Properties

Label 845.2.f.d.437.1
Level $845$
Weight $2$
Character 845.437
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.1
Root \(-2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 845.437
Dual form 845.2.f.d.408.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64975i q^{2} +(0.917096 - 0.917096i) q^{3} -5.02120 q^{4} +(-1.81654 + 1.30391i) q^{5} +(-2.43008 - 2.43008i) q^{6} +0.112348 q^{7} +8.00544i q^{8} +1.31787i q^{9} +(3.45504 + 4.81339i) q^{10} +(-1.31019 + 1.31019i) q^{11} +(-4.60492 + 4.60492i) q^{12} -0.297695i q^{14} +(-0.470132 + 2.86175i) q^{15} +11.1700 q^{16} +(1.93019 - 1.93019i) q^{17} +3.49203 q^{18} +(-4.92146 + 4.92146i) q^{19} +(9.12121 - 6.54719i) q^{20} +(0.103034 - 0.103034i) q^{21} +(3.47169 + 3.47169i) q^{22} +(2.27175 + 2.27175i) q^{23} +(7.34175 + 7.34175i) q^{24} +(1.59964 - 4.73721i) q^{25} +(3.95990 + 3.95990i) q^{27} -0.564122 q^{28} +4.65499i q^{29} +(7.58294 + 1.24574i) q^{30} +(0.624367 + 0.624367i) q^{31} -13.5870i q^{32} +2.40314i q^{33} +(-5.11454 - 5.11454i) q^{34} +(-0.204085 + 0.146492i) q^{35} -6.61729i q^{36} -1.47487 q^{37} +(13.0407 + 13.0407i) q^{38} +(-10.4384 - 14.5422i) q^{40} +(-3.83645 - 3.83645i) q^{41} +(-0.273014 - 0.273014i) q^{42} +(2.75555 + 2.75555i) q^{43} +(6.57874 - 6.57874i) q^{44} +(-1.71838 - 2.39396i) q^{45} +(6.01959 - 6.01959i) q^{46} +0.345095 q^{47} +(10.2440 - 10.2440i) q^{48} -6.98738 q^{49} +(-12.5524 - 4.23866i) q^{50} -3.54034i q^{51} +(-3.59144 + 3.59144i) q^{53} +(10.4928 - 10.4928i) q^{54} +(0.671646 - 4.08839i) q^{55} +0.899394i q^{56} +9.02691i q^{57} +12.3346 q^{58} +(-0.908390 - 0.908390i) q^{59} +(2.36063 - 14.3694i) q^{60} -2.78301 q^{61} +(1.65442 - 1.65442i) q^{62} +0.148060i q^{63} -13.6621 q^{64} +6.36774 q^{66} +0.144329i q^{67} +(-9.69188 + 9.69188i) q^{68} +4.16683 q^{69} +(0.388167 + 0.540774i) q^{70} +(3.87045 + 3.87045i) q^{71} -10.5501 q^{72} +9.06221i q^{73} +3.90805i q^{74} +(-2.87745 - 5.81150i) q^{75} +(24.7116 - 24.7116i) q^{76} +(-0.147197 + 0.147197i) q^{77} +15.1689i q^{79} +(-20.2908 + 14.5647i) q^{80} +3.30961 q^{81} +(-10.1657 + 10.1657i) q^{82} -8.53853 q^{83} +(-0.517354 + 0.517354i) q^{84} +(-0.989478 + 6.02307i) q^{85} +(7.30152 - 7.30152i) q^{86} +(4.26907 + 4.26907i) q^{87} +(-10.4887 - 10.4887i) q^{88} +(0.402434 + 0.402434i) q^{89} +(-6.34342 + 4.55329i) q^{90} +(-11.4069 - 11.4069i) q^{92} +1.14521 q^{93} -0.914416i q^{94} +(2.52290 - 15.3572i) q^{95} +(-12.4606 - 12.4606i) q^{96} +14.9645i q^{97} +18.5148i q^{98} +(-1.72666 - 1.72666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} - 12 q^{4} - 4 q^{6} - 4 q^{7} - 8 q^{10} - 8 q^{11} - 24 q^{12} - 28 q^{15} + 4 q^{16} - 14 q^{17} - 4 q^{19} + 12 q^{20} - 4 q^{21} - 32 q^{22} + 8 q^{23} + 4 q^{24} + 18 q^{25} + 4 q^{27}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.64975i 1.87366i −0.349786 0.936830i \(-0.613746\pi\)
0.349786 0.936830i \(-0.386254\pi\)
\(3\) 0.917096 0.917096i 0.529486 0.529486i −0.390933 0.920419i \(-0.627848\pi\)
0.920419 + 0.390933i \(0.127848\pi\)
\(4\) −5.02120 −2.51060
\(5\) −1.81654 + 1.30391i −0.812382 + 0.583126i
\(6\) −2.43008 2.43008i −0.992076 0.992076i
\(7\) 0.112348 0.0424635 0.0212318 0.999775i \(-0.493241\pi\)
0.0212318 + 0.999775i \(0.493241\pi\)
\(8\) 8.00544i 2.83035i
\(9\) 1.31787i 0.439290i
\(10\) 3.45504 + 4.81339i 1.09258 + 1.52213i
\(11\) −1.31019 + 1.31019i −0.395038 + 0.395038i −0.876479 0.481441i \(-0.840114\pi\)
0.481441 + 0.876479i \(0.340114\pi\)
\(12\) −4.60492 + 4.60492i −1.32933 + 1.32933i
\(13\) 0 0
\(14\) 0.297695i 0.0795622i
\(15\) −0.470132 + 2.86175i −0.121388 + 0.738901i
\(16\) 11.1700 2.79251
\(17\) 1.93019 1.93019i 0.468140 0.468140i −0.433171 0.901312i \(-0.642605\pi\)
0.901312 + 0.433171i \(0.142605\pi\)
\(18\) 3.49203 0.823080
\(19\) −4.92146 + 4.92146i −1.12906 + 1.12906i −0.138731 + 0.990330i \(0.544302\pi\)
−0.990330 + 0.138731i \(0.955698\pi\)
\(20\) 9.12121 6.54719i 2.03957 1.46400i
\(21\) 0.103034 0.103034i 0.0224838 0.0224838i
\(22\) 3.47169 + 3.47169i 0.740166 + 0.740166i
\(23\) 2.27175 + 2.27175i 0.473693 + 0.473693i 0.903108 0.429414i \(-0.141280\pi\)
−0.429414 + 0.903108i \(0.641280\pi\)
\(24\) 7.34175 + 7.34175i 1.49863 + 1.49863i
\(25\) 1.59964 4.73721i 0.319928 0.947442i
\(26\) 0 0
\(27\) 3.95990 + 3.95990i 0.762083 + 0.762083i
\(28\) −0.564122 −0.106609
\(29\) 4.65499i 0.864410i 0.901775 + 0.432205i \(0.142264\pi\)
−0.901775 + 0.432205i \(0.857736\pi\)
\(30\) 7.58294 + 1.24574i 1.38445 + 0.227439i
\(31\) 0.624367 + 0.624367i 0.112140 + 0.112140i 0.760950 0.648810i \(-0.224733\pi\)
−0.648810 + 0.760950i \(0.724733\pi\)
\(32\) 13.5870i 2.40186i
\(33\) 2.40314i 0.418334i
\(34\) −5.11454 5.11454i −0.877136 0.877136i
\(35\) −0.204085 + 0.146492i −0.0344966 + 0.0247616i
\(36\) 6.61729i 1.10288i
\(37\) −1.47487 −0.242467 −0.121234 0.992624i \(-0.538685\pi\)
−0.121234 + 0.992624i \(0.538685\pi\)
\(38\) 13.0407 + 13.0407i 2.11548 + 2.11548i
\(39\) 0 0
\(40\) −10.4384 14.5422i −1.65045 2.29932i
\(41\) −3.83645 3.83645i −0.599153 0.599153i 0.340934 0.940087i \(-0.389257\pi\)
−0.940087 + 0.340934i \(0.889257\pi\)
\(42\) −0.273014 0.273014i −0.0421270 0.0421270i
\(43\) 2.75555 + 2.75555i 0.420217 + 0.420217i 0.885278 0.465062i \(-0.153968\pi\)
−0.465062 + 0.885278i \(0.653968\pi\)
\(44\) 6.57874 6.57874i 0.991782 0.991782i
\(45\) −1.71838 2.39396i −0.256161 0.356871i
\(46\) 6.01959 6.01959i 0.887540 0.887540i
\(47\) 0.345095 0.0503372 0.0251686 0.999683i \(-0.491988\pi\)
0.0251686 + 0.999683i \(0.491988\pi\)
\(48\) 10.2440 10.2440i 1.47859 1.47859i
\(49\) −6.98738 −0.998197
\(50\) −12.5524 4.23866i −1.77518 0.599436i
\(51\) 3.54034i 0.495747i
\(52\) 0 0
\(53\) −3.59144 + 3.59144i −0.493322 + 0.493322i −0.909351 0.416029i \(-0.863421\pi\)
0.416029 + 0.909351i \(0.363421\pi\)
\(54\) 10.4928 10.4928i 1.42788 1.42788i
\(55\) 0.671646 4.08839i 0.0905647 0.551278i
\(56\) 0.899394i 0.120187i
\(57\) 9.02691i 1.19564i
\(58\) 12.3346 1.61961
\(59\) −0.908390 0.908390i −0.118262 0.118262i 0.645499 0.763761i \(-0.276649\pi\)
−0.763761 + 0.645499i \(0.776649\pi\)
\(60\) 2.36063 14.3694i 0.304756 1.85508i
\(61\) −2.78301 −0.356328 −0.178164 0.984001i \(-0.557016\pi\)
−0.178164 + 0.984001i \(0.557016\pi\)
\(62\) 1.65442 1.65442i 0.210111 0.210111i
\(63\) 0.148060i 0.0186538i
\(64\) −13.6621 −1.70776
\(65\) 0 0
\(66\) 6.36774 0.783815
\(67\) 0.144329i 0.0176325i 0.999961 + 0.00881627i \(0.00280634\pi\)
−0.999961 + 0.00881627i \(0.997194\pi\)
\(68\) −9.69188 + 9.69188i −1.17531 + 1.17531i
\(69\) 4.16683 0.501628
\(70\) 0.388167 + 0.540774i 0.0463948 + 0.0646349i
\(71\) 3.87045 + 3.87045i 0.459338 + 0.459338i 0.898438 0.439100i \(-0.144703\pi\)
−0.439100 + 0.898438i \(0.644703\pi\)
\(72\) −10.5501 −1.24334
\(73\) 9.06221i 1.06065i 0.847794 + 0.530326i \(0.177930\pi\)
−0.847794 + 0.530326i \(0.822070\pi\)
