Properties

Label 325.2.x.b.7.5
Level $325$
Weight $2$
Character 325.7
Analytic conductor $2.595$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(7,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.x (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.5
Root \(2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 325.7
Dual form 325.2.x.b.93.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29475 + 1.32488i) q^{2} +(-0.335680 - 1.25278i) q^{3} +(2.51060 + 4.34849i) q^{4} +(0.889471 - 3.31955i) q^{6} +(-0.0561740 - 0.0972962i) q^{7} +8.00544i q^{8} +(1.14131 - 0.658935i) q^{9} +(0.479564 + 1.78976i) q^{11} +(4.60492 - 4.60492i) q^{12} +(-2.96279 - 2.05471i) q^{13} -0.297695i q^{14} +(-5.58502 + 9.67354i) q^{16} +(2.63669 + 0.706500i) q^{17} +3.49203 q^{18} +(-6.72284 - 1.80138i) q^{19} +(-0.103034 + 0.103034i) q^{21} +(-1.27073 + 4.74241i) q^{22} +(3.10327 - 0.831519i) q^{23} +(10.0290 - 2.68727i) q^{24} +(-4.07664 - 8.64040i) q^{26} +(-3.95990 - 3.95990i) q^{27} +(0.282061 - 0.488544i) q^{28} +(-4.03134 - 2.32749i) q^{29} +(-0.624367 - 0.624367i) q^{31} +(-11.7667 + 6.79350i) q^{32} +(2.08118 - 1.20157i) q^{33} +(5.11454 + 5.11454i) q^{34} +(5.73074 + 3.30864i) q^{36} +(0.737435 - 1.27728i) q^{37} +(-13.0407 - 13.0407i) q^{38} +(-1.57955 + 4.40145i) q^{39} +(-5.24069 + 1.40424i) q^{41} +(-0.372945 + 0.0999302i) q^{42} +(-1.00860 + 3.76415i) q^{43} +(-6.57874 + 6.57874i) q^{44} +(8.22291 + 2.20332i) q^{46} +0.345095 q^{47} +(13.9936 + 3.74956i) q^{48} +(3.49369 - 6.05125i) q^{49} -3.54034i q^{51} +(1.49651 - 18.0422i) q^{52} +(3.59144 - 3.59144i) q^{53} +(-3.84062 - 14.3334i) q^{54} +(0.778898 - 0.449697i) q^{56} +9.02691i q^{57} +(-6.16729 - 10.6821i) q^{58} +(0.332494 - 1.24088i) q^{59} +(1.39151 + 2.41016i) q^{61} +(-0.605559 - 2.25998i) q^{62} +(-0.128224 - 0.0740300i) q^{63} -13.6621 q^{64} +6.36774 q^{66} +(-0.124992 - 0.0721643i) q^{67} +(3.54747 + 13.2394i) q^{68} +(-2.08342 - 3.60858i) q^{69} +(-1.41668 + 5.28713i) q^{71} +(5.27506 + 9.13667i) q^{72} +9.06221i q^{73} +(3.38447 - 1.95402i) q^{74} +(-9.04509 - 33.7567i) q^{76} +(0.147197 - 0.147197i) q^{77} +(-9.45605 + 8.00753i) q^{78} +15.1689i q^{79} +(-1.65480 + 2.86620i) q^{81} +(-13.8865 - 3.72089i) q^{82} -8.53853 q^{83} +(-0.706718 - 0.189365i) q^{84} +(-7.30152 + 7.30152i) q^{86} +(-1.56259 + 5.83166i) q^{87} +(-14.3278 + 3.83912i) q^{88} +(0.549735 - 0.147301i) q^{89} +(-0.0334840 + 0.403690i) q^{91} +(11.4069 + 11.4069i) q^{92} +(-0.572604 + 0.991779i) q^{93} +(0.791908 + 0.457208i) q^{94} +(12.4606 + 12.4606i) q^{96} +(12.9596 - 7.48223i) q^{97} +(16.0343 - 9.25742i) q^{98} +(1.72666 + 1.72666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} + 2 q^{3} + 6 q^{4} - 8 q^{6} + 2 q^{7} + 12 q^{9} - 16 q^{11} + 24 q^{12} + 4 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{19} + 4 q^{21} - 16 q^{22} + 10 q^{23} + 32 q^{24} - 24 q^{26} - 4 q^{27}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29475 + 1.32488i 1.62264 + 0.936830i 0.986211 + 0.165491i \(0.0529210\pi\)
0.636425 + 0.771338i \(0.280412\pi\)
\(3\) −0.335680 1.25278i −0.193805 0.723291i −0.992573 0.121651i \(-0.961181\pi\)
0.798768 0.601640i \(-0.205486\pi\)
\(4\) 2.51060 + 4.34849i 1.25530 + 2.17424i
\(5\) 0 0
\(6\) 0.889471 3.31955i 0.363125 1.35520i
\(7\) −0.0561740 0.0972962i −0.0212318 0.0367745i 0.855214 0.518275i \(-0.173425\pi\)
−0.876446 + 0.481500i \(0.840092\pi\)
\(8\) 8.00544i 2.83035i
\(9\) 1.14131 0.658935i 0.380436 0.219645i
\(10\) 0 0
\(11\) 0.479564 + 1.78976i 0.144594 + 0.539632i 0.999773 + 0.0212994i \(0.00678031\pi\)
−0.855179 + 0.518332i \(0.826553\pi\)
\(12\) 4.60492 4.60492i 1.32933 1.32933i
\(13\) −2.96279 2.05471i −0.821731 0.569875i
\(14\) 0.297695i 0.0795622i
\(15\) 0 0
\(16\) −5.58502 + 9.67354i −1.39626 + 2.41838i
\(17\) 2.63669 + 0.706500i 0.639492 + 0.171351i 0.563973 0.825793i \(-0.309272\pi\)
0.0755186 + 0.997144i \(0.475939\pi\)
\(18\) 3.49203 0.823080
\(19\) −6.72284 1.80138i −1.54233 0.413265i −0.615309 0.788286i \(-0.710969\pi\)
−0.927016 + 0.375021i \(0.877636\pi\)
\(20\) 0 0
\(21\) −0.103034 + 0.103034i −0.0224838 + 0.0224838i
\(22\) −1.27073 + 4.74241i −0.270920 + 1.01109i
\(23\) 3.10327 0.831519i 0.647077 0.173384i 0.0796701 0.996821i \(-0.474613\pi\)
0.567407 + 0.823438i \(0.307947\pi\)
\(24\) 10.0290 2.68727i 2.04717 0.548536i
\(25\) 0 0
\(26\) −4.07664 8.64040i −0.799495 1.69452i
\(27\) −3.95990 3.95990i −0.762083 0.762083i
\(28\) 0.282061 0.488544i 0.0533045 0.0923261i
\(29\) −4.03134 2.32749i −0.748601 0.432205i 0.0765874 0.997063i \(-0.475598\pi\)
−0.825188 + 0.564858i \(0.808931\pi\)
\(30\) 0 0
\(31\) −0.624367 0.624367i −0.112140 0.112140i 0.648810 0.760950i \(-0.275267\pi\)
−0.760950 + 0.648810i \(0.775267\pi\)
\(32\) −11.7667 + 6.79350i −2.08008 + 1.20093i
\(33\) 2.08118 1.20157i 0.362288 0.209167i
\(34\) 5.11454 + 5.11454i 0.877136 + 0.877136i
\(35\) 0 0
\(36\) 5.73074 + 3.30864i 0.955123 + 0.551441i
\(37\) 0.737435 1.27728i 0.121234 0.209983i −0.799021 0.601303i \(-0.794648\pi\)
0.920254 + 0.391321i \(0.127982\pi\)
\(38\) −13.0407 13.0407i −2.11548 2.11548i
\(39\) −1.57955 + 4.40145i −0.252930 + 0.704795i
\(40\) 0 0
\(41\) −5.24069 + 1.40424i −0.818458 + 0.219305i −0.643672 0.765301i \(-0.722590\pi\)
−0.174786 + 0.984606i \(0.555923\pi\)
\(42\) −0.372945 + 0.0999302i −0.0575466 + 0.0154196i
\(43\) −1.00860 + 3.76415i −0.153810 + 0.574027i 0.845394 + 0.534143i \(0.179366\pi\)
−0.999204 + 0.0398840i \(0.987301\pi\)
\(44\) −6.57874 + 6.57874i −0.991782 + 0.991782i
\(45\) 0 0
\(46\) 8.22291 + 2.20332i 1.21240 + 0.324862i
\(47\) 0.345095 0.0503372 0.0251686 0.999683i \(-0.491988\pi\)
0.0251686 + 0.999683i \(0.491988\pi\)
\(48\) 13.9936 + 3.74956i 2.01980 + 0.541203i
\(49\) 3.49369 6.05125i 0.499098 0.864464i
\(50\) 0 0
\(51\) 3.54034i 0.495747i
\(52\) 1.49651 18.0422i 0.207528 2.50201i
\(53\) 3.59144 3.59144i 0.493322 0.493322i −0.416029 0.909351i \(-0.636579\pi\)
0.909351 + 0.416029i \(0.136579\pi\)
\(54\) −3.84062 14.3334i −0.522642 1.95053i
\(55\) 0 0
\(56\) 0.778898 0.449697i 0.104085 0.0600933i
\(57\) 9.02691i 1.19564i
\(58\) −6.16729 10.6821i −0.809805 1.40262i
\(59\) 0.332494 1.24088i 0.0432870 0.161549i −0.940899 0.338687i \(-0.890017\pi\)
0.984186 + 0.177138i \(0.0566839\pi\)
\(60\) 0 0
\(61\) 1.39151 + 2.41016i 0.178164 + 0.308589i 0.941252 0.337706i \(-0.109651\pi\)
−0.763088 + 0.646295i \(0.776318\pi\)
\(62\) −0.605559 2.25998i −0.0769061 0.287017i
\(63\) −0.128224 0.0740300i −0.0161547 0.00932691i
\(64\) −13.6621 −1.70776
\(65\) 0 0
\(66\) 6.36774 0.783815
\(67\) −0.124992 0.0721643i −0.0152702 0.00881627i 0.492345 0.870400i \(-0.336140\pi\)
−0.507616 + 0.861584i \(0.669473\pi\)
\(68\) 3.54747 + 13.2394i 0.430194 + 1.60551i
\(69\) −2.08342 3.60858i −0.250814 0.434422i
\(70\) 0 0
\(71\) −1.41668 + 5.28713i −0.168129 + 0.627467i 0.829491 + 0.558520i \(0.188631\pi\)
−0.997620 + 0.0689472i \(0.978036\pi\)
\(72\) 5.27506 + 9.13667i 0.621672 + 1.07677i
