
\(390\) −1.37849e11 + 1.40019e11i −0.301726 + 0.306477i
\(391\) 7.97071e11 1.72465
\(392\) 8.22290e10i 0.175889i
\(393\) 6.45538e11i 1.36507i
\(394\) 1.68799e11 0.352889
\(395\) 1.35481e11 + 1.33381e11i 0.280022 + 0.275681i
\(396\) 7.80882e10 0.159572
\(397\) 1.61966e11i 0.327241i 0.986523 + 0.163620i \(0.0523172\pi\)
−0.986523 + 0.163620i \(0.947683\pi\)
\(398\) 9.79088e11i 1.95590i
\(399\) −6.43233e11 −1.27055
\(400\) 1.63663e9 + 1.04754e11i 0.00319654 + 0.204597i
\(401\) 1.70193e11 0.328695 0.164347 0.986403i \(-0.447448\pi\)
0.164347 + 0.986403i \(0.447448\pi\)
\(402\) 7.99165e11i 1.52623i
\(403\) 2.06039e11i 0.389113i
\(404\) −1.10096e12 −2.05615
\(405\) 3.38053e11 + 3.32812e11i 0.624362 + 0.614684i
\(406\) −5.24608e11 −0.958225
\(407\) 2.50082e11i 0.451760i
\(408\) 8.74038e11i 1.56156i
\(409\) 4.66309e11 0.823985 0.411992 0.911187i \(-0.364833\pi\)
0.411992 + 0.911187i \(0.364833\pi\)
\(410\) 1.94253e10 1.97312e10i 0.0339501 0.0344847i
\(411\) −2.29435e11 −0.396617
\(412\) 3.94051e11i 0.673775i
\(413\) 1.06315e12i 1.79813i
\(414\) 1.32480e11 0.221640
\(415\) −5.88871e11 + 5.98143e11i −0.974549 + 0.989894i
\(416\) 1.39750e11 0.228787
\(417\) 8.73913e10i 0.141532i
\(418\) 1.08263e12i 1.73455i
\(419\) 1.12343e12 1.78066 0.890331 0.455313i \(-0.150473\pi\)
0.890331 + 0.455313i \(0.150473\pi\)
\(420\) 7.84221e11 + 7.72064e11i 1.22975 + 1.21069i
\(421\) 1.85868e11 0.288361 0.144180 0.989551i \(-0.453945\pi\)
0.144180 + 0.989551i \(0.453945\pi\)
\(422\) 1.77765e12i 2.72861i
\(423\) 6.54968e10i 0.0994691i
\(424\) −1.35959e12 −2.04297
\(425\) 9.59150e11 1.49854e10i 1.42605 0.0222801i
\(426\) −1.00078e12 −1.47229
\(427\) 8.52214e10i 0.124058i
\(428\) 9.78984e11i 1.41019i
\(429\) −1.53967e11 −0.219467
\(430\) −1.09483e12 1.07786e12i −1.54433 1.52039i
\(431\) −9.96119e11 −1.39048 −0.695238 0.718780i \(-0.744701\pi\)
−0.695238 + 0.718780i \(0.744701\pi\)
\(432\) 1.55187e11i 0.214377i
\(433\) 7.07735e11i 0.967554i 0.875191 + 0.483777i \(0.160735\pi\)
−0.875191 + 0.483777i \(0.839265\pi\)
\(434\) −1.83038e12 −2.47649
\(435\) 2.68098e11 2.72320e11i 0.358998 0.364651i
\(436\) 1.07553e12 1.42538
\(437\) 1.15798e12i 1.51892i
\(438\) 5.90551e11i 0.766697i
\(439\) −5.59583e11 −0.719075 −0.359537 0.933131i \(-0.617066\pi\)
−0.359537 + 0.933131i \(0.617066\pi\)
\(440\) −5.37797e11 + 5.46264e11i −0.684039 + 0.694810i
\(441\) −1.34015e10 −0.0168726
\(442\) 5.22141e11i 0.650710i
\(443\) 9.38157e11i 1.15733i −0.815564 0.578667i \(-0.803573\pi\)
0.815564 0.578667i \(-0.196427\pi\)
\(444\) −7.08737e11 −0.865489
\(445\) −2.20577e10 2.17158e10i −0.0266649 0.0262516i
\(446\) 2.37753e12 2.84524
\(447\) 6.66424e11i 0.789526i
\(448\) 1.42869e12i 1.67567i
\(449\) −9.59461e11 −1.11409 −0.557043 0.830484i \(-0.688064\pi\)
−0.557043 + 0.830484i \(0.688064\pi\)
\(450\) 1.59419e11 2.49070e9i 0.183266 0.00286328i
\(451\) 2.16966e10 0.0246943
\(452\) 1.88739e12i 2.12686i
\(453\) 4.26326e10i 0.0475664i
\(454\) 1.57429e12 1.73914
\(455\) 1.93887e11 + 1.90882e11i 0.212079 + 0.208792i
\(456\) 1.26980e12 1.37529
\(457\) 1.57983e12i 1.69429i 0.531364 + 0.847144i \(0.321680\pi\)
−0.531364 + 0.847144i \(0.678320\pi\)
\(458\) 8.94711e11i 0.950141i
\(459\) 1.42093e12 1.49422
\(460\) −1.38991e12 + 1.41180e12i −1.44736 + 1.47015i
\(461\) −8.03099e10 −0.0828161 −0.0414080 0.999142i \(-0.513184\pi\)
−0.0414080 + 0.999142i \(0.513184\pi\)
\(462\) 1.36779e12i 1.39679i
\(463\) 1.49606e12i 1.51299i −0.654001 0.756494i \(-0.726911\pi\)
0.654001 0.756494i \(-0.273089\pi\)