\(74\) 3.90805i 0.454301i
\(75\) −2.87745 5.81150i −0.332259 0.671054i
\(76\) 24.7116 24.7116i 2.83462 2.83462i
\(77\) −0.147197 + 0.147197i −0.0167747 + 0.0167747i
\(78\) 0 0
\(79\) 15.1689i 1.70664i 0.521388 + 0.853320i \(0.325414\pi\)
−0.521388 + 0.853320i \(0.674586\pi\)
\(80\) −20.2908 + 14.5647i −2.26858 + 1.62839i
\(81\) 3.30961 0.367734
\(82\) −10.1657 + 10.1657i −1.12261 + 1.12261i
\(83\) −8.53853 −0.937226 −0.468613 0.883404i \(-0.655246\pi\)
−0.468613 + 0.883404i \(0.655246\pi\)
\(84\) −0.517354 + 0.517354i −0.0564479 + 0.0564479i
\(85\) −0.989478 + 6.02307i −0.107324 + 0.653294i
\(86\) 7.30152 7.30152i 0.787343 0.787343i
\(87\) 4.26907 + 4.26907i 0.457692 + 0.457692i
\(88\) −10.4887 10.4887i −1.11809 1.11809i
\(89\) 0.402434 + 0.402434i 0.0426579 + 0.0426579i 0.728114 0.685456i \(-0.240397\pi\)
−0.685456 + 0.728114i \(0.740397\pi\)
\(90\) −6.34342 + 4.55329i −0.668655 + 0.479959i
\(91\) 0 0
\(92\) −11.4069 11.4069i −1.18925 1.18925i
\(93\) 1.14521 0.118753
\(94\) 0.914416i 0.0943148i
\(95\) 2.52290 15.3572i 0.258844 1.57561i
\(96\) −12.4606 12.4606i −1.27175 1.27175i
\(97\) 14.9645i 1.51941i 0.650268 + 0.759705i \(0.274657\pi\)
−0.650268 + 0.759705i \(0.725343\pi\)
\(98\) 18.5148i 1.87028i
\(99\) −1.72666 1.72666i −0.173536 0.173536i
\(100\) −8.03212 + 23.7865i −0.803212 + 2.37865i
\(101\) 8.31058i 0.826934i −0.910519 0.413467i \(-0.864318\pi\)
0.910519 0.413467i \(-0.135682\pi\)
\(102\) −9.38104 −0.928862
\(103\) −7.72940 7.72940i −0.761600 0.761600i 0.215011 0.976612i \(-0.431021\pi\)
−0.976612 + 0.215011i \(0.931021\pi\)
\(104\) 0 0
\(105\) −0.0528184 + 0.321512i −0.00515455 + 0.0313764i
\(106\) 9.51643 + 9.51643i 0.924317 + 0.924317i
\(107\) −5.23546 5.23546i −0.506131 0.506131i 0.407205 0.913337i \(-0.366503\pi\)
−0.913337 + 0.407205i \(0.866503\pi\)
\(108\) −19.8835 19.8835i −1.91329 1.91329i
\(109\) −3.34544 + 3.34544i −0.320435 + 0.320435i −0.848934 0.528499i \(-0.822755\pi\)
0.528499 + 0.848934i \(0.322755\pi\)
\(110\) −10.8332 1.77970i −1.03291 0.169687i
\(111\) −1.35260 + 1.35260i −0.128383 + 0.128383i
\(112\) 1.25493 0.118580
\(113\) 4.32414 4.32414i 0.406780 0.406780i −0.473834 0.880614i \(-0.657130\pi\)
0.880614 + 0.473834i \(0.157130\pi\)
\(114\) 23.9191 2.24023
\(115\) −7.08889 1.16457i −0.661043 0.108597i
\(116\) 23.3736i 2.17019i
\(117\) 0 0
\(118\) −2.40701 + 2.40701i −0.221583 + 0.221583i
\(119\) 0.216853 0.216853i 0.0198789 0.0198789i
\(120\) −22.9096 3.76361i −2.09135 0.343569i
\(121\) 7.56679i 0.687890i
\(122\) 7.37430i 0.667638i
\(123\) −7.03679 −0.634486
\(124\) −3.13507 3.13507i −0.281538 0.281538i
\(125\) 3.27108 + 10.6911i 0.292574 + 0.956243i
\(126\) 0.392323 0.0349509
\(127\) −8.25062 + 8.25062i −0.732124 + 0.732124i −0.971040 0.238916i \(-0.923208\pi\)
0.238916 + 0.971040i \(0.423208\pi\)
\(128\) 9.02727i 0.797905i
\(129\) 5.05420 0.444997
\(130\) 0 0
\(131\) 7.46380 0.652115 0.326058 0.945350i \(-0.394280\pi\)
0.326058 + 0.945350i \(0.394280\pi\)
\(132\) 12.0667i 1.05027i
\(133\) −0.552916 + 0.552916i −0.0479439 + 0.0479439i
\(134\) 0.382435 0.0330374
\(135\) −12.3567 2.02997i −1.06349 0.174712i
\(136\) 15.4520 + 15.4520i 1.32500 + 1.32500i
\(137\) 18.4843 1.57922 0.789608 0.613611i \(-0.210284\pi\)
0.789608 + 0.613611i \(0.210284\pi\)
\(138\) 11.0411i 0.939879i
\(139\) 10.9103i 0.925402i −0.886515 0.462701i \(-0.846880\pi\)
0.886515 0.462701i \(-0.153120\pi\)
\(140\) 1.02475 0.735563i 0.0866072 0.0621664i
\(141\) 0.316485 0.316485i 0.0266528 0.0266528i
\(142\) 10.2557 10.2557i 0.860643 0.860643i
\(143\) 0 0
\(144\) 14.7207i 1.22672i
\(145\) −6.06968 8.45598i −0.504060 0.702231i
\(146\) 24.0126 1.98730
\(147\) −6.40810 + 6.40810i −0.528531 + 0.528531i
\(148\) 7.40562 0.608738
\(149\) 9.84377 9.84377i 0.806433 0.806433i −0.177659 0.984092i \(-0.556852\pi\)
0.984092 + 0.177659i \(0.0568525\pi\)
\(150\) −15.3990 + 7.62454i −1.25733 + 0.622541i
\(151\) 8.49593 8.49593i 0.691389 0.691389i −0.271149 0.962537i \(-0.587404\pi\)
0.962537 + 0.271149i \(0.0874035\pi\)
\(152\) −39.3984 39.3984i −3.19564 3.19564i
\(153\) 2.54374 + 2.54374i 0.205649 + 0.205649i
\(154\) 0.390037 + 0.390037i 0.0314301 + 0.0314301i
\(155\) −1.94830 0.320070i −0.156492 0.0257086i
\(156\) 0 0
\(157\) −5.14491 5.14491i −0.410609 0.410609i 0.471342 0.881951i \(-0.343770\pi\)
−0.881951 + 0.471342i \(0.843770\pi\)
\(158\) 40.1940 3.19766
\(159\) 6.58739i 0.522414i
\(160\) 17.7162 + 24.6813i 1.40059 + 1.95123i
\(161\) 0.255227 + 0.255227i 0.0201147 + 0.0201147i
\(162\) 8.76965i 0.689009i
\(163\) 20.5175i 1.60705i −0.595270 0.803526i \(-0.702955\pi\)
0.595270 0.803526i \(-0.297045\pi\)
\(164\) 19.2636 + 19.2636i 1.50423 + 1.50423i
\(165\) −3.13348 4.36541i −0.243941 0.339847i
\(166\) 22.6250i 1.75604i
\(167\) 2.54101 0.196629 0.0983146 0.995155i \(-0.468655\pi\)
0.0983146 + 0.995155i \(0.468655\pi\)
\(168\) 0.824831 + 0.824831i 0.0636371 + 0.0636371i
\(169\) 0 0
\(170\) 15.9597 + 2.62187i 1.22405 + 0.201088i
\(171\) −6.48585 6.48585i −0.495985 0.495985i
\(172\) −13.8361 13.8361i −1.05500 1.05500i
\(173\) 0.0557881 + 0.0557881i 0.00424149 + 0.00424149i 0.709224 0.704983i \(-0.249045\pi\)
−0.704983 + 0.709224i \(0.749045\pi\)
\(174\) 11.3120 11.3120i 0.857560 0.857560i
\(175\) 0.179716 0.532216i 0.0135853 0.0402317i
\(176\) −14.6349 + 14.6349i −1.10315 + 1.10315i
\(177\) −1.66616 −0.125236
\(178\) 1.06635 1.06635i 0.0799264 0.0799264i
\(179\) −21.2241 −1.58636 −0.793181 0.608987i \(-0.791576\pi\)
−0.793181 + 0.608987i \(0.791576\pi\)
\(180\) 8.62834 + 12.0206i 0.643119 + 0.895961i
\(181\) 22.5267i 1.67440i 0.546899 + 0.837198i \(0.315808\pi\)
−0.546899 + 0.837198i \(0.684192\pi\)
\(182\) 0 0
\(183\) −2.55229 + 2.55229i −0.188671 + 0.188671i
\(184\) −18.1864 + 18.1864i −1.34072 + 1.34072i
\(185\) 2.67916 1.92310i 0.196976 0.141389i
\(186\) 3.03452i 0.222502i
\(187\) 5.05785i 0.369866i
\(188\) −1.73279 −0.126377
\(189\) 0.444887 + 0.444887i 0.0323608 + 0.0323608i
\(190\) −40.6927 6.68506i −2.95216 0.484985i
\(191\) 19.6065 1.41868 0.709339 0.704868i \(-0.248994\pi\)
0.709339 + 0.704868i \(0.248994\pi\)
\(192\) −12.5295 + 12.5295i −0.904237 + 0.904237i
\(193\) 16.7120i 1.20296i 0.798889 + 0.601479i \(0.205421\pi\)
−0.798889 + 0.601479i \(0.794579\pi\)
\(194\) 39.6521 2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) 15.1863i 1.08198i 0.841029 + 0.540990i \(0.181950\pi\)
−0.841029 + 0.540990i \(0.818050\pi\)
\(198\) −4.57523 + 4.57523i −0.325148 + 0.325148i
\(199\) 13.9471 0.988686 0.494343 0.869267i \(-0.335409\pi\)
0.494343 + 0.869267i \(0.335409\pi\)
\(200\) 37.9234 + 12.8058i 2.68159 + 0.905508i
\(201\) 0.132363 + 0.132363i 0.00933618 + 0.00933618i
\(202\) −22.0210 −1.54939
\(203\) 0.522979i 0.0367059i
\(204\) 17.7768i 1.24462i
\(205\) 11.9715 + 1.96669i 0.836123 + 0.137359i
\(206\) −20.4810 + 20.4810i −1.42698 + 1.42698i