\(73\) 9.06221i 1.06065i 0.847794 + 0.530326i \(0.177930\pi\)
−0.847794 + 0.530326i \(0.822070\pi\)
\(74\) 3.38447 1.95402i 0.393436 0.227151i
\(75\) 0 0
\(76\) −9.04509 33.7567i −1.03754 3.87216i
\(77\) 0.147197 0.147197i 0.0167747 0.0167747i
\(78\) −9.45605 + 8.00753i −1.07069 + 0.906675i
\(79\) 15.1689i 1.70664i 0.521388 + 0.853320i \(0.325414\pi\)
−0.521388 + 0.853320i \(0.674586\pi\)
\(80\) 0 0
\(81\) −1.65480 + 2.86620i −0.183867 + 0.318467i
\(82\) −13.8865 3.72089i −1.53351 0.410903i
\(83\) −8.53853 −0.937226 −0.468613 0.883404i \(-0.655246\pi\)
−0.468613 + 0.883404i \(0.655246\pi\)
\(84\) −0.706718 0.189365i −0.0771093 0.0206614i
\(85\) 0 0
\(86\) −7.30152 + 7.30152i −0.787343 + 0.787343i
\(87\) −1.56259 + 5.83166i −0.167527 + 0.625219i
\(88\) −14.3278 + 3.83912i −1.52735 + 0.409251i
\(89\) 0.549735 0.147301i 0.0582718 0.0156139i −0.229565 0.973293i \(-0.573730\pi\)
0.287837 + 0.957679i \(0.407064\pi\)
\(90\) 0 0
\(91\) −0.0334840 + 0.403690i −0.00351007 + 0.0423182i
\(92\) 11.4069 + 11.4069i 1.18925 + 1.18925i
\(93\) −0.572604 + 0.991779i −0.0593763 + 0.102843i
\(94\) 0.791908 + 0.457208i 0.0816791 + 0.0471574i
\(95\) 0 0
\(96\) 12.4606 + 12.4606i 1.27175 + 1.27175i
\(97\) 12.9596 7.48223i 1.31585 0.759705i 0.332790 0.943001i \(-0.392010\pi\)
0.983058 + 0.183296i \(0.0586766\pi\)
\(98\) 16.0343 9.25742i 1.61971 0.935140i
\(99\) 1.72666 + 1.72666i 0.173536 + 0.173536i
\(100\) 0 0
\(101\) 7.19717 + 4.15529i 0.716146 + 0.413467i 0.813332 0.581799i \(-0.197651\pi\)
−0.0971867 + 0.995266i \(0.530984\pi\)
\(102\) 4.69052 8.12422i 0.464431 0.804418i
\(103\) 7.72940 + 7.72940i 0.761600 + 0.761600i 0.976612 0.215011i \(-0.0689789\pi\)
−0.215011 + 0.976612i \(0.568979\pi\)
\(104\) 16.4489 23.7185i 1.61295 2.32579i
\(105\) 0 0
\(106\) 12.9997 3.48325i 1.26264 0.338324i
\(107\) −7.15177 + 1.91631i −0.691388 + 0.185257i −0.587370 0.809318i \(-0.699837\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(108\) 7.27785 27.1613i 0.700311 2.61360i
\(109\) 3.34544 3.34544i 0.320435 0.320435i −0.528499 0.848934i \(-0.677245\pi\)
0.848934 + 0.528499i \(0.177245\pi\)
\(110\) 0 0
\(111\) −1.84768 0.495085i −0.175374 0.0469914i
\(112\) 1.25493 0.118580
\(113\) 5.90688 + 1.58274i 0.555672 + 0.148892i 0.525717 0.850659i \(-0.323797\pi\)
0.0299550 + 0.999551i \(0.490464\pi\)
\(114\) −11.9595 + 20.7145i −1.12011 + 1.94009i
\(115\) 0 0
\(116\) 23.3736i 2.17019i
\(117\) −4.73539 0.392775i −0.437787 0.0363121i
\(118\) 2.40701 2.40701i 0.221583 0.221583i
\(119\) −0.0793738 0.296227i −0.00727618 0.0271551i
\(120\) 0 0
\(121\) 6.55303 3.78340i 0.595730 0.343945i
\(122\) 7.37430i 0.667638i
\(123\) 3.51839 + 6.09404i 0.317243 + 0.549481i
\(124\) 1.14751 4.28258i 0.103050 0.384587i
\(125\) 0 0
\(126\) −0.196161 0.339761i −0.0174754 0.0302684i
\(127\) 3.01994 + 11.2706i 0.267976 + 1.00010i 0.960403 + 0.278613i \(0.0898747\pi\)
−0.692427 + 0.721488i \(0.743459\pi\)
\(128\) −7.81784 4.51363i −0.691006 0.398953i
\(129\) 5.05420 0.444997
\(130\) 0 0
\(131\) 7.46380 0.652115 0.326058 0.945350i \(-0.394280\pi\)
0.326058 + 0.945350i \(0.394280\pi\)
\(132\) 10.4500 + 6.03333i 0.909559 + 0.525134i
\(133\) 0.202381 + 0.755298i 0.0175487 + 0.0654926i
\(134\) −0.191218 0.331199i −0.0165187 0.0286112i
\(135\) 0 0
\(136\) −5.65584 + 21.1079i −0.484984 + 1.80998i
\(137\) −9.24213 16.0078i −0.789608 1.36764i −0.926207 0.377015i \(-0.876950\pi\)
0.136599 0.990626i \(-0.456383\pi\)
\(138\) 11.0411i 0.939879i
\(139\) −9.44862 + 5.45516i −0.801421 + 0.462701i −0.843968 0.536394i \(-0.819786\pi\)
0.0425466 + 0.999094i \(0.486453\pi\)
\(140\) 0 0
\(141\) −0.115842 0.432327i −0.00975562 0.0364085i
\(142\) −10.2557 + 10.2557i −0.860643 + 0.860643i
\(143\) 2.25659 6.28804i 0.188705 0.525833i
\(144\) 14.7207i 1.22672i
\(145\) 0 0
\(146\) −12.0063 + 20.7955i −0.993650 + 1.72105i
\(147\) −8.75362 2.34553i −0.721987 0.193456i
\(148\) 7.40562 0.608738
\(149\) 13.4468 + 3.60307i 1.10161 + 0.295175i 0.763419 0.645903i \(-0.223519\pi\)
0.338189 + 0.941078i \(0.390186\pi\)
\(150\) 0 0
\(151\) −8.49593 + 8.49593i −0.691389 + 0.691389i −0.962537 0.271149i \(-0.912596\pi\)
0.271149 + 0.962537i \(0.412596\pi\)
\(152\) 14.4208 53.8193i 1.16968 4.36532i
\(153\) 3.47482 0.931075i 0.280922 0.0752729i
\(154\) 0.532801 0.142763i 0.0429343 0.0115042i
\(155\) 0 0
\(156\) −23.1052 + 4.18163i −1.84990 + 0.334799i
\(157\) 5.14491 + 5.14491i 0.410609 + 0.410609i 0.881951 0.471342i \(-0.156230\pi\)
−0.471342 + 0.881951i \(0.656230\pi\)
\(158\) −20.0970 + 34.8090i −1.59883 + 2.76926i
\(159\) −5.70484 3.29369i −0.452423 0.261207i
\(160\) 0 0
\(161\) −0.255227 0.255227i −0.0201147 0.0201147i
\(162\) −7.59474 + 4.38482i −0.596699 + 0.344504i
\(163\) −17.7686 + 10.2587i −1.39175 + 0.803526i −0.993509 0.113756i \(-0.963712\pi\)
−0.398239 + 0.917282i \(0.630379\pi\)
\(164\) −19.2636 19.2636i −1.50423 1.50423i
\(165\) 0 0
\(166\) −19.5938 11.3125i −1.52078 0.878021i
\(167\) −1.27050 + 2.20058i −0.0983146 + 0.170286i −0.910987 0.412435i \(-0.864678\pi\)
0.812673 + 0.582721i \(0.198012\pi\)
\(168\) −0.824831 0.824831i −0.0636371 0.0636371i
\(169\) 4.55630 + 12.1754i 0.350484 + 0.936569i
\(170\) 0 0
\(171\) −8.85983 + 2.37398i −0.677528 + 0.181543i
\(172\) −18.9005 + 5.06438i −1.44115 + 0.386155i
\(173\) −0.0204199 + 0.0762079i −0.00155249 + 0.00579398i −0.966698 0.255921i \(-0.917621\pi\)
0.965145 + 0.261715i \(0.0842880\pi\)
\(174\) −11.3120 + 11.3120i −0.857560 + 0.857560i
\(175\) 0 0
\(176\) −19.9916 5.35675i −1.50693 0.403780i
\(177\) −1.66616 −0.125236
\(178\) 1.45666 + 0.390312i 0.109182 + 0.0292551i
\(179\) 10.6120 18.3806i 0.793181 1.37383i −0.130808 0.991408i \(-0.541757\pi\)
0.923988 0.382421i \(-0.124910\pi\)
\(180\) 0 0
\(181\) 22.5267i 1.67440i 0.546899 + 0.837198i \(0.315808\pi\)
−0.546899 + 0.837198i \(0.684192\pi\)
\(182\) −0.611677 + 0.882008i −0.0453405 + 0.0653788i
\(183\) 2.55229 2.55229i 0.188671 0.188671i
\(184\) 6.65667 + 24.8430i 0.490737 + 1.83145i
\(185\) 0 0
\(186\) −2.62797 + 1.51726i −0.192692 + 0.111251i
\(187\) 5.05785i 0.369866i
\(188\) 0.866395 + 1.50064i 0.0631883 + 0.109445i
\(189\) −0.162840 + 0.607727i −0.0118449 + 0.0442056i
\(190\) 0 0
\(191\) −9.80326 16.9797i −0.709339 1.22861i −0.965103 0.261872i \(-0.915660\pi\)
0.255764 0.966739i \(-0.417673\pi\)
\(192\) 4.58610 + 17.1156i 0.330974 + 1.23521i
\(193\) −14.4730 8.35601i −1.04179 0.601479i −0.121451 0.992597i \(-0.538755\pi\)
−0.920340 + 0.391119i \(0.872088\pi\)
\(194\) 39.6521 2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) −13.1517 7.59315i −0.937021 0.540990i −0.0479960 0.998848i \(-0.515283\pi\)
−0.889025 + 0.457858i \(0.848617\pi\)
\(198\) 1.67465 + 6.24989i 0.119012 + 0.444160i
\(199\) −6.97357 12.0786i −0.494343 0.856228i 0.505636 0.862747i \(-0.331258\pi\)
−0.999979 + 0.00651960i \(0.997925\pi\)
\(200\) 0 0
\(201\) −0.0484483 + 0.180811i −0.00341728 + 0.0127535i
\(202\) 11.0105 + 19.0707i 0.774696 + 1.34181i