\(464\) 1.10908e11 0.111079
\(465\) 9.35406e11 9.50135e11i 0.927816 0.942425i
\(466\) −2.24173e12 −2.20215
\(467\) 5.13408e11i 0.499501i 0.968310 + 0.249750i \(0.0803486\pi\)
−0.968310 + 0.249750i \(0.919651\pi\)
\(468\) 5.47141e10i 0.0527221i
\(469\) 1.10662e12 1.05614
\(470\) 1.10709e12 + 1.08993e12i 1.04651 + 1.03029i
\(471\) −2.91507e11 −0.272932
\(472\) 2.09876e12i 1.94636i
\(473\) 1.20389e12i 1.10589i
\(474\) −6.69671e11 −0.609339
\(475\) −2.17708e10 1.39345e12i −0.0196224 1.25594i
\(476\) 2.92441e12 2.61100
\(477\) 2.21584e11i 0.195977i
\(478\) 5.80456e10i 0.0508562i
\(479\) 2.14608e12 1.86267 0.931335 0.364163i \(-0.118645\pi\)
0.931335 + 0.364163i \(0.118645\pi\)
\(480\) 6.44447e11 + 6.34457e11i 0.554117 + 0.545527i
\(481\) −1.75225e11 −0.149260
\(482\) 1.20190e12i 1.01428i
\(483\) 1.46299e12i 1.22315i
\(484\) 6.08290e11 0.503857
\(485\) 5.99427e11 6.08865e11i 0.491924 0.499670i
\(486\) 4.48665e11 0.364803
\(487\) 1.20344e12i 0.969489i −0.874656 0.484745i \(-0.838913\pi\)
0.874656 0.484745i \(-0.161087\pi\)
\(488\) 1.68235e11i 0.134285i
\(489\) 4.97995e11 0.393854
\(490\) 2.23015e11 2.26527e11i 0.174764 0.177516i
\(491\) −1.67385e12 −1.29972 −0.649858 0.760055i \(-0.725172\pi\)
−0.649858 + 0.760055i \(0.725172\pi\)
\(492\) 6.14886e10i 0.0473098i
\(493\) 1.01550e12i 0.774226i
\(494\) 7.58566e11 0.573089
\(495\) 8.90293e10 + 8.76492e10i 0.0666514 + 0.0656182i
\(496\) 3.86961e11 0.287078
\(497\) 1.38579e12i 1.01881i
\(498\) 2.95657e12i 2.15405i
\(499\) 5.48884e11 0.396304 0.198152 0.980171i \(-0.436506\pi\)
0.198152 + 0.980171i \(0.436506\pi\)
\(500\) −1.64600e12 + 1.72501e12i −1.17778 + 1.23431i
\(501\) 2.16210e12 1.53322
\(502\) 3.92492e12i 2.75844i
\(503\) 1.49726e12i 1.04289i 0.853283 + 0.521447i \(0.174608\pi\)
−0.853283 + 0.521447i \(0.825392\pi\)
\(504\) 2.01161e11 0.138869
\(505\) −1.25521e12 1.23576e12i −0.858829 0.845516i
\(506\) −2.46236e12 −1.66984
\(507\) 1.07880e11i 0.0725111i
\(508\) 3.18223e12i 2.12004i
\(509\) −3.00504e12 −1.98436 −0.992179 0.124822i \(-0.960164\pi\)
−0.992179 + 0.124822i \(0.960164\pi\)
\(510\) −2.37050e12 + 2.40782e12i −1.55158 + 1.57601i
\(511\) −8.17746e11 −0.530548
\(512\) 6.32027e11i 0.406463i
\(513\) 2.06433e12i 1.31598i
\(514\) −3.12329e12 −1.97369
\(515\) −4.42298e11 + 4.49262e11i −0.277066 + 0.281428i
\(516\) 3.41184e12 2.11868
\(517\) 1.21737e12i 0.749403i
\(518\) 1.55664e12i 0.949957i
\(519\) 1.79067e12 1.08333
\(520\) −3.82751e11 3.76818e11i −0.229563 0.226004i
\(521\) −1.15582e12 −0.687258 −0.343629 0.939105i \(-0.611656\pi\)
−0.343629 + 0.939105i \(0.611656\pi\)
\(522\) 1.68784e11i 0.0994979i
\(523\) 1.64038e12i 0.958710i 0.877621 + 0.479355i \(0.159129\pi\)
−0.877621 + 0.479355i \(0.840871\pi\)
\(524\) 4.26380e12 2.47062
\(525\) 2.75051e10 + 1.76048e12i 0.0158014 + 1.01138i
\(526\) −2.63745e12 −1.50227
\(527\) 3.54311e12i 2.00095i
\(528\) 2.89165e11i 0.161917i
\(529\) −8.32600e11 −0.462260
\(530\) −3.74544e12 3.68738e12i −2.06187 2.02991i
\(531\) −3.42052e11 −0.186710
\(532\) 4.24858e12i 2.29954i
\(533\) 1.52022e10i 0.00815893i
\(534\) 1.09029e11 0.0580240
\(535\) 1.09885e12 1.11615e12i 0.579891 0.589022i
\(536\) −2.18456e12 −1.14320
\(537\) 1.98294e12i 1.02902i
\(538\) 3.37156e11i 0.173504i
\(539\) 2.49091e11 0.127118
\(540\) −2.47778e12 + 2.51680e12i −1.25398 + 1.27373i
\(541\) −6.56694e11 −0.329591 −0.164796 0.986328i \(-0.552696\pi\)
−0.164796 + 0.986328i \(0.552696\pi\)
\(542\) 3.48537e12i 1.73481i
\(543\) 2.40809e12i 1.18870i
\(544\) 2.40318e12 1.17650