\(207\) −2.99388 + 2.99388i −0.208089 + 0.208089i
\(208\) 0 0
\(209\) 12.8961i 0.892044i
\(210\) 0.851928 + 0.139956i 0.0587886 + 0.00965787i
\(211\) −23.6181 −1.62594 −0.812969 0.582307i \(-0.802150\pi\)
−0.812969 + 0.582307i \(0.802150\pi\)
\(212\) 18.0333 18.0333i 1.23853 1.23853i
\(213\) 7.09915 0.486426
\(214\) −13.8727 + 13.8727i −0.948318 + 0.948318i
\(215\) −8.59854 1.41258i −0.586416 0.0963371i
\(216\) −31.7007 + 31.7007i −2.15696 + 2.15696i
\(217\) 0.0701463 + 0.0701463i 0.00476184 + 0.00476184i
\(218\) 8.86460 + 8.86460i 0.600387 + 0.600387i
\(219\) 8.31092 + 8.31092i 0.561600 + 0.561600i
\(220\) −3.37247 + 20.5286i −0.227372 + 1.38404i
\(221\) 0 0
\(222\) 3.58405 + 3.58405i 0.240546 + 0.240546i
\(223\) −9.72639 −0.651327 −0.325664 0.945486i \(-0.605588\pi\)
−0.325664 + 0.945486i \(0.605588\pi\)
\(224\) 1.52647i 0.101992i
\(225\) 6.24303 + 2.10812i 0.416202 + 0.140541i
\(226\) −11.4579 11.4579i −0.762168 0.762168i
\(227\) 9.17580i 0.609019i −0.952509 0.304510i \(-0.901507\pi\)
0.952509 0.304510i \(-0.0984925\pi\)
\(228\) 45.3259i 3.00178i
\(229\) −12.5270 12.5270i −0.827811 0.827811i 0.159403 0.987214i \(-0.449043\pi\)
−0.987214 + 0.159403i \(0.949043\pi\)
\(230\) −3.08583 + 18.7838i −0.203474 + 1.23857i
\(231\) 0.269988i 0.0177639i
\(232\) −37.2652 −2.44658
\(233\) −11.8637 11.8637i −0.777214 0.777214i 0.202142 0.979356i \(-0.435210\pi\)
−0.979356 + 0.202142i \(0.935210\pi\)
\(234\) 0 0
\(235\) −0.626879 + 0.449972i −0.0408931 + 0.0293530i
\(236\) 4.56120 + 4.56120i 0.296909 + 0.296909i
\(237\) 13.9114 + 13.9114i 0.903641 + 0.903641i
\(238\) −0.574608 0.574608i −0.0372463 0.0372463i
\(239\) 18.2161 18.2161i 1.17830 1.17830i 0.198124 0.980177i \(-0.436515\pi\)
0.980177 0.198124i \(-0.0634848\pi\)
\(240\) −5.25140 + 31.9659i −0.338976 + 2.06339i
\(241\) −3.86818 + 3.86818i −0.249171 + 0.249171i −0.820630 0.571459i \(-0.806378\pi\)
0.571459 + 0.820630i \(0.306378\pi\)
\(242\) 20.0501 1.28887
\(243\) −8.84448 + 8.84448i −0.567373 + 0.567373i
\(244\) 13.9741 0.894597
\(245\) 12.6929 9.11091i 0.810917 0.582075i
\(246\) 18.6458i 1.18881i
\(247\) 0 0
\(248\) −4.99833 + 4.99833i −0.317394 + 0.317394i
\(249\) −7.83065 + 7.83065i −0.496247 + 0.496247i
\(250\) 28.3288 8.66755i 1.79167 0.548184i
\(251\) 13.0677i 0.824824i 0.910997 + 0.412412i \(0.135314\pi\)
−0.910997 + 0.412412i \(0.864686\pi\)
\(252\) 0.743439i 0.0468322i
\(253\) −5.95287 −0.374254
\(254\) 21.8621 + 21.8621i 1.37175 + 1.37175i
\(255\) 4.61629 + 6.43118i 0.289083 + 0.402736i
\(256\) −3.40419 −0.212762
\(257\) 12.3380 12.3380i 0.769625 0.769625i −0.208415 0.978040i \(-0.566830\pi\)
0.978040 + 0.208415i \(0.0668305\pi\)
\(258\) 13.3924i 0.833774i
\(259\) −0.165699 −0.0102960
\(260\) 0 0
\(261\) −6.13467 −0.379727
\(262\) 19.7772i 1.22184i
\(263\) 14.7419 14.7419i 0.909027 0.909027i −0.0871665 0.996194i \(-0.527781\pi\)
0.996194 + 0.0871665i \(0.0277812\pi\)
\(264\) −19.2382 −1.18403
\(265\) 1.84108 11.2069i 0.113097 0.688434i
\(266\) 1.46509 + 1.46509i 0.0898306 + 0.0898306i
\(267\) 0.738141 0.0451735
\(268\) 0.724703i 0.0442683i
\(269\) 10.5665i 0.644252i −0.946697 0.322126i \(-0.895602\pi\)
0.946697 0.322126i \(-0.104398\pi\)
\(270\) −5.37892 + 32.7422i −0.327351 + 1.99262i
\(271\) 5.59357 5.59357i 0.339785 0.339785i −0.516501 0.856286i \(-0.672766\pi\)
0.856286 + 0.516501i \(0.172766\pi\)
\(272\) 21.5603 21.5603i 1.30729 1.30729i
\(273\) 0 0
\(274\) 48.9787i 2.95891i
\(275\) 4.11082 + 8.30249i 0.247892 + 0.500659i
\(276\) −20.9225 −1.25939
\(277\) −7.22248 + 7.22248i −0.433957 + 0.433957i −0.889972 0.456015i \(-0.849276\pi\)
0.456015 + 0.889972i \(0.349276\pi\)
\(278\) −28.9097 −1.73389
\(279\) −0.822834 + 0.822834i −0.0492618 + 0.0492618i
\(280\) −1.17273 1.63379i −0.0700840 0.0976374i
\(281\) −12.4763 + 12.4763i −0.744271 + 0.744271i −0.973397 0.229126i \(-0.926413\pi\)
0.229126 + 0.973397i \(0.426413\pi\)
\(282\) −0.838608 0.838608i −0.0499384 0.0499384i
\(283\) 5.84527 + 5.84527i 0.347465 + 0.347465i 0.859164 0.511700i \(-0.170984\pi\)
−0.511700 + 0.859164i \(0.670984\pi\)
\(284\) −19.4343 19.4343i −1.15321 1.15321i
\(285\) −11.7703 16.3977i −0.697210 0.971318i
\(286\) 0 0
\(287\) −0.431018 0.431018i −0.0254422 0.0254422i
\(288\) 17.9059 1.05511
\(289\) 9.54871i 0.561689i
\(290\) −22.4063 + 16.0832i −1.31574 + 0.944436i
\(291\) 13.7238 + 13.7238i 0.804506 + 0.804506i
\(292\) 45.5032i 2.66287i
\(293\) 6.37832i 0.372625i 0.982491 + 0.186313i \(0.0596537\pi\)
−0.982491 + 0.186313i \(0.940346\pi\)
\(294\) 16.9799 + 16.9799i 0.990287 + 0.990287i
\(295\) 2.83458 + 0.465669i 0.165036 + 0.0271123i
\(296\) 11.8070i 0.686267i
\(297\) −10.3765 −0.602104
\(298\) −26.0836 26.0836i −1.51098 1.51098i
\(299\) 0 0
\(300\) 14.4483 + 29.1807i 0.834170 + 1.68475i
\(301\) 0.309580 + 0.309580i 0.0178439 + 0.0178439i
\(302\) −22.5121 22.5121i −1.29543 1.29543i
\(303\) −7.62160 7.62160i −0.437850 0.437850i
\(304\) −54.9729 + 54.9729i −3.15291 + 3.15291i
\(305\) 5.05546 3.62880i 0.289475 0.207784i
\(306\) 6.74029 6.74029i 0.385317 0.385317i
\(307\) 26.5460 1.51506 0.757530 0.652801i \(-0.226406\pi\)
0.757530 + 0.652801i \(0.226406\pi\)
\(308\) 0.739108 0.739108i 0.0421146 0.0421146i
\(309\) −14.1772 −0.806512
\(310\) −0.848107 + 5.16253i −0.0481692 + 0.293212i
\(311\) 3.54417i 0.200972i 0.994938 + 0.100486i \(0.0320397\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(312\) 0 0
\(313\) −6.21088 + 6.21088i −0.351060 + 0.351060i −0.860504 0.509444i \(-0.829851\pi\)
0.509444 + 0.860504i \(0.329851\pi\)
\(314\) −13.6328 + 13.6328i −0.769341 + 0.769341i
\(315\) −0.193057 0.268957i −0.0108775 0.0151540i
\(316\) 76.1663i 4.28469i
\(317\) 8.52812i 0.478987i 0.970898 + 0.239494i \(0.0769814\pi\)
−0.970898 + 0.239494i \(0.923019\pi\)
\(318\) 17.4550 0.978825
\(319\) −6.09893 6.09893i −0.341474 0.341474i
\(320\) 24.8178 17.8142i 1.38736 0.995842i
\(321\) −9.60284 −0.535978
\(322\) 0.676289 0.676289i 0.0376881 0.0376881i
\(323\) 18.9987i 1.05712i
\(324\) −16.6182 −0.923233
\(325\) 0 0
\(326\) −54.3663 −3.01107
\(327\) 6.13618i 0.339332i
\(328\) 30.7125 30.7125i 1.69581 1.69581i
\(329\) 0.0387707 0.00213750
\(330\) −11.5673 + 8.30296i −0.636757 + 0.457063i
\(331\) −12.7328 12.7328i −0.699860 0.699860i 0.264520 0.964380i \(-0.414786\pi\)
−0.964380 + 0.264520i \(0.914786\pi\)
\(332\) 42.8737 2.35300
\(333\) 1.94369i 0.106513i
\(334\) 6.73305i 0.368416i
\(335\) −0.188191 0.262179i −0.0102820 0.0143244i
\(336\) 1.15089 1.15089i 0.0627863 0.0627863i
\(337\) −20.0865 + 20.0865i −1.09418 + 1.09418i −0.0991030 + 0.995077i \(0.531597\pi\)
−0.995077 + 0.0991030i \(0.968403\pi\)
\(338\) 0 0
\(339\) 7.93129i 0.430769i
\(340\) 4.96836 30.2430i 0.269447 1.64016i
\(341\) −1.63608 −0.0885987
\(342\) −17.1859 + 17.1859i −0.929307 + 0.929307i
\(343\) −1.57145 −0.0848505
\(344\) −22.0593 + 22.0593i −1.18936 + 1.18936i