\(203\) 0.522979i 0.0367059i
\(204\) 15.3951 8.88838i 1.07787 0.622311i
\(205\) 0 0
\(206\) 7.49657 + 27.9776i 0.522311 + 1.94929i
\(207\) 2.99388 2.99388i 0.208089 0.208089i
\(208\) 36.4236 17.1851i 2.52552 1.19157i
\(209\) 12.8961i 0.892044i
\(210\) 0 0
\(211\) 11.8091 20.4539i 0.812969 1.40810i −0.0978083 0.995205i \(-0.531183\pi\)
0.910777 0.412898i \(-0.135483\pi\)
\(212\) 24.6340 + 6.60065i 1.69187 + 0.453335i
\(213\) 7.09915 0.486426
\(214\) −18.9504 5.07776i −1.29543 0.347108i
\(215\) 0 0
\(216\) 31.7007 31.7007i 2.15696 2.15696i
\(217\) −0.0256753 + 0.0958217i −0.00174296 + 0.00650480i
\(218\) 12.1093 3.24467i 0.820143 0.219757i
\(219\) 11.3529 3.04201i 0.767159 0.205560i
\(220\) 0 0
\(221\) −6.36032 7.51086i −0.427841 0.505235i
\(222\) −3.58405 3.58405i −0.240546 0.240546i
\(223\) 4.86319 8.42330i 0.325664 0.564066i −0.655983 0.754776i \(-0.727746\pi\)
0.981646 + 0.190710i \(0.0610790\pi\)
\(224\) 1.32196 + 0.763236i 0.0883274 + 0.0509958i
\(225\) 0 0
\(226\) 11.4579 + 11.4579i 0.762168 + 0.762168i
\(227\) −7.94647 + 4.58790i −0.527426 + 0.304510i −0.739968 0.672642i \(-0.765159\pi\)
0.212542 + 0.977152i \(0.431826\pi\)
\(228\) −39.2534 + 22.6629i −2.59962 + 1.50089i
\(229\) 12.5270 + 12.5270i 0.827811 + 0.827811i 0.987214 0.159403i \(-0.0509569\pi\)
−0.159403 + 0.987214i \(0.550957\pi\)
\(230\) 0 0
\(231\) −0.233817 0.134994i −0.0153840 0.00888197i
\(232\) 18.6326 32.2726i 1.22329 2.11880i
\(233\) 11.8637 + 11.8637i 0.777214 + 0.777214i 0.979356 0.202142i \(-0.0647903\pi\)
−0.202142 + 0.979356i \(0.564790\pi\)
\(234\) −10.3462 7.17513i −0.676350 0.469053i
\(235\) 0 0
\(236\) 6.23072 1.66952i 0.405585 0.108676i
\(237\) 19.0033 5.09192i 1.23440 0.330756i
\(238\) 0.210321 0.784929i 0.0136331 0.0508794i
\(239\) −18.2161 + 18.2161i −1.17830 + 1.17830i −0.198124 + 0.980177i \(0.563485\pi\)
−0.980177 + 0.198124i \(0.936515\pi\)
\(240\) 0 0
\(241\) −5.28403 1.41585i −0.340374 0.0912030i 0.0845830 0.996416i \(-0.473044\pi\)
−0.424957 + 0.905213i \(0.639711\pi\)
\(242\) 20.0501 1.28887
\(243\) −12.0818 3.23730i −0.775046 0.207673i
\(244\) −6.98703 + 12.1019i −0.447299 + 0.774744i
\(245\) 0 0
\(246\) 18.6458i 1.18881i
\(247\) 16.2171 + 19.1506i 1.03187 + 1.21853i
\(248\) 4.99833 4.99833i 0.317394 0.317394i
\(249\) 2.86622 + 10.6969i 0.181639 + 0.677887i
\(250\) 0 0
\(251\) 11.3169 6.53384i 0.714319 0.412412i −0.0983394 0.995153i \(-0.531353\pi\)
0.812658 + 0.582741i \(0.198020\pi\)
\(252\) 0.743439i 0.0468322i
\(253\) 2.97643 + 5.15533i 0.187127 + 0.324113i
\(254\) −8.00209 + 29.8642i −0.502096 + 1.87385i
\(255\) 0 0
\(256\) 1.70209 + 2.94811i 0.106381 + 0.184257i
\(257\) −4.51603 16.8541i −0.281702 1.05133i −0.951215 0.308528i \(-0.900164\pi\)
0.669513 0.742800i \(-0.266503\pi\)
\(258\) 11.5981 + 6.69619i 0.722069 + 0.416887i
\(259\) −0.165699 −0.0102960
\(260\) 0 0
\(261\) −6.13467 −0.379727
\(262\) 17.1276 + 9.88862i 1.05815 + 0.610921i
\(263\) −5.39593 20.1379i −0.332727 1.24175i −0.906312 0.422608i \(-0.861115\pi\)
0.573585 0.819146i \(-0.305552\pi\)
\(264\) 9.61911 + 16.6608i 0.592015 + 1.02540i
\(265\) 0 0
\(266\) −0.536261 + 2.00135i −0.0328803 + 0.122711i
\(267\) −0.369071 0.639249i −0.0225868 0.0391214i
\(268\) 0.724703i 0.0442683i
\(269\) −9.15088 + 5.28326i −0.557939 + 0.322126i −0.752318 0.658800i \(-0.771064\pi\)
0.194379 + 0.980927i \(0.437731\pi\)
\(270\) 0 0
\(271\) −2.04739 7.64095i −0.124370 0.464155i 0.875446 0.483315i \(-0.160567\pi\)
−0.999816 + 0.0191601i \(0.993901\pi\)
\(272\) −21.5603 + 21.5603i −1.30729 + 1.30729i
\(273\) 0.516973 0.0935629i 0.0312887 0.00566269i
\(274\) 48.9787i 2.95891i
\(275\) 0 0
\(276\) 10.4612 18.1194i 0.629693 1.09066i
\(277\) −9.86609 2.64361i −0.592796 0.158839i −0.0500653 0.998746i \(-0.515943\pi\)
−0.542731 + 0.839907i \(0.682610\pi\)
\(278\) −28.9097 −1.73389
\(279\) −1.12401 0.301178i −0.0672929 0.0180311i
\(280\) 0 0
\(281\) 12.4763 12.4763i 0.744271 0.744271i −0.229126 0.973397i \(-0.573587\pi\)
0.973397 + 0.229126i \(0.0735867\pi\)
\(282\) 0.306952 1.14556i 0.0182787 0.0682171i
\(283\) 7.98478 2.13952i 0.474646 0.127181i −0.0135626 0.999908i \(-0.504317\pi\)
0.488208 + 0.872727i \(0.337651\pi\)
\(284\) −26.5478 + 7.11345i −1.57532 + 0.422105i
\(285\) 0 0
\(286\) 13.5092 11.4398i 0.798816 0.676451i
\(287\) 0.431018 + 0.431018i 0.0254422 + 0.0254422i
\(288\) −8.95295 + 15.5070i −0.527557 + 0.913756i
\(289\) −8.26943 4.77436i −0.486437 0.280844i
\(290\) 0 0
\(291\) −13.7238 13.7238i −0.804506 0.804506i
\(292\) −39.4069 + 22.7516i −2.30611 + 1.33144i
\(293\) 5.52378 3.18916i 0.322703 0.186313i −0.329894 0.944018i \(-0.607013\pi\)
0.652597 + 0.757705i \(0.273680\pi\)
\(294\) −16.9799 16.9799i −0.990287 0.990287i
\(295\) 0 0
\(296\) 10.2251 + 5.90349i 0.594325 + 0.343133i
\(297\) 5.18823 8.98628i 0.301052 0.521437i
\(298\) 26.0836 + 26.0836i 1.51098 + 1.51098i
\(299\) −10.9029 3.91272i −0.630531 0.226278i
\(300\) 0 0
\(301\) 0.422894 0.113314i 0.0243752 0.00653132i
\(302\) −30.7521 + 8.24001i −1.76959 + 0.474159i
\(303\) 2.78970 10.4113i 0.160264 0.598114i
\(304\) 54.9729 54.9729i 3.15291 3.15291i
\(305\) 0 0
\(306\) 9.20741 + 2.46712i 0.526353 + 0.141036i
\(307\) 26.5460 1.51506 0.757530 0.652801i \(-0.226406\pi\)
0.757530 + 0.652801i \(0.226406\pi\)
\(308\) 1.00964 + 0.270532i 0.0575296 + 0.0154150i
\(309\) 7.08860 12.2778i 0.403256 0.698460i
\(310\) 0 0
\(311\) 3.54417i 0.200972i 0.994938 + 0.100486i \(0.0320397\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(312\) −35.2355 12.6450i −1.99482 0.715879i
\(313\) 6.21088 6.21088i 0.351060 0.351060i −0.509444 0.860504i \(-0.670149\pi\)
0.860504 + 0.509444i \(0.170149\pi\)
\(314\) 4.98993 + 18.6227i 0.281598 + 1.05094i
\(315\) 0 0
\(316\) −65.9619 + 38.0831i −3.71065 + 2.14234i
\(317\) 8.52812i 0.478987i 0.970898 + 0.239494i \(0.0769814\pi\)
−0.970898 + 0.239494i \(0.923019\pi\)
\(318\) −8.72748 15.1164i −0.489413 0.847688i
\(319\) 2.23236 8.33129i 0.124988 0.466463i
\(320\) 0 0
\(321\) 4.80142 + 8.31631i 0.267989 + 0.464171i
\(322\) −0.247539 0.923827i −0.0137948 0.0514829i
\(323\) −16.4534 9.49937i −0.915491 0.528559i
\(324\) −16.6182 −0.923233
\(325\) 0 0
\(326\) −54.3663 −3.01107
\(327\) −5.31409 3.06809i −0.293870 0.169666i
\(328\) −11.2415 41.9540i −0.620710 2.31652i
\(329\) −0.0193853 0.0335764i −0.00106875 0.00185113i
\(330\) 0 0
\(331\) 4.66054 17.3934i 0.256166 0.956026i −0.711271 0.702917i \(-0.751880\pi\)
0.967438 0.253109i \(-0.0814530\pi\)
\(332\) −21.4368 37.1297i −1.17650 2.03776i
\(333\) 1.94369i 0.106513i
\(334\) −5.83099 + 3.36652i −0.319058 + 0.184208i
\(335\) 0 0
\(336\) −0.421256 1.57215i −0.0229814 0.0857677i
\(337\) 20.0865 20.0865i 1.09418 1.09418i 0.0991030 0.995077i \(-0.468403\pi\)
0.995077 0.0991030i \(-0.0315973\pi\)
\(338\) −5.67532 + 33.9761i −0.308697 + 1.84805i
\(339\) 7.93129i 0.430769i
\(340\) 0 0
\(341\) 0.818040 1.41689i 0.0442994 0.0767288i
\(342\) −23.4764 6.29048i −1.26946 0.340150i
\(343\) −1.57145 −0.0848505