\(545\) 1.22622e12 + 1.20721e12i 0.595366 + 0.586137i
\(546\) −9.58368e11 −0.461493
\(547\) 1.75594e12i 0.838621i 0.907843 + 0.419311i \(0.137728\pi\)
−0.907843 + 0.419311i \(0.862272\pi\)
\(548\) 1.51543e12i 0.717831i
\(549\) −2.74186e10 −0.0128816
\(550\) −2.96307e12 + 4.62939e10i −1.38073 + 0.0215721i
\(551\) −1.47531e12 −0.681870
\(552\) 2.88807e12i 1.32398i
\(553\) 9.27306e11i 0.421658i
\(554\) 6.61819e12 2.98500
\(555\) −8.08039e11 7.95513e11i −0.361505 0.355901i
\(556\) 5.77222e11 0.256157
\(557\) 7.12754e11i 0.313755i 0.987618 + 0.156878i \(0.0501428\pi\)
−0.987618 + 0.156878i \(0.949857\pi\)
\(558\) 5.88894e11i 0.257148i
\(559\) 8.43528e11 0.365381
\(560\) −3.58495e11 + 3.64140e11i −0.154041 + 0.156467i
\(561\) −2.64766e12 −1.12857
\(562\) 2.09463e12i 0.885713i
\(563\) 1.27950e12i 0.536725i 0.963318 + 0.268362i \(0.0864825\pi\)
−0.963318 + 0.268362i \(0.913518\pi\)
\(564\) −3.45005e12 −1.43572
\(565\) −2.11848e12 + 2.15184e12i −0.874594 + 0.888365i
\(566\) 3.34955e12 1.37187
\(567\) 2.31381e12i 0.940167i
\(568\) 2.73568e12i 1.10280i
\(569\) 1.72251e12 0.688901 0.344450 0.938804i \(-0.388065\pi\)
0.344450 + 0.938804i \(0.388065\pi\)
\(570\) 3.49808e12 + 3.44385e12i 1.38801 + 1.36649i
\(571\) −3.40060e12 −1.33873 −0.669366 0.742933i \(-0.733434\pi\)
−0.669366 + 0.742933i \(0.733434\pi\)
\(572\) 1.01696e12i 0.397210i
\(573\) 1.26262e12i 0.489304i
\(574\) 1.35051e11 0.0519271
\(575\) −3.16931e12 + 4.95161e10i −1.20909 + 0.0188904i
\(576\) 4.59659e11 0.173994
\(577\) 1.32866e11i 0.0499027i 0.999689 + 0.0249513i \(0.00794308\pi\)
−0.999689 + 0.0249513i \(0.992057\pi\)
\(578\) 4.56478e12i 1.70116i
\(579\) −8.01104e10 −0.0296234
\(580\) 1.79868e12 + 1.77080e12i 0.659976 + 0.649745i
\(581\) −4.09401e12 −1.49058
\(582\) 3.00957e12i 1.08730i
\(583\) 4.11853e12i 1.47650i
\(584\) 1.61430e12 0.574285
\(585\) −6.14131e10 + 6.23801e10i −0.0216800 + 0.0220214i
\(586\) 3.46098e12 1.21244
\(587\) 1.22335e12i 0.425284i −0.977130 0.212642i \(-0.931793\pi\)
0.977130 0.212642i \(-0.0682069\pi\)
\(588\) 7.05928e11i 0.243536i
\(589\) −5.14743e12 −1.76227
\(590\) 5.69209e12 5.78171e12i 1.93392 1.96437i
\(591\) −5.99736e11 −0.202216
\(592\) 3.29090e11i 0.110120i
\(593\) 3.47329e11i 0.115344i 0.998336 + 0.0576720i \(0.0183677\pi\)
−0.998336 + 0.0576720i \(0.981632\pi\)
\(594\) −4.38963e12 −1.44674
\(595\) 3.33415e12 + 3.28247e12i 1.09058 + 1.07368i
\(596\) −4.40175e12 −1.42895
\(597\) 3.47865e12i 1.12079i
\(598\) 1.72531e12i 0.551710i
\(599\) 1.75228e12 0.556137 0.278069 0.960561i \(-0.410306\pi\)
0.278069 + 0.960561i \(0.410306\pi\)
\(600\) −5.42975e10 3.47534e12i −0.0171041 1.09476i
\(601\) 2.93977e12 0.919133 0.459567 0.888143i \(-0.348005\pi\)
0.459567 + 0.888143i \(0.348005\pi\)
\(602\) 7.49362e12i 2.32545i
\(603\) 3.56036e11i 0.109665i
\(604\) 2.81590e11 0.0860896
\(605\) 6.93519e11 + 6.82768e11i 0.210455 + 0.207193i
\(606\) 6.20441e12 1.86885
\(607\) 2.63365e12i 0.787425i 0.919234 + 0.393712i \(0.128809\pi\)
−0.919234 + 0.393712i \(0.871191\pi\)
\(608\) 3.49134e12i 1.03616i
\(609\) 1.86390e12 0.549092
\(610\) 4.56273e11 4.63457e11i 0.133426 0.135527i
\(611\) −8.52975e11 −0.247600
\(612\) 9.40881e11i 0.271115i
\(613\) 1.15480e11i 0.0330321i −0.999864 0.0165160i \(-0.994743\pi\)
0.999864 0.0165160i \(-0.00525745\pi\)
\(614\) −1.00445e12 −0.285215
\(615\) −6.90171e10 + 7.01039e10i −0.0194544 + 0.0197608i
\(616\) −3.73893e12 −1.04625
\(617\) 3.75780e12i 1.04388i −0.852983 0.521939i \(-0.825209\pi\)
0.852983 0.521939i \(-0.174791\pi\)