\(345\) −7.56922 + 5.43317i −0.407513 + 0.292512i
\(346\) 0.147825 0.147825i 0.00794710 0.00794710i
\(347\) −5.07459 5.07459i −0.272418 0.272418i 0.557655 0.830073i \(-0.311701\pi\)
−0.830073 + 0.557655i \(0.811701\pi\)
\(348\) −21.4359 21.4359i −1.14908 1.14908i
\(349\) 2.58330 + 2.58330i 0.138281 + 0.138281i 0.772859 0.634578i \(-0.218826\pi\)
−0.634578 + 0.772859i \(0.718826\pi\)
\(350\) −1.41024 0.476204i −0.0753806 0.0254542i
\(351\) 0 0
\(352\) 17.8016 + 17.8016i 0.948827 + 0.948827i
\(353\) −1.76326 −0.0938487 −0.0469243 0.998898i \(-0.514942\pi\)
−0.0469243 + 0.998898i \(0.514942\pi\)
\(354\) 4.41492i 0.234650i
\(355\) −12.0775 1.98411i −0.641010 0.105306i
\(356\) −2.02070 2.02070i −0.107097 0.107097i
\(357\) 0.397750i 0.0210512i
\(358\) 56.2386i 2.97230i
\(359\) −8.58021 8.58021i −0.452846 0.452846i 0.443452 0.896298i \(-0.353754\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(360\) 19.1647 13.7564i 1.01007 0.725026i
\(361\) 29.4416i 1.54956i
\(362\) 59.6902 3.13725
\(363\) 6.93947 + 6.93947i 0.364228 + 0.364228i
\(364\) 0 0
\(365\) −11.8163 16.4619i −0.618493 0.861654i
\(366\) 6.76294 + 6.76294i 0.353505 + 0.353505i
\(367\) −9.90736 9.90736i −0.517160 0.517160i 0.399551 0.916711i \(-0.369166\pi\)
−0.916711 + 0.399551i \(0.869166\pi\)
\(368\) 25.3756 + 25.3756i 1.32279 + 1.32279i
\(369\) 5.05594 5.05594i 0.263202 0.263202i
\(370\) −5.09574 7.09912i −0.264915 0.369066i
\(371\) −0.403491 + 0.403491i −0.0209482 + 0.0209482i
\(372\) −5.75032 −0.298140
\(373\) −20.4300 + 20.4300i −1.05782 + 1.05782i −0.0596011 + 0.998222i \(0.518983\pi\)
−0.998222 + 0.0596011i \(0.981017\pi\)
\(374\) 13.4021 0.693004
\(375\) 12.8047 + 6.80489i 0.661231 + 0.351403i
\(376\) 2.76263i 0.142472i
\(377\) 0 0
\(378\) 1.17884 1.17884i 0.0606330 0.0606330i
\(379\) −6.70112 + 6.70112i −0.344213 + 0.344213i −0.857949 0.513735i \(-0.828261\pi\)
0.513735 + 0.857949i \(0.328261\pi\)
\(380\) −12.6680 + 77.1114i −0.649853 + 3.95573i
\(381\) 15.1332i 0.775299i
\(382\) 51.9525i 2.65812i
\(383\) 21.0722 1.07674 0.538369 0.842709i \(-0.319041\pi\)
0.538369 + 0.842709i \(0.319041\pi\)
\(384\) 8.27887 + 8.27887i 0.422479 + 0.422479i
\(385\) 0.0754581 0.459322i 0.00384570 0.0234092i
\(386\) 44.2827 2.25393
\(387\) −3.63145 + 3.63145i −0.184597 + 0.184597i
\(388\) 75.1395i 3.81463i
\(389\) 0.0604806 0.00306649 0.00153324 0.999999i \(-0.499512\pi\)
0.00153324 + 0.999999i \(0.499512\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) 55.9370i 2.82525i
\(393\) 6.84502 6.84502i 0.345286 0.345286i
\(394\) 40.2400 2.02726
\(395\) −19.7789 27.5550i −0.995186 1.38644i
\(396\) 8.66992 + 8.66992i 0.435680 + 0.435680i
\(397\) −8.21625 −0.412362 −0.206181 0.978514i \(-0.566104\pi\)
−0.206181 + 0.978514i \(0.566104\pi\)
\(398\) 36.9565i 1.85246i
\(399\) 1.01415i 0.0507712i
\(400\) 17.8681 52.9148i 0.893403 2.64574i
\(401\) 6.36306 6.36306i 0.317756 0.317756i −0.530149 0.847905i \(-0.677864\pi\)
0.847905 + 0.530149i \(0.177864\pi\)
\(402\) 0.350730 0.350730i 0.0174928 0.0174928i
\(403\) 0 0
\(404\) 41.7291i 2.07610i
\(405\) −6.01204 + 4.31543i −0.298741 + 0.214435i
\(406\) 1.38576 0.0687743
\(407\) 1.93236 1.93236i 0.0957837 0.0957837i
\(408\) 28.3420 1.40314
\(409\) 25.3299 25.3299i 1.25248 1.25248i 0.297878 0.954604i \(-0.403721\pi\)
0.954604 0.297878i \(-0.0962789\pi\)
\(410\) 5.21123 31.7214i 0.257365 1.56661i
\(411\) 16.9518 16.9518i 0.836173 0.836173i
\(412\) 38.8108 + 38.8108i 1.91207 + 1.91207i
\(413\) −0.102056 0.102056i −0.00502183 0.00502183i
\(414\) 7.93304 + 7.93304i 0.389887 + 0.389887i
\(415\) 15.5106 11.1335i 0.761385 0.546521i
\(416\) 0 0
\(417\) −10.0058 10.0058i −0.489987 0.489987i
\(418\) −34.1716 −1.67139
\(419\) 13.0807i 0.639036i 0.947580 + 0.319518i \(0.103521\pi\)
−0.947580 + 0.319518i \(0.896479\pi\)
\(420\) 0.265212 1.61438i 0.0129410 0.0787735i
\(421\) 13.7924 + 13.7924i 0.672203 + 0.672203i 0.958223 0.286021i \(-0.0923326\pi\)
−0.286021 + 0.958223i \(0.592333\pi\)
\(422\) 62.5822i 3.04645i
\(423\) 0.454790i 0.0221126i
\(424\) −28.7510 28.7510i −1.39627 1.39627i
\(425\) −6.05611 12.2313i −0.293765 0.593307i
\(426\) 18.8110i 0.911396i
\(427\) −0.312666 −0.0151310
\(428\) 26.2883 + 26.2883i 1.27069 + 1.27069i
\(429\) 0 0
\(430\) −3.74299 + 22.7840i −0.180503 + 1.09874i
\(431\) 15.7112 + 15.7112i 0.756782 + 0.756782i 0.975735 0.218953i \(-0.0702642\pi\)
−0.218953 + 0.975735i \(0.570264\pi\)
\(432\) 44.2323 + 44.2323i 2.12813 + 2.12813i
\(433\) 0.129788 + 0.129788i 0.00623723 + 0.00623723i 0.710219 0.703981i \(-0.248596\pi\)
−0.703981 + 0.710219i \(0.748596\pi\)
\(434\) 0.185871 0.185871i 0.00892207 0.00892207i
\(435\) −13.3214 2.18846i −0.638713 0.104929i
\(436\) 16.7981 16.7981i 0.804485 0.804485i
\(437\) −22.3607 −1.06966
\(438\) 22.0219 22.0219i 1.05225 1.05225i
\(439\) 17.2936 0.825380 0.412690 0.910871i \(-0.364589\pi\)
0.412690 + 0.910871i \(0.364589\pi\)
\(440\) 32.7293 + 5.37682i 1.56031 + 0.256330i
\(441\) 9.20846i 0.438498i
\(442\) 0 0
\(443\) 24.4472 24.4472i 1.16152 1.16152i 0.177377 0.984143i \(-0.443239\pi\)
0.984143 0.177377i \(-0.0567611\pi\)
\(444\) 6.79166 6.79166i 0.322318 0.322318i
\(445\) −1.25578 0.206300i −0.0595295 0.00977958i
\(446\) 25.7725i 1.22037i
\(447\) 18.0554i 0.853989i
\(448\) −1.53491 −0.0725177
\(449\) −26.2934 26.2934i −1.24086 1.24086i −0.959643 0.281221i \(-0.909261\pi\)
−0.281221 0.959643i \(-0.590739\pi\)
\(450\) 5.58600 16.5425i 0.263326 0.779820i
\(451\) 10.0530 0.473376
\(452\) −21.7123 + 21.7123i −1.02126 + 1.02126i
\(453\) 15.5832i 0.732161i
\(454\) −24.3136 −1.14109
\(455\) 0 0
\(456\) −72.2643 −3.38409
\(457\) 9.42691i 0.440972i −0.975390 0.220486i \(-0.929236\pi\)
0.975390 0.220486i \(-0.0707643\pi\)
\(458\) −33.1936 + 33.1936i −1.55104 + 1.55104i
\(459\) 15.2867 0.713524
\(460\) 35.5947 + 5.84755i 1.65961 + 0.272643i
\(461\) 23.2538 + 23.2538i 1.08304 + 1.08304i 0.996225 + 0.0868134i \(0.0276684\pi\)
0.0868134 + 0.996225i \(0.472332\pi\)
\(462\) 0.715403 0.0332836
\(463\) 18.6729i 0.867805i 0.900960 + 0.433903i \(0.142864\pi\)
−0.900960 + 0.433903i \(0.857136\pi\)
\(464\) 51.9964i 2.41387i
\(465\) −2.08032 + 1.49325i −0.0964724 + 0.0692477i
\(466\) −31.4358 + 31.4358i −1.45623 + 1.45623i
\(467\) −12.1678 + 12.1678i −0.563057 + 0.563057i −0.930175 0.367118i \(-0.880345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(468\) 0 0
\(469\) 0.0162150i 0.000748740i
\(470\) 1.19232 + 1.66107i 0.0549974 + 0.0766197i
\(471\) −9.43676 −0.434823
\(472\) 7.27205 7.27205i 0.334723 0.334723i
\(473\) −7.22059 −0.332003
\(474\) 36.8617 36.8617i 1.69312 1.69312i
\(475\) 15.4414 + 31.1866i 0.708501 + 1.43094i
\(476\) −1.08886 + 1.08886i −0.0499080 + 0.0499080i
\(477\) −4.73305 4.73305i −0.216711 0.216711i
\(478\) −48.2682 48.2682i −2.20773 2.20773i
\(479\) −23.3087 23.3087i −1.06500 1.06500i −0.997735 0.0672673i \(-0.978572\pi\)