\(344\) −30.1336 8.07428i −1.62470 0.435336i
\(345\) 0 0
\(346\) −0.147825 + 0.147825i −0.00794710 + 0.00794710i
\(347\) 1.85743 6.93201i 0.0997119 0.372130i −0.897980 0.440037i \(-0.854965\pi\)
0.997692 + 0.0679068i \(0.0216321\pi\)
\(348\) −29.2819 + 7.84607i −1.56968 + 0.420593i
\(349\) 3.52885 0.945552i 0.188895 0.0506143i −0.163131 0.986604i \(-0.552159\pi\)
0.352026 + 0.935990i \(0.385493\pi\)
\(350\) 0 0
\(351\) 3.59590 + 19.8688i 0.191935 + 1.06052i
\(352\) −17.8016 17.8016i −0.948827 0.948827i
\(353\) 0.881628 1.52702i 0.0469243 0.0812753i −0.841609 0.540087i \(-0.818391\pi\)
0.888534 + 0.458812i \(0.151725\pi\)
\(354\) −3.82343 2.20746i −0.203213 0.117325i
\(355\) 0 0
\(356\) 2.02070 + 2.02070i 0.107097 + 0.107097i
\(357\) −0.344462 + 0.198875i −0.0182309 + 0.0105256i
\(358\) 48.7040 28.1193i 2.57409 1.48615i
\(359\) 8.58021 + 8.58021i 0.452846 + 0.452846i 0.896298 0.443452i \(-0.146246\pi\)
−0.443452 + 0.896298i \(0.646246\pi\)
\(360\) 0 0
\(361\) 25.4972 + 14.7208i 1.34196 + 0.774778i
\(362\) −29.8451 + 51.6933i −1.56862 + 2.71694i
\(363\) −6.93947 6.93947i −0.364228 0.364228i
\(364\) −1.83951 + 0.867900i −0.0964163 + 0.0454903i
\(365\) 0 0
\(366\) 9.23835 2.47541i 0.482896 0.129392i
\(367\) −13.5337 + 3.62635i −0.706454 + 0.189294i −0.594120 0.804377i \(-0.702499\pi\)
−0.112334 + 0.993670i \(0.535833\pi\)
\(368\) −9.28811 + 34.6637i −0.484176 + 1.80697i
\(369\) −5.05594 + 5.05594i −0.263202 + 0.263202i
\(370\) 0 0
\(371\) −0.551179 0.147688i −0.0286158 0.00766757i
\(372\) −5.75032 −0.298140
\(373\) −27.9078 7.47789i −1.44501 0.387190i −0.550727 0.834685i \(-0.685650\pi\)
−0.894286 + 0.447495i \(0.852316\pi\)
\(374\) −6.70103 + 11.6065i −0.346502 + 0.600159i
\(375\) 0 0
\(376\) 2.76263i 0.142472i
\(377\) 7.16169 + 15.1791i 0.368846 + 0.781765i
\(378\) −1.17884 + 1.17884i −0.0606330 + 0.0606330i
\(379\) 2.45278 + 9.15390i 0.125991 + 0.470204i 0.999873 0.0159336i \(-0.00507204\pi\)
−0.873882 + 0.486138i \(0.838405\pi\)
\(380\) 0 0
\(381\) 13.1058 7.56661i 0.671428 0.387649i
\(382\) 51.9525i 2.65812i
\(383\) −10.5361 18.2490i −0.538369 0.932483i −0.998992 0.0448868i \(-0.985707\pi\)
0.460623 0.887596i \(-0.347626\pi\)
\(384\) −3.03028 + 11.3091i −0.154638 + 0.577118i
\(385\) 0 0
\(386\) −22.1414 38.3500i −1.12697 1.95196i
\(387\) 1.32920 + 4.96065i 0.0675672 + 0.252164i
\(388\) 65.0727 + 37.5698i 3.30357 + 1.90732i
\(389\) 0.0604806 0.00306649 0.00153324 0.999999i \(-0.499512\pi\)
0.00153324 + 0.999999i \(0.499512\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) 48.4429 + 27.9685i 2.44673 + 1.41262i
\(393\) −2.50545 9.35047i −0.126383 0.471669i
\(394\) −20.1200 34.8488i −1.01363 1.75566i
\(395\) 0 0
\(396\) −3.17341 + 11.8433i −0.159470 + 0.595150i
\(397\) 4.10812 + 7.11548i 0.206181 + 0.357116i 0.950508 0.310699i \(-0.100563\pi\)
−0.744327 + 0.667815i \(0.767230\pi\)
\(398\) 36.9565i 1.85246i
\(399\) 0.878284 0.507077i 0.0439692 0.0253856i
\(400\) 0 0
\(401\) −2.32904 8.69210i −0.116307 0.434063i 0.883075 0.469233i \(-0.155469\pi\)
−0.999381 + 0.0351698i \(0.988803\pi\)
\(402\) −0.350730 + 0.350730i −0.0174928 + 0.0174928i
\(403\) 0.566974 + 3.13276i 0.0282430 + 0.156054i
\(404\) 41.7291i 2.07610i
\(405\) 0 0
\(406\) −0.692882 + 1.20011i −0.0343872 + 0.0595603i
\(407\) 2.63966 + 0.707294i 0.130843 + 0.0350593i
\(408\) 28.3420 1.40314
\(409\) 34.6013 + 9.27138i 1.71092 + 0.458440i 0.975650 0.219332i \(-0.0703877\pi\)
0.735272 + 0.677772i \(0.237054\pi\)
\(410\) 0 0
\(411\) −16.9518 + 16.9518i −0.836173 + 0.836173i
\(412\) −14.2058 + 53.0166i −0.699867 + 2.61194i
\(413\) −0.139411 + 0.0373550i −0.00685995 + 0.00183812i
\(414\) 10.8367 2.90369i 0.532596 0.142709i
\(415\) 0 0
\(416\) 48.8209 + 4.04944i 2.39364 + 0.198540i
\(417\) 10.0058 + 10.0058i 0.489987 + 0.489987i
\(418\) 17.0858 29.5934i 0.835693 1.44746i
\(419\) −11.3282 6.54037i −0.553421 0.319518i 0.197080 0.980387i \(-0.436854\pi\)
−0.750501 + 0.660870i \(0.770188\pi\)
\(420\) 0 0
\(421\) −13.7924 13.7924i −0.672203 0.672203i 0.286021 0.958223i \(-0.407667\pi\)
−0.958223 + 0.286021i \(0.907667\pi\)
\(422\) 54.1978 31.2911i 2.63831 1.52323i
\(423\) 0.393860 0.227395i 0.0191501 0.0110563i
\(424\) 28.7510 + 28.7510i 1.39627 + 1.39627i
\(425\) 0 0
\(426\) 16.2908 + 9.40550i 0.789292 + 0.455698i
\(427\) 0.156333 0.270777i 0.00756548 0.0131038i
\(428\) −26.2883 26.2883i −1.27069 1.27069i
\(429\) −8.63501 0.716228i −0.416902 0.0345798i
\(430\) 0 0
\(431\) 21.4619 5.75070i 1.03378 0.277002i 0.298249 0.954488i \(-0.403597\pi\)
0.735535 + 0.677487i \(0.236931\pi\)
\(432\) 60.4224 16.1901i 2.90707 0.778948i
\(433\) −0.0475058 + 0.177294i −0.00228298 + 0.00852021i −0.967058 0.254556i \(-0.918071\pi\)
0.964775 + 0.263077i \(0.0847372\pi\)
\(434\) −0.185871 + 0.185871i −0.00892207 + 0.00892207i
\(435\) 0 0
\(436\) 22.9467 + 6.14854i 1.09895 + 0.294462i
\(437\) −22.3607 −1.06966
\(438\) 30.0825 + 8.06057i 1.43740 + 0.385149i
\(439\) −8.64682 + 14.9767i −0.412690 + 0.714800i −0.995183 0.0980356i \(-0.968744\pi\)
0.582493 + 0.812836i \(0.302077\pi\)
\(440\) 0 0
\(441\) 9.20846i 0.438498i
\(442\) −4.64440 25.6622i −0.220912 1.22063i
\(443\) −24.4472 + 24.4472i −1.16152 + 1.16152i −0.177377 + 0.984143i \(0.556761\pi\)
−0.984143 + 0.177377i \(0.943239\pi\)
\(444\) −2.48592 9.27758i −0.117977 0.440295i
\(445\) 0 0
\(446\) 22.3197 12.8863i 1.05687 0.610183i
\(447\) 18.0554i 0.853989i
\(448\) 0.767456 + 1.32927i 0.0362589 + 0.0628022i
\(449\) 9.62407 35.9175i 0.454188 1.69505i −0.236277 0.971686i \(-0.575927\pi\)
0.690465 0.723366i \(-0.257406\pi\)
\(450\) 0 0
\(451\) −5.02649 8.70613i −0.236688 0.409956i
\(452\) 7.94727 + 29.6596i 0.373808 + 1.39507i
\(453\) 13.4954 + 7.79158i 0.634070 + 0.366080i
\(454\) −24.3136 −1.14109
\(455\) 0 0
\(456\) −72.2643 −3.38409
\(457\) 8.16394 + 4.71345i 0.381893 + 0.220486i 0.678642 0.734470i \(-0.262569\pi\)
−0.296749 + 0.954956i \(0.595902\pi\)
\(458\) 12.1497 + 45.3433i 0.567718 + 2.11875i
\(459\) −7.64337 13.2387i −0.356762 0.617930i
\(460\) 0 0
\(461\) −8.51149 + 31.7653i −0.396419 + 1.47946i 0.422930 + 0.906162i \(0.361002\pi\)
−0.819349 + 0.573295i \(0.805665\pi\)
\(462\) −0.357701 0.619557i −0.0166418 0.0288244i
\(463\) 18.6729i 0.867805i 0.900960 + 0.433903i \(0.142864\pi\)
−0.900960 + 0.433903i \(0.857136\pi\)
\(464\) 45.0302 25.9982i 2.09047 1.20694i
\(465\) 0 0
\(466\) 11.5063 + 42.9421i 0.533019 + 1.98925i
\(467\) 12.1678 12.1678i 0.563057 0.563057i −0.367118 0.930175i \(-0.619655\pi\)
0.930175 + 0.367118i \(0.119655\pi\)
\(468\) −10.1807 21.5779i −0.470602 0.997437i
\(469\) 0.0162150i 0.000748740i
\(470\) 0 0
\(471\) 4.71838 8.17247i 0.217411 0.376568i
\(472\) 9.93381 + 2.66176i 0.457241 + 0.122517i
\(473\) −7.22059 −0.332003
\(474\) 50.3541 + 13.4923i 2.31284 + 0.619723i
\(475\) 0 0
\(476\) 1.08886 1.08886i 0.0499080 0.0499080i
\(477\) 1.73242 6.46546i 0.0793219 0.296033i
\(478\) −65.9355 + 17.6674i −3.01582 + 0.808087i