\(618\) 2.22066e12i 0.612399i
\(619\) 2.17044e12 0.594210 0.297105 0.954845i \(-0.403979\pi\)
0.297105 + 0.954845i \(0.403979\pi\)
\(620\) 6.27567e12 + 6.17839e12i 1.70568 + 1.67924i
\(621\) −4.69517e12 −1.26689
\(622\) 8.37883e12i 2.24454i
\(623\) 1.50975e11i 0.0401521i
\(624\) 2.02609e11 0.0534969
\(625\) −3.81284e12 + 1.19170e11i −0.999512 + 0.0312396i
\(626\) 1.62178e12 0.422093
\(627\) 3.84652e12i 0.993950i
\(628\) 1.92541e12i 0.493976i
\(629\) −3.01323e12 −0.767545
\(630\) 5.54164e11 + 5.45573e11i 0.140154 + 0.137981i
\(631\) −5.99337e12 −1.50501 −0.752505 0.658587i \(-0.771154\pi\)
−0.752505 + 0.658587i \(0.771154\pi\)
\(632\) 1.83058e12i 0.456418i
\(633\) 6.31590e12i 1.56358i
\(634\) 9.19773e12 2.26089
\(635\) 3.57185e12 3.62809e12i 0.871790 0.885517i
\(636\) 1.16720e13 2.82870
\(637\) 1.74531e11i 0.0419995i
\(638\) 3.13714e12i 0.749620i
\(639\) −4.45856e11 −0.105789
\(640\) −5.19291e12 + 5.27467e12i −1.22349 + 1.24276i
\(641\) −6.26847e12 −1.46656 −0.733281 0.679926i \(-0.762012\pi\)
−0.733281 + 0.679926i \(0.762012\pi\)
\(642\) 5.51704e12i 1.28174i
\(643\) 9.05874e11i 0.208987i −0.994526 0.104493i \(-0.966678\pi\)
0.994526 0.104493i \(-0.0333221\pi\)
\(644\) −9.66310e12 −2.21376
\(645\) 3.88988e12 + 3.82958e12i 0.884947 + 0.871229i
\(646\) 1.30445e13 2.94702
\(647\) 5.25490e12i 1.17895i −0.807787 0.589474i \(-0.799335\pi\)
0.807787 0.589474i \(-0.200665\pi\)
\(648\) 4.56768e12i 1.01767i
\(649\) 6.35763e12 1.40668
\(650\) −3.24368e10 2.07613e12i −0.00712734 0.456190i
\(651\) 6.50323e12 1.41911
\(652\) 3.28927e12i 0.712829i
\(653\) 4.71722e12i 1.01526i 0.861575 + 0.507630i \(0.169478\pi\)
−0.861575 + 0.507630i \(0.830522\pi\)
\(654\) −6.06109e12 −1.29554
\(655\) 4.86120e12 + 4.78585e12i 1.03195 + 1.01595i
\(656\) −2.85512e10 −0.00601945
\(657\) 2.63097e11i 0.0550898i
\(658\) 7.57754e12i 1.57584i
\(659\) 8.11959e12 1.67707 0.838533 0.544852i \(-0.183414\pi\)
0.838533 + 0.544852i \(0.183414\pi\)
\(660\) 4.61693e12 4.68963e12i 0.947121 0.962034i
\(661\) −9.75841e12 −1.98826 −0.994128 0.108211i \(-0.965488\pi\)
−0.994128 + 0.108211i \(0.965488\pi\)
\(662\) 7.71457e12i 1.56117i
\(663\) 1.85514e12i 0.372877i
\(664\) 8.08195e12 1.61347
\(665\) 4.76876e12 4.84385e12i 0.945602 0.960491i
\(666\) −5.00823e11 −0.0986394
\(667\) 3.35550e12i 0.656433i
\(668\) 1.42807e13i 2.77495i
\(669\) −8.44724e12 −1.63041
\(670\) −6.01809e12 5.92480e12i −1.15378 1.13589i
\(671\) 5.09622e11 0.0970503
\(672\) 4.41094e12i 0.834391i
\(673\) 6.37456e12i 1.19779i −0.800826 0.598897i \(-0.795606\pi\)
0.800826 0.598897i \(-0.204394\pi\)
\(674\) −2.80641e12 −0.523820
\(675\) −5.64990e12 + 8.82719e10i −1.04755 + 0.0163665i
\(676\) 7.12550e11 0.131237
\(677\) 9.25132e12i 1.69260i −0.532706 0.846301i \(-0.678825\pi\)
0.532706 0.846301i \(-0.321175\pi\)
\(678\) 1.06363e13i 1.93312i
\(679\) 4.16740e12 0.752404
\(680\) −6.58192e12 6.47989e12i −1.18049 1.16219i
\(681\) −5.59337e12 −0.996579
\(682\) 1.09456e13i 1.93736i
\(683\) 4.14563e12i 0.728949i −0.931213 0.364474i \(-0.881249\pi\)
0.931213 0.364474i \(-0.118751\pi\)
\(684\) 1.36691e12 0.238774
\(685\) 1.70097e12 1.72775e12i 0.295182 0.299830i
\(686\) −8.68830e12 −1.49788
\(687\) 3.17886e12i 0.544460i
\(688\) 1.58423e12i 0.269569i
\(689\) 2.88573e12 0.487830
\(690\) 7.83281e12 7.95614e12i 1.31552 1.33623i
\(691\) 7.23801e12 1.20772 0.603862 0.797089i \(-0.293628\pi\)
0.603862 + 0.797089i \(0.293628\pi\)
\(692\) 1.18274e13i 1.96071i
\(693\) 6.09364e11i 0.100364i
\(694\) −1.38785e13 −2.27104