−0.0672673 0.997735i \(-0.521428\pi\)
\(480\) 38.8826 + 6.38768i 1.77474 + 0.291557i
\(481\) 0 0
\(482\) 10.2497 + 10.2497i 0.466862 + 0.466862i
\(483\) 0.468135 0.0213009
\(484\) 37.9944i 1.72702i
\(485\) −19.5123 27.1835i −0.886008 1.23434i
\(486\) 23.4357 + 23.4357i 1.06306 + 1.06306i
\(487\) 32.9863i 1.49475i −0.664402 0.747376i \(-0.731314\pi\)
0.664402 0.747376i \(-0.268686\pi\)
\(488\) 22.2792i 1.00853i
\(489\) −18.8165 18.8165i −0.850911 0.850911i
\(490\) −24.1417 33.6330i −1.09061 1.51938i
\(491\) 21.2958i 0.961065i 0.876977 + 0.480533i \(0.159557\pi\)
−0.876977 + 0.480533i \(0.840443\pi\)
\(492\) 35.3331 1.59294
\(493\) 8.98502 + 8.98502i 0.404665 + 0.404665i
\(494\) 0 0
\(495\) 5.38797 + 0.885142i 0.242171 + 0.0397842i
\(496\) 6.97420 + 6.97420i 0.313151 + 0.313151i
\(497\) 0.434837 + 0.434837i 0.0195051 + 0.0195051i
\(498\) 20.7493 + 20.7493i 0.929799 + 0.929799i
\(499\) 14.9199 14.9199i 0.667904 0.667904i −0.289326 0.957231i \(-0.593431\pi\)
0.957231 + 0.289326i \(0.0934312\pi\)
\(500\) −16.4247 53.6822i −0.734536 2.40074i
\(501\) 2.33035 2.33035i 0.104112 0.104112i
\(502\) 34.6261 1.54544
\(503\) 30.8883 30.8883i 1.37724 1.37724i 0.527996 0.849247i \(-0.322944\pi\)
0.849247 0.527996i \(-0.177056\pi\)
\(504\) −1.18529 −0.0527968
\(505\) 10.8362 + 15.0965i 0.482207 + 0.671786i
\(506\) 15.7736i 0.701224i
\(507\) 0 0
\(508\) 41.4280 41.4280i 1.83807 1.83807i
\(509\) 26.4196 26.4196i 1.17103 1.17103i 0.189062 0.981965i \(-0.439455\pi\)
0.981965 0.189062i \(-0.0605446\pi\)
\(510\) 17.0410 12.2320i 0.754590 0.541643i
\(511\) 1.01812i 0.0450390i
\(512\) 27.0748i 1.19655i
\(513\) −38.9770 −1.72088
\(514\) −32.6928 32.6928i −1.44202 1.44202i
\(515\) 24.1192 + 3.96233i 1.06282 + 0.174601i
\(516\) −25.3781 −1.11721
\(517\) −0.452141 + 0.452141i −0.0198851 + 0.0198851i
\(518\) 0.439061i 0.0192912i
\(519\) 0.102326 0.00449161
\(520\) 0 0
\(521\) −35.6853 −1.56340 −0.781701 0.623653i \(-0.785648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(522\) 16.2554i 0.711478i
\(523\) −3.05155 + 3.05155i −0.133435 + 0.133435i −0.770670 0.637235i \(-0.780078\pi\)
0.637235 + 0.770670i \(0.280078\pi\)
\(524\) −37.4772 −1.63720
\(525\) −0.323276 0.652910i −0.0141089 0.0284953i
\(526\) −39.0625 39.0625i −1.70321 1.70321i
\(527\) 2.41030 0.104994
\(528\) 26.8432i 1.16820i
\(529\) 12.6783i 0.551229i
\(530\) −29.6955 4.87842i −1.28989 0.211905i
\(531\) 1.19714 1.19714i 0.0519514 0.0519514i
\(532\) 2.77630 2.77630i 0.120368 0.120368i
\(533\) 0 0
\(534\) 1.95589i 0.0846398i
\(535\) 16.3370 + 2.68386i 0.706310 + 0.116034i
\(536\) −1.15541 −0.0499063
\(537\) −19.4645 + 19.4645i −0.839955 + 0.839955i
\(538\) −27.9987 −1.20711
\(539\) 9.15481 9.15481i 0.394326 0.394326i
\(540\) 62.0453 + 10.1929i 2.67001 + 0.438632i
\(541\) 5.42748 5.42748i 0.233345 0.233345i −0.580742 0.814088i \(-0.697238\pi\)
0.814088 + 0.580742i \(0.197238\pi\)
\(542\) −14.8216 14.8216i −0.636641 0.636641i
\(543\) 20.6591 + 20.6591i 0.886569 + 0.886569i
\(544\) −26.2255 26.2255i −1.12441 1.12441i
\(545\) 1.71498 10.4393i 0.0734616 0.447170i
\(546\) 0 0
\(547\) 11.6940 + 11.6940i 0.500000 + 0.500000i 0.911438 0.411438i \(-0.134973\pi\)
−0.411438 + 0.911438i \(0.634973\pi\)
\(548\) −92.8131 −3.96478
\(549\) 3.66765i 0.156531i
\(550\) 21.9996 10.8927i 0.938065 0.464464i
\(551\) −22.9093 22.9093i −0.975971 0.975971i
\(552\) 33.3573i 1.41978i
\(553\) 1.70420i 0.0724700i
\(554\) 19.1378 + 19.1378i 0.813087 + 0.813087i
\(555\) 0.693384 4.22071i 0.0294325 0.179159i
\(556\) 54.7829i 2.32331i
\(557\) 4.87503 0.206562 0.103281 0.994652i \(-0.467066\pi\)
0.103281 + 0.994652i \(0.467066\pi\)
\(558\) 2.18031 + 2.18031i 0.0922998 + 0.0922998i
\(559\) 0 0
\(560\) −2.27963 + 1.63632i −0.0963321 + 0.0691470i
\(561\) 4.63853 + 4.63853i 0.195839 + 0.195839i
\(562\) 33.0590 + 33.0590i 1.39451 + 1.39451i
\(563\) −27.5537 27.5537i −1.16125 1.16125i −0.984202 0.177047i \(-0.943346\pi\)
−0.177047 0.984202i \(-0.556654\pi\)
\(564\) −1.58913 + 1.58913i −0.0669146 + 0.0669146i
\(565\) −2.21669 + 13.4932i −0.0932568 + 0.567665i
\(566\) 15.4885 15.4885i 0.651031 0.651031i
\(567\) 0.371828 0.0156153
\(568\) −30.9846 + 30.9846i −1.30009 + 1.30009i
\(569\) −3.68208 −0.154361 −0.0771804 0.997017i \(-0.524592\pi\)
−0.0771804 + 0.997017i \(0.524592\pi\)
\(570\) −43.4500 + 31.1883i −1.81992 + 1.30633i
\(571\) 2.96698i 0.124164i 0.998071 + 0.0620821i \(0.0197741\pi\)
−0.998071 + 0.0620821i \(0.980226\pi\)
\(572\) 0 0
\(573\) 17.9811 17.9811i 0.751170 0.751170i
\(574\) −1.14209 + 1.14209i −0.0476699 + 0.0476699i
\(575\) 14.3958 7.12778i 0.600345 0.297249i
\(576\) 18.0049i 0.750204i
\(577\) 35.0533i 1.45929i 0.683827 + 0.729644i \(0.260314\pi\)
−0.683827 + 0.729644i \(0.739686\pi\)
\(578\) 25.3017 1.05241
\(579\) 15.3265 + 15.3265i 0.636948 + 0.636948i
\(580\) 30.4771 + 42.4591i 1.26549 + 1.76302i
\(581\) −0.959287 −0.0397979
\(582\) 36.3648 36.3648i 1.50737 1.50737i
\(583\) 9.41095i 0.389762i
\(584\) −72.5469 −3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) 7.05437i 0.291165i −0.989346 0.145583i \(-0.953494\pi\)
0.989346 0.145583i \(-0.0465056\pi\)
\(588\) 32.1763 32.1763i 1.32693 1.32693i
\(589\) −6.14559 −0.253225
\(590\) 1.23391 7.51095i 0.0507992 0.309221i
\(591\) 13.9273 + 13.9273i 0.572892 + 0.572892i
\(592\) −16.4744 −0.677092
\(593\) 40.0169i 1.64330i 0.569993 + 0.821649i \(0.306946\pi\)
−0.569993 + 0.821649i \(0.693054\pi\)
\(594\) 27.4951i 1.12814i
\(595\) −0.111166 + 0.676680i −0.00455735 + 0.0277412i
\(596\) −49.4275 + 49.4275i −2.02463 + 2.02463i
\(597\) 12.7909 12.7909i 0.523495 0.523495i
\(598\) 0 0
\(599\) 13.9207i 0.568784i 0.958708 + 0.284392i \(0.0917918\pi\)
−0.958708 + 0.284392i \(0.908208\pi\)
\(600\) 46.5236 23.0352i 1.89932 0.940410i
\(601\) −2.31378 −0.0943812 −0.0471906 0.998886i \(-0.515027\pi\)
−0.0471906 + 0.998886i \(0.515027\pi\)
\(602\) 0.820311 0.820311i 0.0334334 0.0334334i
\(603\) −0.190206 −0.00774580
\(604\) −42.6597 + 42.6597i −1.73580 + 1.73580i
\(605\) −9.86641 13.7454i −0.401127 0.558829i
\(606\) −20.1954 + 20.1954i −0.820381 + 0.820381i
\(607\) 16.6882 + 16.6882i 0.677353 + 0.677353i 0.959400 0.282047i \(-0.0910135\pi\)
−0.282047 + 0.959400i \(0.591014\pi\)
\(608\) 66.8679 + 66.8679i 2.71185 + 2.71185i
\(609\) 0.479621 + 0.479621i 0.0194352 + 0.0194352i
\(610\) −9.61542 13.3957i −0.389317 0.542377i
\(611\) 0 0
\(612\) −12.7726 12.7726i −0.516303 0.516303i
\(613\) 10.6593 0.430524 0.215262 0.976556i \(-0.430939\pi\)
0.215262 + 0.976556i \(0.430939\pi\)
\(614\) 70.3403i 2.83871i
\(615\) 12.7826 9.17533i 0.515445 0.369985i
\(616\) −1.17838 1.17838i −0.0474783 0.0474783i
\(617\) 13.7284i 0.552685i 0.961059 + 0.276343i \(0.0891224\pi\)
−0.961059 + 0.276343i \(0.910878\pi\)
\(618\) 37.5661i 1.51113i