\(479\) −31.8403 + 8.53158i −1.45482 + 0.389818i −0.897697 0.440612i \(-0.854761\pi\)
−0.557123 + 0.830430i \(0.688095\pi\)
\(480\) 0 0
\(481\) −4.80931 + 2.26908i −0.219285 + 0.103461i
\(482\) −10.2497 10.2497i −0.466862 0.466862i
\(483\) −0.234068 + 0.405417i −0.0106504 + 0.0184471i
\(484\) 32.9041 + 18.9972i 1.49564 + 0.863508i
\(485\) 0 0
\(486\) −23.4357 23.4357i −1.06306 1.06306i
\(487\) −28.5670 + 16.4931i −1.29449 + 0.747376i −0.979447 0.201701i \(-0.935353\pi\)
−0.315045 + 0.949077i \(0.602020\pi\)
\(488\) −19.2944 + 11.1396i −0.873415 + 0.504267i
\(489\) 18.8165 + 18.8165i 0.850911 + 0.850911i
\(490\) 0 0
\(491\) −18.4427 10.6479i −0.832307 0.480533i 0.0223350 0.999751i \(-0.492890\pi\)
−0.854642 + 0.519218i \(0.826223\pi\)
\(492\) −17.6666 + 30.5994i −0.796470 + 1.37953i
\(493\) −8.98502 8.98502i −0.404665 0.404665i
\(494\) 11.8420 + 65.4317i 0.532795 + 2.94391i
\(495\) 0 0
\(496\) 9.52693 2.55273i 0.427772 0.114621i
\(497\) 0.593999 0.159161i 0.0266445 0.00713937i
\(498\) −7.59477 + 28.3441i −0.340330 + 1.27013i
\(499\) −14.9199 + 14.9199i −0.667904 + 0.667904i −0.957231 0.289326i \(-0.906569\pi\)
0.289326 + 0.957231i \(0.406569\pi\)
\(500\) 0 0
\(501\) 3.18332 + 0.852967i 0.142220 + 0.0381077i
\(502\) 34.6261 1.54544
\(503\) 42.1943 + 11.3059i 1.88135 + 0.504106i 0.999467 + 0.0326345i \(0.0103897\pi\)
0.881881 + 0.471471i \(0.156277\pi\)
\(504\) 0.592643 1.02649i 0.0263984 0.0457234i
\(505\) 0 0
\(506\) 15.7736i 0.701224i
\(507\) 13.7236 9.79506i 0.609486 0.435014i
\(508\) −41.4280 + 41.4280i −1.83807 + 1.83807i
\(509\) −9.67023 36.0898i −0.428626 1.59965i −0.755876 0.654715i \(-0.772789\pi\)
0.327250 0.944938i \(-0.393878\pi\)
\(510\) 0 0
\(511\) 0.881719 0.509060i 0.0390049 0.0225195i
\(512\) 27.0748i 1.19655i
\(513\) 19.4885 + 33.7551i 0.860438 + 1.49032i
\(514\) 11.9664 44.6591i 0.527814 1.96983i
\(515\) 0 0
\(516\) 12.6891 + 21.9781i 0.558605 + 0.967533i
\(517\) 0.165495 + 0.617635i 0.00727846 + 0.0271636i
\(518\) −0.380238 0.219530i −0.0167067 0.00964562i
\(519\) 0.102326 0.00449161
\(520\) 0 0
\(521\) −35.6853 −1.56340 −0.781701 0.623653i \(-0.785648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(522\) −14.0776 8.12768i −0.616158 0.355739i
\(523\) 1.11694 + 4.16849i 0.0488406 + 0.182275i 0.986037 0.166527i \(-0.0532552\pi\)
−0.937196 + 0.348802i \(0.886589\pi\)
\(524\) 18.7386 + 32.4562i 0.818600 + 1.41786i
\(525\) 0 0
\(526\) 14.2979 53.3604i 0.623417 2.32662i
\(527\) −1.20515 2.08738i −0.0524971 0.0909276i
\(528\) 26.8432i 1.16820i
\(529\) −10.9797 + 6.33914i −0.477379 + 0.275615i
\(530\) 0 0
\(531\) −0.438183 1.63532i −0.0190155 0.0709670i
\(532\) −2.77630 + 2.77630i −0.120368 + 0.120368i
\(533\) 18.4124 + 6.60765i 0.797529 + 0.286209i
\(534\) 1.95589i 0.0846398i
\(535\) 0 0
\(536\) 0.577707 1.00062i 0.0249531 0.0432201i
\(537\) −26.5890 7.12450i −1.14740 0.307445i
\(538\) −27.9987 −1.20711
\(539\) 12.5057 + 3.35089i 0.538659 + 0.144333i
\(540\) 0 0
\(541\) −5.42748 + 5.42748i −0.233345 + 0.233345i −0.814088 0.580742i \(-0.802762\pi\)
0.580742 + 0.814088i \(0.302762\pi\)
\(542\) 5.42507 20.2467i 0.233027 0.869668i
\(543\) 28.2209 7.56177i 1.21108 0.324507i
\(544\) −35.8247 + 9.59920i −1.53597 + 0.411563i
\(545\) 0 0
\(546\) 1.31029 + 0.470222i 0.0560751 + 0.0201237i
\(547\) −11.6940 11.6940i −0.500000 0.500000i 0.411438 0.911438i \(-0.365027\pi\)
−0.911438 + 0.411438i \(0.865027\pi\)
\(548\) 46.4066 80.3785i 1.98239 3.43360i
\(549\) 3.17628 + 1.83382i 0.135560 + 0.0782657i
\(550\) 0 0
\(551\) 22.9093 + 22.9093i 0.975971 + 0.975971i
\(552\) 28.8883 16.6786i 1.22957 0.709890i
\(553\) 1.47588 0.852100i 0.0627608 0.0362350i
\(554\) −19.1378 19.1378i −0.813087 0.813087i
\(555\) 0 0
\(556\) −47.4434 27.3915i −2.01205 1.16166i
\(557\) −2.43751 + 4.22190i −0.103281 + 0.178888i −0.913034 0.407882i \(-0.866267\pi\)
0.809754 + 0.586770i \(0.199601\pi\)
\(558\) −2.18031 2.18031i −0.0922998 0.0922998i
\(559\) 10.7225 9.08000i 0.453514 0.384043i
\(560\) 0 0
\(561\) 6.33635 1.69782i 0.267521 0.0716820i
\(562\) 45.1595 12.1004i 1.90494 0.510426i
\(563\) 10.0853 37.6390i 0.425047 1.58630i −0.338774 0.940868i \(-0.610012\pi\)
0.763821 0.645428i \(-0.223321\pi\)
\(564\) 1.58913 1.58913i 0.0669146 0.0669146i
\(565\) 0 0
\(566\) 21.1577 + 5.66919i 0.889325 + 0.238294i
\(567\) 0.371828 0.0156153
\(568\) −42.3258 11.3412i −1.77595 0.475865i
\(569\) 1.84104 3.18877i 0.0771804 0.133680i −0.824852 0.565349i \(-0.808742\pi\)
0.902032 + 0.431668i \(0.142075\pi\)
\(570\) 0 0
\(571\) 2.96698i 0.124164i 0.998071 + 0.0620821i \(0.0197741\pi\)
−0.998071 + 0.0620821i \(0.980226\pi\)
\(572\) 33.0089 5.97401i 1.38017 0.249786i
\(573\) −17.9811 + 17.9811i −0.751170 + 0.751170i
\(574\) 0.418034 + 1.56012i 0.0174484 + 0.0651184i
\(575\) 0 0
\(576\) −15.5927 + 9.00245i −0.649696 + 0.375102i
\(577\) 35.0533i 1.45929i 0.683827 + 0.729644i \(0.260314\pi\)
−0.683827 + 0.729644i \(0.739686\pi\)
\(578\) −12.6509 21.9120i −0.526207 0.911417i
\(579\) −5.60990 + 20.9364i −0.233139 + 0.870088i
\(580\) 0 0
\(581\) 0.479643 + 0.830767i 0.0198990 + 0.0344660i
\(582\) −13.3104 49.6753i −0.551736 2.05911i
\(583\) 8.15012 + 4.70547i 0.337543 + 0.194881i
\(584\) −72.5469 −3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) 6.10926 + 3.52719i 0.252156 + 0.145583i 0.620751 0.784008i \(-0.286828\pi\)
−0.368595 + 0.929590i \(0.620161\pi\)
\(588\) −11.7774 43.9537i −0.485690 1.81262i
\(589\) 3.07280 + 5.32224i 0.126612 + 0.219299i
\(590\) 0 0
\(591\) −5.09774 + 19.0250i −0.209693 + 0.782585i
\(592\) 8.23718 + 14.2672i 0.338546 + 0.586379i
\(593\) 40.0169i 1.64330i 0.569993 + 0.821649i \(0.306946\pi\)
−0.569993 + 0.821649i \(0.693054\pi\)
\(594\) 23.8114 13.7475i 0.976995 0.564068i
\(595\) 0 0
\(596\) 18.0917 + 67.5192i 0.741066 + 2.76570i
\(597\) −12.7909 + 12.7909i −0.523495 + 0.523495i
\(598\) −19.8356 23.4237i −0.811138 0.957867i
\(599\) 13.9207i 0.568784i 0.958708 + 0.284392i \(0.0917918\pi\)
−0.958708 + 0.284392i \(0.908208\pi\)
\(600\) 0 0
\(601\) 1.15689 2.00379i 0.0471906 0.0817365i −0.841465 0.540311i \(-0.818307\pi\)
0.888656 + 0.458575i \(0.151640\pi\)
\(602\) 1.12057 + 0.300255i 0.0456708 + 0.0122375i
\(603\) −0.190206 −0.00774580
\(604\) −58.2743 15.6145i −2.37115 0.635347i
\(605\) 0 0
\(606\) 20.1954 20.1954i 0.820381 0.820381i
\(607\) −6.10830 + 22.7965i −0.247928 + 0.925282i 0.723960 + 0.689842i \(0.242320\pi\)
−0.971889 + 0.235440i \(0.924347\pi\)
\(608\) 91.3432 24.4753i 3.70446 0.992606i
\(609\) 0.655175 0.175554i 0.0265490 0.00711379i
\(610\) 0 0
\(611\) −1.02244 0.709071i −0.0413637 0.0286860i
\(612\) 12.7726 + 12.7726i 0.516303 + 0.516303i
\(613\) −5.32964 + 9.23121i −0.215262 + 0.372845i −0.953354 0.301856i \(-0.902394\pi\)
0.738091 + 0.674701i \(0.235727\pi\)
\(614\) 60.9165 + 35.1702i 2.45839 + 1.41935i
\(615\) 0 0
\(616\) 1.17838 + 1.17838i 0.0474783 + 0.0474783i
\(617\) 11.8892 6.86421i 0.478639 0.276343i −0.241210 0.970473i \(-0.577544\pi\)
0.719849 + 0.694130i \(0.244211\pi\)