\(695\) 6.58098e11 + 6.47896e11i 0.106994 + 0.105335i
\(696\) −3.67951e12 −0.594359
\(697\) 2.61422e11i 0.0419560i
\(698\) 6.53603e12i 1.04223i
\(699\) 7.96474e12 1.26190
\(700\) −1.16280e13 + 1.81672e11i −1.83048 + 0.0285987i
\(701\) 1.11053e13 1.73700 0.868502 0.495685i \(-0.165083\pi\)
0.868502 + 0.495685i \(0.165083\pi\)
\(702\) 3.07569e12i 0.477997i
\(703\) 4.37761e12i 0.675987i
\(704\) −8.54356e12 −1.31088
\(705\) −3.93344e12 3.87247e12i −0.599683 0.590387i
\(706\) 1.50518e13 2.28016
\(707\) 8.59137e12i 1.29323i
\(708\) 1.80176e13i 2.69493i
\(709\) −1.24916e13 −1.85656 −0.928280 0.371882i \(-0.878712\pi\)
−0.928280 + 0.371882i \(0.878712\pi\)
\(710\) 7.41949e12 7.53631e12i 1.09575 1.11300i
\(711\) −2.98346e11 −0.0437831
\(712\) 2.98038e11i 0.0434622i
\(713\) 1.17075e13i 1.69652i
\(714\) −1.64804e13 −2.37316
\(715\) 1.14147e12 1.15944e12i 0.163338 0.165910i
\(716\) 1.30974e13 1.86241
\(717\) 2.06233e11i 0.0291422i
\(718\) 6.85239e12i 0.962238i
\(719\) −1.65992e12 −0.231636 −0.115818 0.993270i \(-0.536949\pi\)
−0.115818 + 0.993270i \(0.536949\pi\)
\(720\) −1.17156e11 1.15340e11i −0.0162468 0.0159950i
\(721\) −3.07499e12 −0.423775
\(722\) 6.93987e12i 0.950460i
\(723\) 4.27028e12i 0.581211i
\(724\) −1.59055e13 −2.15141
\(725\) 6.30853e10 + 4.03781e12i 0.00848022 + 0.542782i
\(726\) −3.42800e12 −0.457959
\(727\) 5.15944e11i 0.0685011i −0.999413 0.0342506i \(-0.989096\pi\)
0.999413 0.0342506i \(-0.0109044\pi\)
\(728\) 2.61976e12i 0.345676i
\(729\) −8.27536e12 −1.08521
\(730\) 4.44713e12 + 4.37819e12i 0.579597 + 0.570613i
\(731\) 1.45056e13 1.87892
\(732\) 1.44428e12i 0.185931i
\(733\) 1.45685e12i 0.186400i 0.995647 + 0.0932000i \(0.0297096\pi\)
−0.995647 + 0.0932000i \(0.970290\pi\)
\(734\) 1.03966e13 1.32208
\(735\) −7.92360e11 + 8.04837e11i −0.100145 + 0.101722i
\(736\) −7.94081e12 −0.997504
\(737\) 6.61755e12i 0.826216i
\(738\) 4.34504e10i 0.00539188i
\(739\) −8.71221e12 −1.07455 −0.537277 0.843406i \(-0.680547\pi\)
−0.537277 + 0.843406i \(0.680547\pi\)
\(740\) 5.25439e12 5.33712e12i 0.644139 0.654281i
\(741\) −2.69514e12 −0.328398
\(742\) 2.56358e13i 3.10477i
\(743\) 3.64808e12i 0.439152i 0.975595 + 0.219576i \(0.0704673\pi\)
−0.975595 + 0.219576i \(0.929533\pi\)
\(744\) −1.28380e13 −1.53610
\(745\) −5.01849e12 4.94069e12i −0.596856 0.587604i
\(746\) −2.11983e13 −2.50598
\(747\) 1.31718e12i 0.154776i
\(748\) 1.74879e13i 2.04259i
\(749\) 7.63954e12 0.886950
\(750\) 9.27597e12 9.72123e12i 1.07049 1.12188i
\(751\) −1.41139e12 −0.161908 −0.0809538 0.996718i \(-0.525797\pi\)
−0.0809538 + 0.996718i \(0.525797\pi\)
\(752\) 1.60197e12i 0.182673i
\(753\) 1.39450e13i 1.58067i
\(754\) −2.19810e12 −0.247672
\(755\) 3.21044e11 + 3.16067e11i 0.0359586 + 0.0354012i
\(756\) −1.72263e13 −1.91798
\(757\) 1.11659e13i 1.23584i −0.786243 0.617918i \(-0.787976\pi\)
0.786243 0.617918i \(-0.212024\pi\)
\(758\) 2.03339e12i 0.223722i
\(759\) 8.74865e12 0.956870
\(760\) −9.41397e12 + 9.56220e12i −1.02356 + 1.03967i
\(761\) 1.74660e13 1.88783 0.943916 0.330185i \(-0.107111\pi\)
0.943916 + 0.330185i \(0.107111\pi\)
\(762\) 1.79333e13i 1.92692i
\(763\) 8.39291e12i 0.896503i
\(764\) −8.33968e12 −0.885583
\(765\) −1.05608e12 + 1.07271e12i −0.111486 + 0.113242i
\(766\) 2.17145e13 2.27888
\(767\) 4.45460e12i 0.464761i
\(768\) 1.18803e13i 1.23225i
\(769\) 6.53695e12 0.674073 0.337036 0.941492i \(-0.390575\pi\)
0.337036 + 0.941492i \(0.390575\pi\)
\(770\) −1.03001e13 1.01404e13i −1.05592 1.03956i
\(771\) 1.10969e13 1.13098
\(772\) 5.29132e11i 0.0536150i