\(619\) −16.8604 16.8604i −0.677679 0.677679i 0.281796 0.959474i \(-0.409070\pi\)
−0.959474 + 0.281796i \(0.909070\pi\)
\(620\) 9.78283 + 1.60714i 0.392888 + 0.0645441i
\(621\) 17.9918i 0.721988i
\(622\) 9.39119 0.376552
\(623\) 0.0452127 + 0.0452127i 0.00181141 + 0.00181141i
\(624\) 0 0
\(625\) −19.8823 15.1557i −0.795292 0.606227i
\(626\) 16.4573 + 16.4573i 0.657766 + 0.657766i
\(627\) −11.8270 11.8270i −0.472324 0.472324i
\(628\) 25.8336 + 25.8336i 1.03087 + 1.03087i
\(629\) −2.84678 + 2.84678i −0.113509 + 0.113509i
\(630\) −0.712670 + 0.511553i −0.0283935 + 0.0203808i
\(631\) 21.6345 21.6345i 0.861257 0.861257i −0.130227 0.991484i \(-0.541571\pi\)
0.991484 + 0.130227i \(0.0415706\pi\)
\(632\) −121.434 −4.83038
\(633\) −21.6601 + 21.6601i −0.860911 + 0.860911i
\(634\) 22.5974 0.897459
\(635\) 4.22953 25.7457i 0.167844 1.02169i
\(636\) 33.0766i 1.31157i
\(637\) 0 0
\(638\) −16.1607 + 16.1607i −0.639807 + 0.639807i
\(639\) −5.10075 + 5.10075i −0.201783 + 0.201783i
\(640\) −11.7707 16.3984i −0.465279 0.648204i
\(641\) 15.2991i 0.604280i −0.953264 0.302140i \(-0.902299\pi\)
0.953264 0.302140i \(-0.0977010\pi\)
\(642\) 25.4452i 1.00424i
\(643\) −22.3480 −0.881319 −0.440660 0.897674i \(-0.645255\pi\)
−0.440660 + 0.897674i \(0.645255\pi\)
\(644\) −1.28154 1.28154i −0.0504999 0.0504999i
\(645\) −9.18116 + 6.59022i −0.361508 + 0.259490i
\(646\) 50.3420 1.98068
\(647\) 3.30644 3.30644i 0.129990 0.129990i −0.639119 0.769108i \(-0.720701\pi\)
0.769108 + 0.639119i \(0.220701\pi\)
\(648\) 26.4949i 1.04082i
\(649\) 2.38033 0.0934361
\(650\) 0 0
\(651\) 0.128662 0.00504265
\(652\) 103.022i 4.03466i
\(653\) 17.3287 17.3287i 0.678124 0.678124i −0.281451 0.959575i \(-0.590816\pi\)
0.959575 + 0.281451i \(0.0908158\pi\)
\(654\) 16.2594 0.635792
\(655\) −13.5583 + 9.73212i −0.529766 + 0.380265i
\(656\) −42.8533 42.8533i −1.67314 1.67314i
\(657\) −11.9428 −0.465934
\(658\) 0.102733i 0.00400494i
\(659\) 40.7382i 1.58693i 0.608613 + 0.793467i \(0.291726\pi\)
−0.608613 + 0.793467i \(0.708274\pi\)
\(660\) 15.7338 + 21.9196i 0.612439 + 0.853219i
\(661\) −12.0900 + 12.0900i −0.470245 + 0.470245i −0.901994 0.431749i \(-0.857897\pi\)
0.431749 + 0.901994i \(0.357897\pi\)
\(662\) −33.7389 + 33.7389i −1.31130 + 1.31130i
\(663\) 0 0
\(664\) 68.3547i 2.65268i
\(665\) 0.283442 1.72535i 0.0109914 0.0669061i
\(666\) −5.15030 −0.199570
\(667\) −10.5750 + 10.5750i −0.409465 + 0.409465i
\(668\) −12.7589 −0.493657
\(669\) −8.92003 + 8.92003i −0.344868 + 0.344868i
\(670\) −0.694709 + 0.498661i −0.0268390 + 0.0192650i
\(671\) 3.64628 3.64628i 0.140763 0.140763i
\(672\) −1.39992 1.39992i −0.0540031 0.0540031i
\(673\) 16.8402 + 16.8402i 0.649140 + 0.649140i 0.952785 0.303645i \(-0.0982037\pi\)
−0.303645 + 0.952785i \(0.598204\pi\)
\(674\) 53.2242 + 53.2242i 2.05012 + 2.05012i
\(675\) 25.0933 12.4245i 0.965842 0.478218i
\(676\) 0 0
\(677\) 26.1344 + 26.1344i 1.00443 + 1.00443i 0.999990 + 0.00443504i \(0.00141172\pi\)
0.00443504 + 0.999990i \(0.498588\pi\)
\(678\) −21.0160 −0.807114
\(679\) 1.68123i 0.0645195i
\(680\) −48.2173 7.92120i −1.84905 0.303764i
\(681\) −8.41509 8.41509i −0.322467 0.322467i
\(682\) 4.33521i 0.166004i
\(683\) 26.7876i 1.02500i 0.858687 + 0.512500i \(0.171280\pi\)
−0.858687 + 0.512500i \(0.828720\pi\)
\(684\) 32.5667 + 32.5667i 1.24522 + 1.24522i
\(685\) −33.5774 + 24.1018i −1.28293 + 0.920882i
\(686\) 4.16397i 0.158981i
\(687\) −22.9770 −0.876628
\(688\) 30.7796 + 30.7796i 1.17346 + 1.17346i
\(689\) 0 0
\(690\) 14.3966 + 20.0566i 0.548068 + 0.763541i
\(691\) −28.5426 28.5426i −1.08581 1.08581i −0.995955 0.0898576i \(-0.971359\pi\)
−0.0898576 0.995955i \(-0.528641\pi\)
\(692\) −0.280123 0.280123i −0.0106487 0.0106487i
\(693\) −0.193987 0.193987i −0.00736896 0.00736896i
\(694\) −13.4464 + 13.4464i −0.510419 + 0.510419i
\(695\) 14.2261 + 19.8190i 0.539626 + 0.751779i
\(696\) −34.1758 + 34.1758i −1.29543 + 1.29543i
\(697\) −14.8102 −0.560976
\(698\) 6.84510 6.84510i 0.259091 0.259091i
\(699\) −21.7602 −0.823047
\(700\) −0.902392 + 2.67236i −0.0341072 + 0.101006i
\(701\) 24.9781i 0.943410i 0.881756 + 0.471705i \(0.156361\pi\)
−0.881756 + 0.471705i \(0.843639\pi\)
\(702\) 0 0
\(703\) 7.25852 7.25852i 0.273760 0.273760i
\(704\) 17.9000 17.9000i 0.674632 0.674632i
\(705\) −0.162240 + 0.987576i −0.00611032 + 0.0371943i
\(706\) 4.67220i 0.175840i
\(707\) 0.933677i 0.0351145i
\(708\) 8.36612 0.314418
\(709\) 7.21640 + 7.21640i 0.271018 + 0.271018i 0.829510 0.558492i \(-0.188620\pi\)
−0.558492 + 0.829510i \(0.688620\pi\)
\(710\) −5.25742 + 32.0025i −0.197307 + 1.20103i
\(711\) −19.9907 −0.749710
\(712\) −3.22166 + 3.22166i −0.120737 + 0.120737i
\(713\) 2.83681i 0.106240i
\(714\) −1.05394 −0.0394428
\(715\) 0 0
\(716\) 106.570 3.98272
\(717\) 33.4118i 1.24779i
\(718\) −22.7354 + 22.7354i −0.848479 + 0.848479i
\(719\) 28.4233 1.06001 0.530005 0.847994i \(-0.322190\pi\)
0.530005 + 0.847994i \(0.322190\pi\)
\(720\) −19.1944 26.7407i −0.715333 0.996566i
\(721\) −0.868382 0.868382i −0.0323402 0.0323402i
\(722\) −78.0130 −2.90334
\(723\) 7.09498i 0.263865i
\(724\) 113.111i 4.20374i
\(725\) 22.0517 + 7.44631i 0.818978 + 0.276549i
\(726\) 18.3879 18.3879i 0.682439 0.682439i
\(727\) −8.56116 + 8.56116i −0.317516 + 0.317516i −0.847812 0.530296i \(-0.822081\pi\)
0.530296 + 0.847812i \(0.322081\pi\)
\(728\) 0 0
\(729\) 26.1513i 0.968566i
\(730\) −43.6199 + 31.3103i −1.61445 + 1.15885i
\(731\) 10.6375 0.393441
\(732\) 12.8156 12.8156i 0.473676 0.473676i
\(733\) 17.2200 0.636036 0.318018 0.948085i \(-0.396983\pi\)
0.318018 + 0.948085i \(0.396983\pi\)
\(734\) −26.2521 + 26.2521i −0.968982 + 0.968982i
\(735\) 3.28499 19.9961i 0.121169 0.737569i
\(736\) 30.8663 30.8663i 1.13775 1.13775i
\(737\) −0.189098 0.189098i −0.00696552 0.00696552i
\(738\) −13.3970 13.3970i −0.493151 0.493151i
\(739\) −11.5296 11.5296i −0.424124 0.424124i 0.462497 0.886621i \(-0.346954\pi\)
−0.886621 + 0.462497i \(0.846954\pi\)
\(740\) −13.4526 + 9.65626i −0.494528 + 0.354971i
\(741\) 0 0
\(742\) 1.06915 + 1.06915i 0.0392498 + 0.0392498i
\(743\) 33.1199 1.21505 0.607525 0.794301i \(-0.292163\pi\)
0.607525 + 0.794301i \(0.292163\pi\)
\(744\) 9.16789i 0.336111i
\(745\) −5.04623 + 30.7170i −0.184879 + 1.12538i
\(746\) 54.1344 + 54.1344i 1.98200 + 1.98200i
\(747\) 11.2527i 0.411714i
\(748\) 25.3965i 0.928586i
\(749\) −0.588194 0.588194i −0.0214921 0.0214921i
\(750\) 18.0313 33.9292i 0.658410 1.23892i
\(751\) 21.9348i 0.800411i −0.916426 0.400205i \(-0.868939\pi\)
0.916426 0.400205i \(-0.131061\pi\)
\(752\) 3.85472 0.140567
\(753\) 11.9843 + 11.9843i 0.436732 + 0.436732i
\(754\) 0 0
\(755\) −4.35528 + 26.5111i −0.158505 + 0.964838i
\(756\) −2.23387 2.23387i −0.0812449 0.0812449i
\(757\) 2.08399 + 2.08399i 0.0757437 + 0.0757437i 0.743964 0.668220i \(-0.232944\pi\)
−0.668220 + 0.743964i \(0.732944\pi\)
\(758\) 17.7563 + 17.7563i 0.644938 + 0.644938i