\(618\) 32.5332 18.7830i 1.30868 0.755565i
\(619\) 16.8604 + 16.8604i 0.677679 + 0.677679i 0.959474 0.281796i \(-0.0909301\pi\)
−0.281796 + 0.959474i \(0.590930\pi\)
\(620\) 0 0
\(621\) −15.5814 8.99592i −0.625260 0.360994i
\(622\) −4.69560 + 8.13301i −0.188276 + 0.326104i
\(623\) −0.0452127 0.0452127i −0.00181141 0.00181141i
\(624\) −33.7558 39.8620i −1.35131 1.59576i
\(625\) 0 0
\(626\) 22.4811 6.02379i 0.898526 0.240759i
\(627\) −16.1560 + 4.32898i −0.645207 + 0.172883i
\(628\) −9.45576 + 35.2894i −0.377326 + 1.40820i
\(629\) 2.84678 2.84678i 0.113509 0.113509i
\(630\) 0 0
\(631\) 29.5533 + 7.91879i 1.17650 + 0.315242i 0.793537 0.608522i \(-0.208237\pi\)
0.382962 + 0.923764i \(0.374904\pi\)
\(632\) −121.434 −4.83038
\(633\) −29.5882 7.92814i −1.17603 0.315115i
\(634\) −11.2987 + 19.5700i −0.448729 + 0.777222i
\(635\) 0 0
\(636\) 33.0766i 1.31157i
\(637\) −22.7847 + 10.7501i −0.902761 + 0.425933i
\(638\) 16.1607 16.1607i 0.639807 0.639807i
\(639\) 1.86700 + 6.96776i 0.0738576 + 0.275640i
\(640\) 0 0
\(641\) −13.2495 + 7.64957i −0.523322 + 0.302140i −0.738293 0.674480i \(-0.764368\pi\)
0.214971 + 0.976620i \(0.431034\pi\)
\(642\) 25.4452i 1.00424i
\(643\) 11.1740 + 19.3539i 0.440660 + 0.763245i 0.997739 0.0672147i \(-0.0214113\pi\)
−0.557079 + 0.830460i \(0.688078\pi\)
\(644\) 0.469078 1.75062i 0.0184843 0.0689842i
\(645\) 0 0
\(646\) −25.1710 43.5974i −0.990340 1.71532i
\(647\) −1.21024 4.51668i −0.0475795 0.177569i 0.938047 0.346508i \(-0.112633\pi\)
−0.985627 + 0.168939i \(0.945966\pi\)
\(648\) −22.9452 13.2474i −0.901373 0.520408i
\(649\) 2.38033 0.0934361
\(650\) 0 0
\(651\) 0.128662 0.00504265
\(652\) −89.2199 51.5111i −3.49412 2.01733i
\(653\) −6.34274 23.6714i −0.248211 0.926335i −0.971742 0.236044i \(-0.924149\pi\)
0.723532 0.690291i \(-0.242518\pi\)
\(654\) −8.12969 14.0810i −0.317896 0.550612i
\(655\) 0 0
\(656\) 15.6854 58.5387i 0.612412 2.28555i
\(657\) 5.97141 + 10.3428i 0.232967 + 0.403510i
\(658\) 0.102733i 0.00400494i
\(659\) 35.2803 20.3691i 1.37433 0.793467i 0.382856 0.923808i \(-0.374941\pi\)
0.991469 + 0.130341i \(0.0416072\pi\)
\(660\) 0 0
\(661\) 4.42523 + 16.5152i 0.172122 + 0.642367i 0.997024 + 0.0770916i \(0.0245634\pi\)
−0.824902 + 0.565275i \(0.808770\pi\)
\(662\) 33.7389 33.7389i 1.31130 1.31130i
\(663\) −7.27440 + 10.4893i −0.282514 + 0.407371i
\(664\) 68.3547i 2.65268i
\(665\) 0 0
\(666\) 2.57515 4.46029i 0.0997850 0.172833i
\(667\) −14.4457 3.87071i −0.559340 0.149875i
\(668\) −12.7589 −0.493657
\(669\) −12.1850 3.26496i −0.471099 0.126231i
\(670\) 0 0
\(671\) −3.64628 + 3.64628i −0.140763 + 0.140763i
\(672\) 0.512407 1.91233i 0.0197665 0.0737696i
\(673\) 23.0041 6.16392i 0.886742 0.237602i 0.213428 0.976959i \(-0.431537\pi\)
0.673314 + 0.739357i \(0.264870\pi\)
\(674\) 72.7057 19.4814i 2.80052 0.750396i
\(675\) 0 0
\(676\) −41.5055 + 50.3805i −1.59636 + 1.93771i
\(677\) −26.1344 26.1344i −1.00443 1.00443i −0.999990 0.00443504i \(-0.998588\pi\)
−0.00443504 0.999990i \(-0.501412\pi\)
\(678\) 10.5080 18.2004i 0.403557 0.698981i
\(679\) −1.45598 0.840613i −0.0558756 0.0322598i
\(680\) 0 0
\(681\) 8.41509 + 8.41509i 0.322467 + 0.322467i
\(682\) 3.75440 2.16761i 0.143764 0.0830019i
\(683\) 23.1988 13.3938i 0.887676 0.512500i 0.0144941 0.999895i \(-0.495386\pi\)
0.873181 + 0.487395i \(0.162053\pi\)
\(684\) −32.5667 32.5667i −1.24522 1.24522i
\(685\) 0 0
\(686\) −3.60610 2.08198i −0.137682 0.0794905i
\(687\) 11.4885 19.8987i 0.438314 0.759182i
\(688\) −30.7796 30.7796i −1.17346 1.17346i
\(689\) −18.0201 + 3.26131i −0.686510 + 0.124246i
\(690\) 0 0
\(691\) −38.9899 + 10.4473i −1.48325 + 0.397435i −0.907451 0.420158i \(-0.861975\pi\)
−0.575796 + 0.817593i \(0.695308\pi\)
\(692\) −0.382655 + 0.102532i −0.0145464 + 0.00389769i
\(693\) 0.0710042 0.264991i 0.00269723 0.0100662i
\(694\) 13.4464 13.4464i 0.510419 0.510419i
\(695\) 0 0
\(696\) −46.6850 12.5092i −1.76959 0.474160i
\(697\) −14.8102 −0.560976
\(698\) 9.35058 + 2.50548i 0.353925 + 0.0948339i
\(699\) 10.8801 18.8449i 0.411524 0.712780i
\(700\) 0 0
\(701\) 24.9781i 0.943410i 0.881756 + 0.471705i \(0.156361\pi\)
−0.881756 + 0.471705i \(0.843639\pi\)
\(702\) −18.0721 + 50.3582i −0.682086 + 1.90065i
\(703\) −7.25852 + 7.25852i −0.273760 + 0.273760i
\(704\) −6.55185 24.4519i −0.246932 0.921564i
\(705\) 0 0
\(706\) 4.04624 2.33610i 0.152282 0.0879202i
\(707\) 0.933677i 0.0351145i
\(708\) −4.18306 7.24528i −0.157209 0.272294i
\(709\) −2.64139 + 9.85779i −0.0991993 + 0.370217i −0.997623 0.0689135i \(-0.978047\pi\)
0.898423 + 0.439130i \(0.144713\pi\)
\(710\) 0 0
\(711\) 9.99535 + 17.3124i 0.374855 + 0.649268i
\(712\) 1.17921 + 4.40087i 0.0441927 + 0.164930i
\(713\) −2.45675 1.41841i −0.0920061 0.0531198i
\(714\) −1.05394 −0.0394428
\(715\) 0 0
\(716\) 106.570 3.98272
\(717\) 28.9355 + 16.7059i 1.08061 + 0.623893i
\(718\) 8.32175 + 31.0572i 0.310565 + 1.15904i
\(719\) −14.2117 24.6153i −0.530005 0.917996i −0.999387 0.0350008i \(-0.988857\pi\)
0.469382 0.882995i \(-0.344477\pi\)
\(720\) 0 0
\(721\) 0.317850 1.18623i 0.0118373 0.0441776i
\(722\) 39.0065 + 67.5612i 1.45167 + 2.51437i
\(723\) 7.09498i 0.263865i
\(724\) −97.9570 + 56.5555i −3.64054 + 2.10187i
\(725\) 0 0
\(726\) −6.73044 25.1183i −0.249790 0.932229i
\(727\) 8.56116 8.56116i 0.317516 0.317516i −0.530296 0.847812i \(-0.677919\pi\)
0.847812 + 0.530296i \(0.177919\pi\)
\(728\) −3.23172 0.268054i −0.119775 0.00993473i
\(729\) 26.1513i 0.968566i
\(730\) 0 0
\(731\) −5.31873 + 9.21232i −0.196720 + 0.340730i
\(732\) 17.5064 + 4.69082i 0.647054 + 0.173378i
\(733\) 17.2200 0.636036 0.318018 0.948085i \(-0.396983\pi\)
0.318018 + 0.948085i \(0.396983\pi\)
\(734\) −35.8610 9.60893i −1.32365 0.354672i
\(735\) 0 0
\(736\) −30.8663 + 30.8663i −1.13775 + 1.13775i
\(737\) 0.0692148 0.258313i 0.00254956 0.00951508i
\(738\) −18.3007 + 4.90365i −0.673656 + 0.180506i
\(739\) −15.7497 + 4.22013i −0.579364 + 0.155240i −0.536588 0.843845i \(-0.680287\pi\)
−0.0427762 + 0.999085i \(0.513620\pi\)
\(740\) 0 0
\(741\) 18.5477 26.7449i 0.681367 0.982497i
\(742\) −1.06915 1.06915i −0.0392498 0.0392498i
\(743\) −16.5599 + 28.6826i −0.607525 + 1.05226i 0.384122 + 0.923282i \(0.374504\pi\)
−0.991647 + 0.128982i \(0.958829\pi\)
\(744\) −7.93963 4.58395i −0.291081 0.168056i
\(745\) 0 0
\(746\) −54.1344 54.1344i −1.98200 1.98200i
\(747\) −9.74510 + 5.62634i −0.356555 + 0.205857i
\(748\) −21.9940 + 12.6982i −0.804179 + 0.464293i
\(749\) 0.588194 + 0.588194i 0.0214921 + 0.0214921i
\(750\) 0 0
\(751\) 18.9961 + 10.9674i 0.693176 + 0.400205i 0.804801 0.593545i \(-0.202272\pi\)
−0.111625 + 0.993750i \(0.535605\pi\)
\(752\) −1.92736 + 3.33829i −0.0702836 + 0.121735i
\(753\) −11.9843 11.9843i −0.436732 0.436732i
\(754\) −3.67617 + 44.3207i −0.133878 + 1.61407i
\(755\) 0 0
\(756\) −3.05152 + 0.817652i −0.110983 + 0.0297377i
\(757\) 2.84678 0.762791i 0.103468 0.0277241i −0.206714 0.978401i \(-0.566277\pi\)
0.310181 + 0.950677i \(0.399610\pi\)