\(773\) 1.43446e13i 1.44504i −0.691348 0.722522i \(-0.742983\pi\)
0.691348 0.722522i \(-0.257017\pi\)
\(774\) 2.41095e12 0.241465
\(775\) 2.20107e11 + 1.40881e13i 0.0219168 + 1.40280i
\(776\) −8.22682e12 −0.814431
\(777\) 5.53066e12i 0.544355i
\(778\) 1.58103e13i 1.54715i
\(779\) 3.79793e11 0.0369512
\(780\) 3.28588e12 + 3.23494e12i 0.317853 + 0.312926i
\(781\) 8.28700e12 0.797018
\(782\) 2.96689e13i 2.83708i
\(783\) 5.98181e12i 0.568728i
\(784\) −3.27786e11 −0.0309861
\(785\) 2.16116e12 2.19519e12i 0.203129 0.206328i
\(786\) −2.40285e13 −2.24556
\(787\) 1.15418e13i 1.07248i 0.844066 + 0.536239i \(0.180155\pi\)
−0.844066 + 0.536239i \(0.819845\pi\)
\(788\) 3.96127e12i 0.365988i
\(789\) 9.37073e12 0.860849
\(790\) 4.96477e12 5.04294e12i 0.453500 0.460640i
\(791\) −1.47283e13 −1.33770
\(792\) 1.20294e12i 0.108638i
\(793\) 3.57077e11i 0.0320651i
\(794\) 6.02878e12 0.538316
\(795\) 1.33074e13 + 1.31011e13i 1.18152 + 1.16320i
\(796\) 2.29766e13 2.02851
\(797\) 2.04626e13i 1.79638i −0.439609 0.898189i \(-0.644883\pi\)
0.439609 0.898189i \(-0.355117\pi\)
\(798\) 2.39427e13i 2.09007i
\(799\) −1.46680e13 −1.27324
\(800\) −9.55552e12 + 1.49292e11i −0.824801 + 0.0128864i
\(801\) 4.85737e10 0.00416922
\(802\) 6.33502e12i 0.540708i
\(803\) 4.89010e12i 0.415048i
\(804\) 1.87543e13 1.58288
\(805\) −1.10170e13 1.08462e13i −0.924660 0.910327i
\(806\) −7.66927e12 −0.640098
\(807\) 1.19790e12i 0.0994234i
\(808\) 1.69601e13i 1.39984i
\(809\) 9.11347e12 0.748024 0.374012 0.927424i \(-0.377982\pi\)
0.374012 + 0.927424i \(0.377982\pi\)
\(810\) 1.23881e13 1.25832e13i 1.01116 1.02709i
\(811\) −6.43474e12 −0.522321 −0.261160 0.965295i \(-0.584105\pi\)
−0.261160 + 0.965295i \(0.584105\pi\)
\(812\) 1.23111e13i 0.993793i
\(813\) 1.23833e13i 0.994100i
\(814\) 9.30867e12 0.743152
\(815\) −3.69200e12 + 3.75014e12i −0.293125 + 0.297740i
\(816\) 3.48413e12 0.275099
\(817\) 2.10737e13i 1.65479i
\(818\) 1.73572e13i 1.35547i
\(819\) −4.26963e11 −0.0331599
\(820\) −4.63038e11 4.55860e11i −0.0357647 0.0352103i
\(821\) 1.49394e13 1.14759 0.573796 0.818998i \(-0.305470\pi\)
0.573796 + 0.818998i \(0.305470\pi\)
\(822\) 8.54014e12i 0.652442i
\(823\) 6.42394e11i 0.0488093i 0.999702 + 0.0244046i \(0.00776901\pi\)
−0.999702 + 0.0244046i \(0.992231\pi\)
\(824\) 6.07031e12 0.458710
\(825\) 1.05276e13 1.64480e11i 0.791203 0.0123615i
\(826\) 3.95731e13 2.95795
\(827\) 1.16049e13i 0.862715i 0.902181 + 0.431358i \(0.141965\pi\)
−0.902181 + 0.431358i \(0.858035\pi\)
\(828\) 3.10894e12i 0.229867i
\(829\) −1.57628e13 −1.15914 −0.579572 0.814921i \(-0.696780\pi\)
−0.579572 + 0.814921i \(0.696780\pi\)
\(830\) 2.22644e13 + 2.19192e13i 1.62839 + 1.60315i
\(831\) −2.35141e13 −1.71050
\(832\) 5.98622e12i 0.433109i
\(833\) 3.00129e12i 0.215976i
\(834\) −3.25292e12 −0.232823
\(835\) −1.60292e13 + 1.62816e13i −1.14110 + 1.15907i
\(836\) −2.54064e13 −1.79893
\(837\) 2.08708e13i 1.46985i
\(838\) 4.18167e13i 2.92922i
\(839\) 6.01495e12 0.419086 0.209543 0.977799i \(-0.432802\pi\)
0.209543 + 0.977799i \(0.432802\pi\)
\(840\) 1.18936e13 1.20808e13i 0.824243 0.837221i
\(841\) −1.02321e13 −0.705316
\(842\) 6.91848e12i 0.474358i
\(843\) 7.44209e12i 0.507541i
\(844\) 4.17167e13 2.82989
\(845\) 8.12387e11 + 7.99793e11i 0.0548160 + 0.0539663i
\(846\) −2.43795e12 −0.163628
\(847\) 4.74682e12i 0.316904i
\(848\) 5.41968e12i 0.359909i
\(849\) −1.19008e13 −0.786123
\(850\) −5.57793e11 3.57019e13i −0.0366512 2.34588i
\(851\) 9.95658e12 0.650769
\(852\) 2.34855e13i 1.52694i