\(759\) −5.45935 + 5.45935i −0.198162 + 0.198162i
\(760\) 122.941 + 20.1969i 4.45953 + 0.732618i
\(761\) −15.5835 + 15.5835i −0.564901 + 0.564901i −0.930696 0.365794i \(-0.880797\pi\)
0.365794 + 0.930696i \(0.380797\pi\)
\(762\) 40.0993 1.45265
\(763\) −0.375854 + 0.375854i −0.0136068 + 0.0136068i
\(764\) −98.4482 −3.56173
\(765\) −7.93762 1.30400i −0.286985 0.0471463i
\(766\) 55.8361i 2.01744i
\(767\) 0 0
\(768\) −3.12197 + 3.12197i −0.112654 + 0.112654i
\(769\) 14.9366 14.9366i 0.538628 0.538628i −0.384498 0.923126i \(-0.625625\pi\)
0.923126 + 0.384498i \(0.125625\pi\)
\(770\) −1.21709 0.199945i −0.0438609 0.00720553i
\(771\) 22.6303i 0.815011i
\(772\) 83.9143i 3.02014i
\(773\) −18.6956 −0.672435 −0.336217 0.941784i \(-0.609148\pi\)
−0.336217 + 0.941784i \(0.609148\pi\)
\(774\) 9.62245 + 9.62245i 0.345872 + 0.345872i
\(775\) 3.95652 1.95899i 0.142122 0.0703691i
\(776\) −119.797 −4.30046
\(777\) −0.151962 + 0.151962i −0.00545159 + 0.00545159i
\(778\) 0.160259i 0.00574555i
\(779\) 37.7619 1.35296
\(780\) 0 0
\(781\) −10.1421 −0.362912
\(782\) 23.2379i 0.830987i
\(783\) −18.4333 + 18.4333i −0.658752 + 0.658752i
\(784\) −78.0493 −2.78747
\(785\) 16.0544 + 2.63744i 0.573008 + 0.0941344i
\(786\) −18.1376 18.1376i −0.646947 0.646947i
\(787\) 43.3231 1.54430 0.772150 0.635440i \(-0.219181\pi\)
0.772150 + 0.635440i \(0.219181\pi\)
\(788\) 76.2534i 2.71642i
\(789\) 27.0396i 0.962634i
\(790\) −73.0140 + 52.4093i −2.59772 + 1.86464i
\(791\) 0.485808 0.485808i 0.0172733 0.0172733i
\(792\) 13.8227 13.8227i 0.491168 0.491168i
\(793\) 0 0
\(794\) 21.7710i 0.772625i
\(795\) −8.58935 11.9663i −0.304633 0.424399i
\(796\) −70.0314 −2.48220
\(797\) 24.8641 24.8641i 0.880731 0.880731i −0.112877 0.993609i \(-0.536007\pi\)
0.993609 + 0.112877i \(0.0360067\pi\)
\(798\) 2.68726 0.0951280
\(799\) 0.666099 0.666099i 0.0235649 0.0235649i
\(800\) −64.3644 21.7343i −2.27563 0.768424i
\(801\) −0.530356 + 0.530356i −0.0187392 + 0.0187392i
\(802\) −16.8606 16.8606i −0.595367 0.595367i
\(803\) −11.8732 11.8732i −0.418997 0.418997i
\(804\) −0.664622 0.664622i −0.0234394 0.0234394i
\(805\) −0.796423 0.130837i −0.0280702 0.00461141i
\(806\) 0 0
\(807\) −9.69052 9.69052i −0.341122 0.341122i
\(808\) 66.5298 2.34051
\(809\) 20.6437i 0.725792i 0.931830 + 0.362896i \(0.118212\pi\)
−0.931830 + 0.362896i \(0.881788\pi\)
\(810\) 11.4348 + 15.9304i 0.401779 + 0.559738i
\(811\) 22.0471 + 22.0471i 0.774178 + 0.774178i 0.978834 0.204656i \(-0.0656076\pi\)
−0.204656 + 0.978834i \(0.565608\pi\)
\(812\) 2.62598i 0.0921538i
\(813\) 10.2597i 0.359823i
\(814\) −5.12029 5.12029i −0.179466 0.179466i
\(815\) 26.7529 + 37.2708i 0.937114 + 1.30554i
\(816\) 39.5458i 1.38438i
\(817\) −27.1226 −0.948901
\(818\) −67.1180 67.1180i −2.34672 2.34672i
\(819\) 0 0
\(820\) −60.1111 9.87512i −2.09917 0.344854i
\(821\) 25.9495 + 25.9495i 0.905644 + 0.905644i 0.995917 0.0902727i \(-0.0287739\pi\)
−0.0902727 + 0.995917i \(0.528774\pi\)
\(822\) −44.9182 44.9182i −1.56670 1.56670i
\(823\) 16.6935 + 16.6935i 0.581899 + 0.581899i 0.935425 0.353526i \(-0.115017\pi\)
−0.353526 + 0.935425i \(0.615017\pi\)
\(824\) 61.8772 61.8772i 2.15559 2.15559i
\(825\) 11.3842 + 3.84417i 0.396347 + 0.133837i
\(826\) −0.270423 + 0.270423i −0.00940921 + 0.00940921i
\(827\) 4.44429 0.154543 0.0772716 0.997010i \(-0.475379\pi\)
0.0772716 + 0.997010i \(0.475379\pi\)
\(828\) 15.0328 15.0328i 0.522427 0.522427i
\(829\) 29.3369 1.01891 0.509457 0.860496i \(-0.329846\pi\)
0.509457 + 0.860496i \(0.329846\pi\)
\(830\) −29.5010 41.0993i −1.02399 1.42658i
\(831\) 13.2474i 0.459548i
\(832\) 0 0
\(833\) −13.4870 + 13.4870i −0.467296 + 0.467296i
\(834\) −26.5129 + 26.5129i −0.918068 + 0.918068i
\(835\) −4.61585 + 3.31324i −0.159738 + 0.114660i
\(836\) 64.7540i 2.23956i
\(837\) 4.94486i 0.170919i
\(838\) 34.6607 1.19734
\(839\) 6.00111 + 6.00111i 0.207181 + 0.207181i 0.803068 0.595887i \(-0.203199\pi\)
−0.595887 + 0.803068i \(0.703199\pi\)
\(840\) −2.57384 0.422834i −0.0888061 0.0145892i
\(841\) 7.33109 0.252796
\(842\) 36.5466 36.5466i 1.25948 1.25948i
\(843\) 22.8838i 0.788162i
\(844\) 118.591 4.08208
\(845\) 0 0
\(846\) 1.20508 0.0414316
\(847\) 0.850114i 0.0292103i
\(848\) −40.1165 + 40.1165i −1.37761 + 1.37761i
\(849\) 10.7213 0.367955
\(850\) −32.4101 + 16.0472i −1.11166 + 0.550415i
\(851\) −3.35054 3.35054i −0.114855 0.114855i
\(852\) −35.6462 −1.22122
\(853\) 34.3415i 1.17583i −0.808923 0.587915i \(-0.799949\pi\)
0.808923 0.587915i \(-0.200051\pi\)
\(854\) 0.828488i 0.0283503i
\(855\) 20.2388 + 3.32485i 0.692151 + 0.113707i
\(856\) 41.9122 41.9122i 1.43253 1.43253i
\(857\) 24.6090 24.6090i 0.840626 0.840626i −0.148314 0.988940i \(-0.547385\pi\)
0.988940 + 0.148314i \(0.0473847\pi\)
\(858\) 0 0
\(859\) 12.8606i 0.438798i −0.975635 0.219399i \(-0.929590\pi\)
0.975635 0.219399i \(-0.0704097\pi\)
\(860\) 43.1750 + 7.09284i 1.47226 + 0.241864i
\(861\) −0.790569 −0.0269425
\(862\) 41.6308 41.6308i 1.41795 1.41795i
\(863\) 2.75373 0.0937379 0.0468690 0.998901i \(-0.485076\pi\)
0.0468690 + 0.998901i \(0.485076\pi\)
\(864\) 53.8032 53.8032i 1.83042 1.83042i
\(865\) −0.174084 0.0285987i −0.00591903 0.000972386i
\(866\) 0.343907 0.343907i 0.0116864 0.0116864i
\(867\) 8.75709 + 8.75709i 0.297406 + 0.297406i
\(868\) −0.352219 0.352219i −0.0119551 0.0119551i
\(869\) −19.8742 19.8742i −0.674187 0.674187i
\(870\) −5.79888 + 35.2985i −0.196601 + 1.19673i
\(871\) 0 0
\(872\) −26.7817 26.7817i −0.906944 0.906944i
\(873\) −19.7212 −0.667462
\(874\) 59.2504i 2.00417i
\(875\) 0.367499 + 1.20113i 0.0124237 + 0.0406055i
\(876\) −41.7308 41.7308i −1.40995 1.40995i
\(877\) 47.2631i 1.59596i 0.602683 + 0.797981i \(0.294098\pi\)
−0.602683 + 0.797981i \(0.705902\pi\)
\(878\) 45.8239i 1.54648i
\(879\) 5.84953 + 5.84953i 0.197300 + 0.197300i
\(880\) 7.50231 45.6675i 0.252903 1.53945i
\(881\) 41.3214i 1.39215i −0.717967 0.696077i \(-0.754927\pi\)
0.717967 0.696077i \(-0.245073\pi\)
\(882\) −24.4001 −0.821596
\(883\) 13.4808 + 13.4808i 0.453666 + 0.453666i 0.896569 0.442903i \(-0.146051\pi\)
−0.442903 + 0.896569i \(0.646051\pi\)
\(884\) 0 0
\(885\) 3.02665 2.17252i 0.101740 0.0730285i
\(886\) −64.7790 64.7790i −2.17629 2.17629i
\(887\) 16.2104 + 16.2104i 0.544292 + 0.544292i 0.924784 0.380492i \(-0.124246\pi\)
−0.380492 + 0.924784i \(0.624246\pi\)
\(888\) −10.8281 10.8281i −0.363368 0.363368i
\(889\) −0.926941 + 0.926941i −0.0310886 + 0.0310886i
\(890\) −0.546646 + 3.32750i −0.0183236 + 0.111538i
\(891\) −4.33622 + 4.33622i −0.145269 + 0.145269i
\(892\) 48.8381 1.63522
\(893\) −1.69837 + 1.69837i −0.0568338 + 0.0568338i
\(894\) −47.8423 −1.60008
\(895\) 38.5544 27.6743i 1.28873 0.925048i
\(896\) 1.01420i 0.0338819i
\(897\) 0 0
\(898\) −69.6712 + 69.6712i −2.32496 + 2.32496i
\(899\) −2.90642 + 2.90642i −0.0969345 + 0.0969345i
\(900\) −31.3475 10.5853i −1.04492 0.352843i