\(758\) −6.49926 + 24.2556i −0.236064 + 0.881002i
\(759\) 5.45935 5.45935i 0.198162 0.198162i
\(760\) 0 0
\(761\) −21.2875 5.70396i −0.771670 0.206768i −0.148561 0.988903i \(-0.547464\pi\)
−0.623109 + 0.782135i \(0.714131\pi\)
\(762\) 40.0993 1.45265
\(763\) −0.513426 0.137572i −0.0185873 0.00498044i
\(764\) 49.2241 85.2587i 1.78087 3.08455i
\(765\) 0 0
\(766\) 55.8361i 2.01744i
\(767\) −3.53477 + 2.99330i −0.127633 + 0.108082i
\(768\) 3.12197 3.12197i 0.112654 0.112654i
\(769\) −5.46718 20.4038i −0.197152 0.735780i −0.991699 0.128578i \(-0.958959\pi\)
0.794548 0.607202i \(-0.207708\pi\)
\(770\) 0 0
\(771\) −19.5984 + 11.3152i −0.705820 + 0.407506i
\(772\) 83.9143i 3.02014i
\(773\) 9.34781 + 16.1909i 0.336217 + 0.582346i 0.983718 0.179719i \(-0.0575189\pi\)
−0.647500 + 0.762065i \(0.724186\pi\)
\(774\) −3.52206 + 13.1445i −0.126598 + 0.472470i
\(775\) 0 0
\(776\) 59.8985 + 103.747i 2.15023 + 3.72431i
\(777\) 0.0556218 + 0.207583i 0.00199542 + 0.00744702i
\(778\) 0.138788 + 0.0801293i 0.00497579 + 0.00287278i
\(779\) 37.7619 1.35296
\(780\) 0 0
\(781\) −10.1421 −0.362912
\(782\) 20.1246 + 11.6190i 0.719656 + 0.415493i
\(783\) 6.74705 + 25.1803i 0.241120 + 0.899872i
\(784\) 39.0246 + 67.5927i 1.39374 + 2.41402i
\(785\) 0 0
\(786\) 6.63883 24.7764i 0.236799 0.883747i
\(787\) −21.6615 37.5189i −0.772150 1.33740i −0.936382 0.350981i \(-0.885848\pi\)
0.164232 0.986422i \(-0.447485\pi\)
\(788\) 76.2534i 2.71642i
\(789\) −23.4169 + 13.5198i −0.833665 + 0.481317i
\(790\) 0 0
\(791\) −0.177818 0.663626i −0.00632248 0.0235958i
\(792\) −13.8227 + 13.8227i −0.491168 + 0.491168i
\(793\) 0.829444 9.99995i 0.0294544 0.355109i
\(794\) 21.7710i 0.772625i
\(795\) 0 0
\(796\) 35.0157 60.6489i 1.24110 2.14964i
\(797\) 33.9650 + 9.10089i 1.20310 + 0.322370i 0.804052 0.594559i \(-0.202673\pi\)
0.399050 + 0.916929i \(0.369340\pi\)
\(798\) 2.68726 0.0951280
\(799\) 0.909909 + 0.243809i 0.0321903 + 0.00862535i
\(800\) 0 0
\(801\) 0.530356 0.530356i 0.0187392 0.0187392i
\(802\) 6.17139 23.0319i 0.217919 0.813286i
\(803\) −16.2191 + 4.34591i −0.572361 + 0.153364i
\(804\) −0.907890 + 0.243268i −0.0320188 + 0.00857942i
\(805\) 0 0
\(806\) −2.84946 + 7.94010i −0.100368 + 0.279678i
\(807\) 9.69052 + 9.69052i 0.341122 + 0.341122i
\(808\) −33.2649 + 57.6165i −1.17026 + 2.02694i
\(809\) −17.8779 10.3218i −0.628554 0.362896i 0.151638 0.988436i \(-0.451545\pi\)
−0.780192 + 0.625540i \(0.784879\pi\)
\(810\) 0 0
\(811\) −22.0471 22.0471i −0.774178 0.774178i 0.204656 0.978834i \(-0.434392\pi\)
−0.978834 + 0.204656i \(0.934392\pi\)
\(812\) −2.27416 + 1.31299i −0.0798075 + 0.0460769i
\(813\) −8.88514 + 5.12984i −0.311615 + 0.179911i
\(814\) 5.12029 + 5.12029i 0.179466 + 0.179466i
\(815\) 0 0
\(816\) 34.2477 + 19.7729i 1.19891 + 0.692190i
\(817\) 13.5613 23.4889i 0.474450 0.821772i
\(818\) 67.1180 + 67.1180i 2.34672 + 2.34672i
\(819\) 0.227790 + 0.482799i 0.00795963 + 0.0168704i
\(820\) 0 0
\(821\) 35.4477 9.49818i 1.23713 0.331489i 0.419780 0.907626i \(-0.362107\pi\)
0.817353 + 0.576137i \(0.195441\pi\)
\(822\) −61.3594 + 16.4412i −2.14016 + 0.573453i
\(823\) −6.11025 + 22.8038i −0.212990 + 0.794889i 0.773875 + 0.633339i \(0.218316\pi\)
−0.986865 + 0.161550i \(0.948351\pi\)
\(824\) −61.8772 + 61.8772i −2.15559 + 2.15559i
\(825\) 0 0
\(826\) −0.369404 0.0989816i −0.0128532 0.00344401i
\(827\) 4.44429 0.154543 0.0772716 0.997010i \(-0.475379\pi\)
0.0772716 + 0.997010i \(0.475379\pi\)
\(828\) 20.5352 + 5.50240i 0.713649 + 0.191222i
\(829\) −14.6685 + 25.4065i −0.509457 + 0.882406i 0.490483 + 0.871451i \(0.336820\pi\)
−0.999940 + 0.0109548i \(0.996513\pi\)
\(830\) 0 0
\(831\) 13.2474i 0.459548i
\(832\) 40.4780 + 28.0718i 1.40332 + 0.973213i
\(833\) 13.4870 13.4870i 0.467296 0.467296i
\(834\) 9.70441 + 36.2174i 0.336036 + 1.25410i
\(835\) 0 0
\(836\) 56.0786 32.3770i 1.93952 1.11978i
\(837\) 4.94486i 0.170919i
\(838\) −17.3304 30.0171i −0.598668 1.03692i
\(839\) −2.19656 + 8.19766i −0.0758336 + 0.283015i −0.993421 0.114519i \(-0.963467\pi\)
0.917587 + 0.397534i \(0.130134\pi\)
\(840\) 0 0
\(841\) −3.66554 6.34891i −0.126398 0.218928i
\(842\) −13.3770 49.9236i −0.461001 1.72048i
\(843\) −19.8180 11.4419i −0.682568 0.394081i
\(844\) 118.591 4.08208
\(845\) 0 0
\(846\) 1.20508 0.0414316
\(847\) −0.736220 0.425057i −0.0252968 0.0146051i
\(848\) 14.6837 + 54.8002i 0.504239 + 1.88185i
\(849\) −5.36067 9.28495i −0.183978 0.318659i
\(850\) 0 0
\(851\) 1.22638 4.57693i 0.0420399 0.156895i
\(852\) 17.8231 + 30.8705i 0.610610 + 1.05761i
\(853\) 34.3415i 1.17583i −0.808923 0.587915i \(-0.799949\pi\)
0.808923 0.587915i \(-0.200051\pi\)
\(854\) 0.717491 0.414244i 0.0245521 0.0141751i
\(855\) 0 0
\(856\) −15.3409 57.2531i −0.524342 1.95687i
\(857\) −24.6090 + 24.6090i −0.840626 + 0.840626i −0.988940 0.148314i \(-0.952615\pi\)
0.148314 + 0.988940i \(0.452615\pi\)
\(858\) −18.8663 13.0839i −0.644085 0.446677i
\(859\) 12.8606i 0.438798i −0.975635 0.219399i \(-0.929590\pi\)
0.975635 0.219399i \(-0.0704097\pi\)
\(860\) 0 0
\(861\) 0.395284 0.684653i 0.0134713 0.0233329i
\(862\) 56.8688 + 15.2379i 1.93696 + 0.519007i
\(863\) 2.75373 0.0937379 0.0468690 0.998901i \(-0.485076\pi\)
0.0468690 + 0.998901i \(0.485076\pi\)
\(864\) 73.4965 + 19.6933i 2.50040 + 0.669980i
\(865\) 0 0
\(866\) −0.343907 + 0.343907i −0.0116864 + 0.0116864i
\(867\) −3.20532 + 11.9624i −0.108858 + 0.406264i
\(868\) −0.481140 + 0.128921i −0.0163309 + 0.00437586i
\(869\) −27.1487 + 7.27447i −0.920957 + 0.246770i
\(870\) 0 0
\(871\) 0.222049 + 0.470631i 0.00752385 + 0.0159467i
\(872\) 26.7817 + 26.7817i 0.906944 + 0.906944i
\(873\) 9.86060 17.0791i 0.333731 0.578039i
\(874\) −51.3123 29.6252i −1.73566 1.00209i
\(875\) 0 0
\(876\) 41.7308 + 41.7308i 1.40995 + 1.40995i
\(877\) 40.9311 23.6316i 1.38214 0.797981i 0.389730 0.920929i \(-0.372568\pi\)
0.992413 + 0.122948i \(0.0392349\pi\)
\(878\) −39.6847 + 22.9119i −1.33929 + 0.773241i
\(879\) −5.84953 5.84953i −0.197300 0.197300i
\(880\) 0 0
\(881\) 35.7854 + 20.6607i 1.20564 + 0.696077i 0.961804 0.273739i \(-0.0882605\pi\)
0.243837 + 0.969816i \(0.421594\pi\)
\(882\) 12.2001 21.1311i 0.410798 0.711523i
\(883\) −13.4808 13.4808i −0.453666 0.453666i 0.442903 0.896569i \(-0.353949\pi\)
−0.896569 + 0.442903i \(0.853949\pi\)
\(884\) 16.6927 46.5145i 0.561435 1.56445i
\(885\) 0 0
\(886\) −88.4897 + 23.7108i −2.97287 + 0.796578i
\(887\) 22.1438 5.93341i 0.743516 0.199225i 0.132876 0.991133i \(-0.457579\pi\)
0.610640 + 0.791908i \(0.290912\pi\)
\(888\) 3.96337 14.7915i 0.133002 0.496371i
\(889\) 0.926941 0.926941i 0.0310886 0.0310886i
\(890\) 0 0
\(891\) −5.92339 1.58717i −0.198441 0.0531721i
\(892\) 48.8381 1.63522
\(893\) −2.32002 0.621647i −0.0776364 0.0208026i
\(894\) 23.9211 41.4326i 0.800042 1.38571i
\(895\) 0 0
\(896\) 1.01420i 0.0338819i
\(897\) −1.24187 + 14.9723i −0.0414650 + 0.499911i
\(898\) 69.6712 69.6712i 2.32496 2.32496i
\(899\) 1.06382 + 3.97024i 0.0354805 + 0.132415i
\(900\) 0 0
\(901\) 12.0069 6.93217i 0.400007 0.230944i