\(853\) 7.80932e12i 0.505059i −0.967589 0.252530i \(-0.918737\pi\)
0.967589 0.252530i \(-0.0812625\pi\)
\(854\) 3.17215e12 0.204077
\(855\) 1.55843e12 + 1.53427e12i 0.0997333 + 0.0981873i
\(856\) −1.50811e13 −0.960069
\(857\) 7.77957e12i 0.492654i −0.969187 0.246327i \(-0.920776\pi\)
0.969187 0.246327i \(-0.0792237\pi\)
\(858\) 5.73102e12i 0.361027i
\(859\) −7.85737e12 −0.492389 −0.246194 0.969220i \(-0.579180\pi\)
−0.246194 + 0.969220i \(0.579180\pi\)
\(860\) −2.52945e13 + 2.56928e13i −1.57682 + 1.60165i
\(861\) −4.79829e11 −0.0297558
\(862\) 3.70780e13i 2.28736i
\(863\) 2.65186e13i 1.62743i 0.581266 + 0.813713i \(0.302557\pi\)
−0.581266 + 0.813713i \(0.697443\pi\)
\(864\) −1.41560e13 −0.864229
\(865\) −1.32755e13 + 1.34846e13i −0.806269 + 0.818964i
\(866\) 2.63436e13 1.59164
\(867\) 1.62184e13i 0.974816i
\(868\) 4.29541e13i 2.56842i
\(869\) 5.54527e12 0.329863
\(870\) −1.01364e13 9.97928e12i −0.599857 0.590558i
\(871\) 4.63672e12 0.272979
\(872\) 1.65684e13i 0.970410i
\(873\) 1.34079e12i 0.0781264i
\(874\) −4.31030e13 −2.49865
\(875\) −1.34612e13 1.28446e13i −0.776330 0.740772i
\(876\) −1.38586e13 −0.795156
\(877\) 6.14488e12i 0.350764i 0.984500 + 0.175382i \(0.0561160\pi\)
−0.984500 + 0.175382i \(0.943884\pi\)
\(878\) 2.08291e13i 1.18289i
\(879\) −1.22967e13 −0.694765
\(880\) 2.17755e12 + 2.14379e12i 0.122404 + 0.120507i
\(881\) −2.66681e13 −1.49142 −0.745711 0.666269i \(-0.767890\pi\)
−0.745711 + 0.666269i \(0.767890\pi\)
\(882\) 4.98838e11i 0.0277556i
\(883\) 4.25527e12i 0.235561i 0.993040 + 0.117781i \(0.0375780\pi\)
−0.993040 + 0.117781i \(0.962422\pi\)
\(884\) 1.22533e13 0.674864
\(885\) −2.02237e13 + 2.05421e13i −1.10819 + 1.12564i
\(886\) −3.49205e13 −1.90383
\(887\) 1.61561e13i 0.876355i 0.898889 + 0.438177i \(0.144376\pi\)
−0.898889 + 0.438177i \(0.855624\pi\)
\(888\) 1.09180e13i 0.589230i
\(889\) 2.48326e13 1.33341
\(890\) −8.08315e11 + 8.21042e11i −0.0431842 + 0.0438642i
\(891\) 1.38366e13 0.735493
\(892\) 5.57943e13i 2.95086i
\(893\) 2.13097e13i 1.12136i
\(894\) 2.48059e13 1.29878
\(895\) 1.49325e13 + 1.47010e13i 0.777907 + 0.765848i
\(896\) −3.61027e13 −1.87134
\(897\) 6.12992e12i 0.316147i
\(898\) 3.57135e13i 1.83269i
\(899\) 1.49157e13 0.761599
\(900\) −5.84500e10 3.74113e12i −0.00296957 0.190069i
\(901\) 4.96239e13 2.50859
\(902\) 8.07601e11i 0.0406226i
\(903\) 2.66244e13i 1.33256i
\(904\) 2.90751e13 1.44798
\(905\) −1.81340e13 1.78529e13i −0.898619 0.884689i
\(906\) −1.58689e12 −0.0782475
\(907\) 1.61349e13i 0.791651i 0.918326 + 0.395826i \(0.129542\pi\)
−0.918326 + 0.395826i \(0.870458\pi\)
\(908\) 3.69444e13i 1.80369i
\(909\) 2.76413e12 0.134283
\(910\) 7.10509e12 7.21697e12i 0.343466 0.348874i
\(911\) 1.70662e13 0.820924 0.410462 0.911878i \(-0.365367\pi\)
0.410462 + 0.911878i \(0.365367\pi\)
\(912\) 5.06175e12i 0.242283i
\(913\) 2.44821e13i 1.16609i
\(914\) 5.88051e13 2.78713
\(915\) −1.62111e12 + 1.64664e12i −0.0764572 + 0.0776611i
\(916\) 2.09965e13 0.985410
\(917\) 3.32727e13i 1.55391i
\(918\) 5.28905e13i 2.45802i
\(919\) 2.39159e13 1.10603 0.553015 0.833171i \(-0.313477\pi\)
0.553015 + 0.833171i \(0.313477\pi\)
\(920\) 2.17486e13 + 2.14114e13i 1.00089 + 0.985372i
\(921\) 3.56877e12 0.163437
\(922\) 2.98933e12i 0.136234i
\(923\) 5.80646e12i 0.263332i
\(924\) 3.20983e13 1.44863
\(925\) 1.19812e13 1.87190e11i 0.538099 0.00840705i
\(926\) −5.56871e13 −2.48889
\(927\) 9.89329e11i 0.0440030i
\(928\) 1.01169e13i 0.447796i
\(929\) −3.53859e12 −0.155869 −0.0779345 0.996958i \(-0.524832\pi\)