\(901\) 13.8643i 0.461888i
\(902\) 26.6379i 0.886946i
\(903\) 0.567829 0.0188962
\(904\) 34.6166 + 34.6166i 1.15133 + 1.15133i
\(905\) −29.3728 40.9207i −0.976384 1.36025i
\(906\) −41.2916 −1.37182
\(907\) −17.0541 + 17.0541i −0.566271 + 0.566271i −0.931082 0.364811i \(-0.881134\pi\)
0.364811 + 0.931082i \(0.381134\pi\)
\(908\) 46.0735i 1.52900i
\(909\) 10.9523 0.363264
\(910\) 0 0
\(911\) 58.5135 1.93864 0.969320 0.245803i \(-0.0790515\pi\)
0.969320 + 0.245803i \(0.0790515\pi\)
\(912\) 100.831i 3.33884i
\(913\) 11.1871 11.1871i 0.370240 0.370240i
\(914\) −24.9790 −0.826231
\(915\) 1.30838 7.96429i 0.0432538 0.263291i
\(916\) 62.9008 + 62.9008i 2.07830 + 2.07830i
\(917\) 0.838543 0.0276911
\(918\) 40.5061i 1.33690i
\(919\) 44.8545i 1.47961i 0.672820 + 0.739806i \(0.265083\pi\)
−0.672820 + 0.739806i \(0.734917\pi\)
\(920\) 9.32291 56.7497i 0.307367 1.87098i
\(921\) 24.3452 24.3452i 0.802202 0.802202i
\(922\) 61.6169 61.6169i 2.02924 2.02924i
\(923\) 0 0
\(924\) 1.35567i 0.0445981i
\(925\) −2.35926 + 6.98677i −0.0775721 + 0.229724i
\(926\) 49.4787 1.62597
\(927\) 10.1863 10.1863i 0.334563 0.334563i
\(928\) 63.2473 2.07619
\(929\) −19.8452 + 19.8452i −0.651099 + 0.651099i −0.953258 0.302158i \(-0.902293\pi\)
0.302158 + 0.953258i \(0.402293\pi\)
\(930\) 3.95674 + 5.51233i 0.129747 + 0.180756i
\(931\) 34.3881 34.3881i 1.12702 1.12702i
\(932\) 59.5698 + 59.5698i 1.95127 + 1.95127i
\(933\) 3.25035 + 3.25035i 0.106412 + 0.106412i
\(934\) 32.2416 + 32.2416i 1.05498 + 1.05498i
\(935\) −6.59497 9.18779i −0.215679 0.300473i
\(936\) 0 0
\(937\) 20.7545 + 20.7545i 0.678019 + 0.678019i 0.959552 0.281533i \(-0.0908428\pi\)
−0.281533 + 0.959552i \(0.590843\pi\)
\(938\) 0.0429658 0.00140288
\(939\) 11.3919i 0.371762i
\(940\) 3.14768 2.25940i 0.102666 0.0736935i
\(941\) 6.70533 + 6.70533i 0.218588 + 0.218588i 0.807903 0.589315i \(-0.200602\pi\)
−0.589315 + 0.807903i \(0.700602\pi\)
\(942\) 25.0051i 0.814710i
\(943\) 17.4309i 0.567630i
\(944\) −10.1467 10.1467i −0.330249 0.330249i
\(945\) −1.38825 0.228063i −0.0451597 0.00741889i
\(946\) 19.1328i 0.622061i
\(947\) −4.51085 −0.146583 −0.0732915 0.997311i \(-0.523350\pi\)
−0.0732915 + 0.997311i \(0.523350\pi\)
\(948\) −69.8518 69.8518i −2.26868 2.26868i
\(949\) 0 0
\(950\) 82.6367 40.9160i 2.68109 1.32749i
\(951\) 7.82111 + 7.82111i 0.253617 + 0.253617i
\(952\) 1.73600 + 1.73600i 0.0562642 + 0.0562642i
\(953\) −4.06109 4.06109i −0.131552 0.131552i 0.638265 0.769817i \(-0.279652\pi\)
−0.769817 + 0.638265i \(0.779652\pi\)
\(954\) −12.5414 + 12.5414i −0.406043 + 0.406043i
\(955\) −35.6160 + 25.5651i −1.15251 + 0.827268i
\(956\) −91.4666 + 91.4666i −2.95824 + 2.95824i
\(957\) −11.1866 −0.361612
\(958\) −61.7624 + 61.7624i −1.99545 + 1.99545i
\(959\) 2.07667 0.0670591
\(960\) 6.42300 39.0976i 0.207302 1.26187i
\(961\) 30.2203i 0.974849i
\(962\) 0 0
\(963\) 6.89966 6.89966i 0.222338 0.222338i
\(964\) 19.4229 19.4229i 0.625569 0.625569i
\(965\) −21.7909 30.3581i −0.701475 0.977260i
\(966\) 1.24044i 0.0399106i
\(967\) 17.6414i 0.567310i 0.958926 + 0.283655i \(0.0915470\pi\)
−0.958926 + 0.283655i \(0.908453\pi\)
\(968\) −60.5755 −1.94697
\(969\) 17.4237 + 17.4237i 0.559729 + 0.559729i
\(970\) −72.0297 + 51.7028i −2.31273 + 1.66008i
\(971\) 33.3973 1.07177 0.535886 0.844290i \(-0.319978\pi\)
0.535886 + 0.844290i \(0.319978\pi\)
\(972\) 44.4099 44.4099i 1.42445 1.42445i
\(973\) 1.22575i 0.0392958i
\(974\) −87.4056 −2.80065
\(975\) 0 0
\(976\) −31.0864 −0.995050
\(977\) 15.3443i 0.490909i 0.969408 + 0.245454i \(0.0789371\pi\)
−0.969408 + 0.245454i \(0.921063\pi\)
\(978\) −49.8591 + 49.8591i −1.59432 + 1.59432i
\(979\) −1.05453 −0.0337030
\(980\) −63.7334 + 45.7477i −2.03589 + 1.46136i
\(981\) −4.40886 4.40886i −0.140764 0.140764i
\(982\) 56.4286 1.80071
\(983\) 4.80751i 0.153336i −0.997057 0.0766679i \(-0.975572\pi\)
0.997057 0.0766679i \(-0.0244281\pi\)
\(984\) 56.3325i 1.79582i
\(985\) −19.8016 27.5865i −0.630930 0.878980i
\(986\) 23.8081 23.8081i 0.758205 0.758205i
\(987\) 0.0355565 0.0355565i 0.00113177 0.00113177i
\(988\) 0 0
\(989\) 12.5198i 0.398108i
\(990\) 2.34541 14.2768i 0.0745420 0.453746i
\(991\) 0.439117 0.0139490 0.00697450 0.999976i \(-0.497780\pi\)
0.00697450 + 0.999976i \(0.497780\pi\)
\(992\) 8.48327 8.48327i 0.269344 0.269344i
\(993\) −23.3545 −0.741131
\(994\) 1.15221 1.15221i 0.0365459 0.0365459i
\(995\) −25.3355 + 18.1858i −0.803191 + 0.576529i
\(996\) 39.3193 39.3193i 1.24588 1.24588i
\(997\) −4.64457 4.64457i −0.147095 0.147095i 0.629724 0.776819i \(-0.283168\pi\)
−0.776819 + 0.629724i \(0.783168\pi\)
\(998\) −39.5340 39.5340i −1.25143 1.25143i
\(999\) −5.84034 5.84034i −0.184780 0.184780i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.d.437.1 20
5.3 odd 4 845.2.k.d.268.1 20
13.2 odd 12 845.2.o.f.357.5 20
13.3 even 3 845.2.t.g.657.5 20
13.4 even 6 845.2.t.f.427.5 20
13.5 odd 4 845.2.k.d.577.1 20
13.6 odd 12 845.2.o.g.587.5 20
13.7 odd 12 65.2.o.a.2.1 20
13.8 odd 4 845.2.k.e.577.10 20
13.9 even 3 845.2.t.e.427.1 20
13.10 even 6 65.2.t.a.7.1 yes 20
13.11 odd 12 845.2.o.e.357.1 20
13.12 even 2 845.2.f.e.437.10 20
39.20 even 12 585.2.cf.a.262.5 20
39.23 odd 6 585.2.dp.a.397.5 20
65.3 odd 12 845.2.o.g.488.5 20
65.7 even 12 325.2.x.b.93.5 20
65.8 even 4 845.2.f.e.408.1 20
65.18 even 4 inner 845.2.f.d.408.10 20
65.23 odd 12 65.2.o.a.33.1 yes 20
65.28 even 12 845.2.t.e.188.1 20
65.33 even 12 65.2.t.a.28.1 yes 20
65.38 odd 4 845.2.k.e.268.10 20
65.43 odd 12 845.2.o.e.258.1 20
65.48 odd 12 845.2.o.f.258.5 20
65.49 even 6 325.2.x.b.7.5 20
65.58 even 12 845.2.t.g.418.5 20
65.59 odd 12 325.2.s.b.132.5 20
65.62 odd 12 325.2.s.b.293.5 20
65.63 even 12 845.2.t.f.188.5 20
195.23 even 12 585.2.cf.a.163.5 20
195.98 odd 12 585.2.dp.a.28.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.1 20 13.7 odd 12
65.2.o.a.33.1 yes 20 65.23 odd 12
65.2.t.a.7.1 yes 20 13.10 even 6
65.2.t.a.28.1 yes 20 65.33 even 12
325.2.s.b.132.5 20 65.59 odd 12
325.2.s.b.293.5 20 65.62 odd 12
325.2.x.b.7.5 20 65.49 even 6
325.2.x.b.93.5 20 65.7 even 12
585.2.cf.a.163.5 20 195.23 even 12
585.2.cf.a.262.5 20 39.20 even 12
585.2.dp.a.28.5 20 195.98 odd 12
585.2.dp.a.397.5 20 39.23 odd 6
845.2.f.d.408.10 20 65.18 even 4 inner
845.2.f.d.437.1 20 1.1 even 1 trivial
845.2.f.e.408.1 20 65.8 even 4
845.2.f.e.437.10 20 13.12 even 2
845.2.k.d.268.1 20 5.3 odd 4
845.2.k.d.577.1 20 13.5 odd 4
845.2.k.e.268.10 20 65.38 odd 4
845.2.k.e.577.10 20 13.8 odd 4
845.2.o.e.258.1 20 65.43 odd 12
845.2.o.e.357.1 20 13.11 odd 12
845.2.o.f.258.5 20 65.48 odd 12
845.2.o.f.357.5 20 13.2 odd 12
845.2.o.g.488.5 20 65.3 odd 12
845.2.o.g.587.5 20 13.6 odd 12
845.2.t.e.188.1 20 65.28 even 12
845.2.t.e.427.1 20 13.9 even 3
845.2.t.f.188.5 20 65.63 even 12
845.2.t.f.427.5 20 13.4 even 6
845.2.t.g.418.5 20 65.58 even 12
845.2.t.g.657.5 20 13.3 even 3