\(902\) 26.6379i 0.886946i
\(903\) −0.283915 0.491754i −0.00944808 0.0163646i
\(904\) −12.6705 + 47.2871i −0.421416 + 1.57275i
\(905\) 0 0
\(906\) 20.6458 + 35.7595i 0.685910 + 1.18803i
\(907\) 6.24222 + 23.2963i 0.207270 + 0.773541i 0.988746 + 0.149606i \(0.0478004\pi\)
−0.781476 + 0.623935i \(0.785533\pi\)
\(908\) −39.9008 23.0367i −1.32416 0.764501i
\(909\) 10.9523 0.363264
\(910\) 0 0
\(911\) 58.5135 1.93864 0.969320 0.245803i \(-0.0790515\pi\)
0.969320 + 0.245803i \(0.0790515\pi\)
\(912\) −87.3221 50.4154i −2.89152 1.66942i
\(913\) −4.09477 15.2819i −0.135517 0.505757i
\(914\) 12.4895 + 21.6324i 0.413116 + 0.715537i
\(915\) 0 0
\(916\) −23.0233 + 85.9241i −0.760711 + 2.83901i
\(917\) −0.419271 0.726199i −0.0138456 0.0239812i
\(918\) 40.5061i 1.33690i
\(919\) 38.8451 22.4272i 1.28138 0.739806i 0.304281 0.952582i \(-0.401584\pi\)
0.977101 + 0.212776i \(0.0682506\pi\)
\(920\) 0 0
\(921\) −8.91097 33.2562i −0.293626 1.09583i
\(922\) −61.6169 + 61.6169i −2.02924 + 2.02924i
\(923\) 15.0609 12.7538i 0.495735 0.419797i
\(924\) 1.35567i 0.0445981i
\(925\) 0 0
\(926\) −24.7394 + 42.8498i −0.812986 + 1.40813i
\(927\) 13.9148 + 3.72846i 0.457022 + 0.122459i
\(928\) 63.2473 2.07619
\(929\) −27.1090 7.26384i −0.889418 0.238319i −0.214952 0.976625i \(-0.568960\pi\)
−0.674466 + 0.738306i \(0.735626\pi\)
\(930\) 0 0
\(931\) −34.3881 + 34.3881i −1.12702 + 1.12702i
\(932\) −21.8041 + 81.3738i −0.714215 + 2.66549i
\(933\) 4.44006 1.18971i 0.145361 0.0389493i
\(934\) 44.0428 11.8012i 1.44113 0.386148i
\(935\) 0 0
\(936\) 3.14434 37.9088i 0.102776 1.23909i
\(937\) −20.7545 20.7545i −0.678019 0.678019i 0.281533 0.959552i \(-0.409157\pi\)
−0.959552 + 0.281533i \(0.909157\pi\)
\(938\) −0.0214829 + 0.0372095i −0.000701442 + 0.00121493i
\(939\) −9.86572 5.69597i −0.321955 0.185881i
\(940\) 0 0
\(941\) −6.70533 6.70533i −0.218588 0.218588i 0.589315 0.807903i \(-0.299398\pi\)
−0.807903 + 0.589315i \(0.799398\pi\)
\(942\) 21.6550 12.5025i 0.705559 0.407355i
\(943\) −15.0956 + 8.71547i −0.491582 + 0.283815i
\(944\) 10.1467 + 10.1467i 0.330249 + 0.330249i
\(945\) 0 0
\(946\) −16.5695 9.56639i −0.538720 0.311030i
\(947\) 2.25542 3.90651i 0.0732915 0.126945i −0.827051 0.562128i \(-0.809983\pi\)
0.900342 + 0.435183i \(0.143316\pi\)
\(948\) 69.8518 + 69.8518i 2.26868 + 2.26868i
\(949\) 18.6203 26.8495i 0.604439 0.871570i
\(950\) 0 0
\(951\) 10.6838 2.86272i 0.346447 0.0928302i
\(952\) 2.37143 0.635422i 0.0768584 0.0205941i
\(953\) 1.48646 5.54756i 0.0481513 0.179703i −0.937662 0.347548i \(-0.887014\pi\)
0.985813 + 0.167845i \(0.0536809\pi\)
\(954\) 12.5414 12.5414i 0.406043 0.406043i
\(955\) 0 0
\(956\) −124.946 33.4791i −4.04103 1.08279i
\(957\) −11.1866 −0.361612
\(958\) −84.3690 22.6066i −2.72584 0.730386i
\(959\) −1.03833 + 1.79845i −0.0335296 + 0.0580749i
\(960\) 0 0
\(961\) 30.2203i 0.974849i
\(962\) −14.0424 1.16475i −0.452746 0.0375529i
\(963\) −6.89966 + 6.89966i −0.222338 + 0.222338i
\(964\) −7.10927 26.5322i −0.228974 0.854543i
\(965\) 0 0
\(966\) −1.07426 + 0.620222i −0.0345636 + 0.0199553i
\(967\) 17.6414i 0.567310i 0.958926 + 0.283655i \(0.0915470\pi\)
−0.958926 + 0.283655i \(0.908453\pi\)
\(968\) 30.2877 + 52.4599i 0.973485 + 1.68612i
\(969\) −6.37750 + 23.8012i −0.204875 + 0.764604i
\(970\) 0 0
\(971\) −16.6987 28.9229i −0.535886 0.928181i −0.999120 0.0419454i \(-0.986644\pi\)
0.463234 0.886236i \(-0.346689\pi\)
\(972\) −16.2551 60.6650i −0.521384 1.94583i
\(973\) 1.06153 + 0.612876i 0.0340312 + 0.0196479i
\(974\) −87.4056 −2.80065
\(975\) 0 0
\(976\) −31.0864 −0.995050
\(977\) −13.2886 7.67217i −0.425139 0.245454i 0.272134 0.962259i \(-0.412270\pi\)
−0.697274 + 0.716805i \(0.745604\pi\)
\(978\) 18.2497 + 68.1088i 0.583561 + 2.17788i
\(979\) 0.527266 + 0.913252i 0.0168515 + 0.0291877i
\(980\) 0 0
\(981\) 1.61375 6.02261i 0.0515232 0.192287i
\(982\) −28.2143 48.8686i −0.900354 1.55946i
\(983\) 4.80751i 0.153336i −0.997057 0.0766679i \(-0.975572\pi\)
0.997057 0.0766679i \(-0.0244281\pi\)
\(984\) −48.7854 + 28.1663i −1.55522 + 0.897908i
\(985\) 0 0
\(986\) −8.71437 32.5225i −0.277522 1.03573i
\(987\) −0.0355565 + 0.0355565i −0.00113177 + 0.00113177i
\(988\) −42.5617 + 118.599i −1.35407 + 3.77315i
\(989\) 12.5198i 0.398108i
\(990\) 0 0
\(991\) −0.219558 + 0.380286i −0.00697450 + 0.0120802i −0.869492 0.493948i \(-0.835553\pi\)
0.862517 + 0.506028i \(0.168887\pi\)
\(992\) 11.5884 + 3.10509i 0.367931 + 0.0985867i
\(993\) −23.3545 −0.741131
\(994\) 1.57395 + 0.421739i 0.0499227 + 0.0133767i
\(995\) 0 0
\(996\) −39.3193 + 39.3193i −1.24588 + 1.24588i
\(997\) 1.70003 6.34461i 0.0538406 0.200936i −0.933766 0.357883i \(-0.883499\pi\)
0.987607 + 0.156947i \(0.0501653\pi\)
\(998\) −54.0044 + 14.4704i −1.70948 + 0.458053i
\(999\) −7.97806 + 2.13771i −0.252415 + 0.0676343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.x.b.7.5 20
5.2 odd 4 65.2.o.a.33.1 yes 20
5.3 odd 4 325.2.s.b.293.5 20
5.4 even 2 65.2.t.a.7.1 yes 20
13.2 odd 12 325.2.s.b.132.5 20
15.2 even 4 585.2.cf.a.163.5 20
15.14 odd 2 585.2.dp.a.397.5 20
65.2 even 12 65.2.t.a.28.1 yes 20
65.4 even 6 845.2.f.d.437.1 20
65.7 even 12 845.2.f.d.408.10 20
65.9 even 6 845.2.f.e.437.10 20
65.12 odd 4 845.2.o.g.488.5 20
65.17 odd 12 845.2.k.d.268.1 20
65.19 odd 12 845.2.k.e.577.10 20
65.22 odd 12 845.2.k.e.268.10 20
65.24 odd 12 845.2.o.g.587.5 20
65.28 even 12 inner 325.2.x.b.93.5 20
65.29 even 6 845.2.t.f.427.5 20
65.32 even 12 845.2.f.e.408.1 20
65.34 odd 4 845.2.o.f.357.5 20
65.37 even 12 845.2.t.g.418.5 20
65.42 odd 12 845.2.o.e.258.1 20
65.44 odd 4 845.2.o.e.357.1 20
65.47 even 4 845.2.t.e.188.1 20
65.49 even 6 845.2.t.e.427.1 20
65.54 odd 12 65.2.o.a.2.1 20
65.57 even 4 845.2.t.f.188.5 20
65.59 odd 12 845.2.k.d.577.1 20
65.62 odd 12 845.2.o.f.258.5 20
65.64 even 2 845.2.t.g.657.5 20
195.2 odd 12 585.2.dp.a.28.5 20
195.119 even 12 585.2.cf.a.262.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.1 20 65.54 odd 12
65.2.o.a.33.1 yes 20 5.2 odd 4
65.2.t.a.7.1 yes 20 5.4 even 2
65.2.t.a.28.1 yes 20 65.2 even 12
325.2.s.b.132.5 20 13.2 odd 12
325.2.s.b.293.5 20 5.3 odd 4
325.2.x.b.7.5 20 1.1 even 1 trivial
325.2.x.b.93.5 20 65.28 even 12 inner
585.2.cf.a.163.5 20 15.2 even 4
585.2.cf.a.262.5 20 195.119 even 12
585.2.dp.a.28.5 20 195.2 odd 12
585.2.dp.a.397.5 20 15.14 odd 2
845.2.f.d.408.10 20 65.7 even 12
845.2.f.d.437.1 20 65.4 even 6
845.2.f.e.408.1 20 65.32 even 12
845.2.f.e.437.10 20 65.9 even 6
845.2.k.d.268.1 20 65.17 odd 12
845.2.k.d.577.1 20 65.59 odd 12
845.2.k.e.268.10 20 65.22 odd 12
845.2.k.e.577.10 20 65.19 odd 12
845.2.o.e.258.1 20 65.42 odd 12
845.2.o.e.357.1 20 65.44 odd 4
845.2.o.f.258.5 20 65.62 odd 12
845.2.o.f.357.5 20 65.34 odd 4
845.2.o.g.488.5 20 65.12 odd 4
845.2.o.g.587.5 20 65.24 odd 12
845.2.t.e.188.1 20 65.47 even 4
845.2.t.e.427.1 20 65.49 even 6
845.2.t.f.188.5 20 65.57 even 4
845.2.t.f.427.5 20 65.29 even 6
845.2.t.g.418.5 20 65.37 even 12
845.2.t.g.657.5 20 65.64 even 2