−0.0779345 + 0.996958i \(0.524832\pi\)
\(930\) −3.53664e13 3.48181e13i −1.55030 1.52627i
\(931\) 4.36026e12 0.190213
\(932\) 5.26074e13i 2.28389i
\(933\) 2.97695e13i 1.28619i
\(934\) 1.91103e13 0.821687
\(935\) 1.96291e13 1.99382e13i 0.839939 0.853165i
\(936\) 8.42864e11 0.0358935
\(937\) 6.50586e12i 0.275725i 0.990451 + 0.137863i \(0.0440232\pi\)
−0.990451 + 0.137863i \(0.955977\pi\)
\(938\) 4.11910e13i 1.73736i
\(939\) −5.76211e12 −0.241873
\(940\) 2.55778e13 2.59805e13i 1.06853 1.08536i
\(941\) −2.57328e13 −1.06988 −0.534939 0.844891i \(-0.679665\pi\)
−0.534939 + 0.844891i \(0.679665\pi\)
\(942\) 1.08506e13i 0.448978i
\(943\) 8.63813e11i 0.0355727i
\(944\) −8.36618e12 −0.342889
\(945\) −1.96399e13 1.93355e13i −0.801118 0.788700i
\(946\) −4.48117e13 −1.81920
\(947\) 1.90853e13i 0.771123i 0.922682 + 0.385562i \(0.125992\pi\)
−0.922682 + 0.385562i \(0.874008\pi\)
\(948\) 1.57154e13i 0.631957i
\(949\) −3.42635e12 −0.137130
\(950\) −5.18677e13 + 8.10361e11i −2.06605 + 0.0322792i
\(951\) −3.26790e13 −1.29556
\(952\) 4.50502e13i 1.77758i
\(953\) 3.48712e13i 1.36946i −0.728798 0.684729i \(-0.759921\pi\)
0.728798 0.684729i \(-0.240079\pi\)
\(954\) 8.24791e12 0.322386
\(955\) −9.50816e12 9.36077e12i −0.369898 0.364164i
\(956\) −1.36217e12 −0.0527439
\(957\) 1.11461e13i 0.429555i
\(958\) 7.98823e13i 3.06412i
\(959\) 1.18257e13 0.451484
\(960\) 2.71772e13 2.76051e13i 1.03272 1.04898i
\(961\) 2.56020e13 0.968320
\(962\) 6.52231e12i 0.245535i
\(963\) 2.45790e12i 0.0920971i
\(964\) 2.82053e13 1.05192
\(965\) 5.93918e11 6.03269e11i 0.0220472 0.0223943i
\(966\) 5.44561e13 2.01210
\(967\) 9.08047e12i 0.333956i −0.985961 0.166978i \(-0.946599\pi\)
0.985961 0.166978i \(-0.0534009\pi\)
\(968\) 9.37065e12i 0.343029i
\(969\) −4.63466e13 −1.68873
\(970\) −2.26635e13 2.23121e13i −0.821965 0.809223i
\(971\) −4.96409e12 −0.179206 −0.0896032 0.995978i \(-0.528560\pi\)
−0.0896032 + 0.995978i \(0.528560\pi\)
\(972\) 1.05290e13i 0.378344i
\(973\) 4.50438e12i 0.161112i
\(974\) −4.47949e13 −1.59483
\(975\) 1.15246e11 + 7.37640e12i 0.00408418 + 0.261411i
\(976\) −6.70626e11 −0.0236568
\(977\) 3.59885e13i 1.26368i −0.775098 0.631842i \(-0.782299\pi\)
0.775098 0.631842i \(-0.217701\pi\)
\(978\) 1.85366e13i 0.647895i
\(979\) −9.02826e11 −0.0314110
\(980\) −5.31597e12 5.23357e12i −0.184105 0.181251i
\(981\) −2.70028e12 −0.0930890
\(982\) 6.23046e13i 2.13805i
\(983\) 3.04093e13i 1.03876i −0.854543 0.519381i \(-0.826163\pi\)
0.854543 0.519381i \(-0.173837\pi\)
\(984\) 9.47225e11 0.0322088
\(985\) 4.44628e12 4.51629e12i 0.150499 0.152869i
\(986\) −3.77993e13 −1.27361
\(987\) 2.69226e13i 0.903004i
\(988\) 1.78015e13i 0.594361i
\(989\) −4.79307e13 −1.59305
\(990\) 3.26252e12 3.31389e12i 0.107943 0.109643i
\(991\) 5.24412e13 1.72719 0.863597 0.504182i \(-0.168206\pi\)
0.863597 + 0.504182i \(0.168206\pi\)
\(992\) 3.52982e13i 1.15731i
\(993\) 2.74095e13i 0.894600i
\(994\) 5.15826e13 1.67596
\(995\) 2.61958e13 + 2.57898e13i 0.847283 + 0.834149i
\(996\) −6.93827e13 −2.23401
\(997\) 2.53718e13i 0.813248i 0.913596 + 0.406624i \(0.133294\pi\)
−0.913596 + 0.406624i \(0.866706\pi\)
\(998\) 2.04308e13i 0.651926i
\(999\) 1.77495e13 0.563821
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.10.b.a.14.6 54
5.2 odd 4 325.10.a.l.1.24 27
5.3 odd 4 325.10.a.k.1.4 27
5.4 even 2 inner 65.10.b.a.14.49 yes 54
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.10.b.a.14.6 54 1.1 even 1 trivial
65.10.b.a.14.49 yes 54 5.4 even 2 inner
325.10.a.k.1.4 27 5.3 odd 4
325.10.a.l.1.24 27 5.2 odd 4