Properties

Label 3267.1.i.a
Level $3267$
Weight $1$
Character orbit 3267.i
Analytic conductor $1.630$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,1,Mod(1574,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.1574");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.63044539627\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1089)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.26198073.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6}^{2} q^{4} + ( - \zeta_{6} - 1) q^{5}+O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{6}^{2} q^{4} + ( - \zeta_{6} - 1) q^{5} - \zeta_{6} q^{16} + ( - \zeta_{6}^{2} + 1) q^{20} + (\zeta_{6}^{2} + \zeta_{6} + 1) q^{25} + \zeta_{6}^{2} q^{31} + q^{37} + ( - \zeta_{6}^{2} + 1) q^{47} - \zeta_{6}^{2} q^{49} + (\zeta_{6}^{2} + \zeta_{6}) q^{53} + (\zeta_{6} + 1) q^{59} + q^{64} + \zeta_{6}^{2} q^{67} + (\zeta_{6}^{2} + \zeta_{6}) q^{71} + (\zeta_{6}^{2} + \zeta_{6}) q^{80} + \zeta_{6} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{4} - 3 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{4} - 3 q^{5} - q^{16} + 3 q^{20} + 2 q^{25} - q^{31} + 2 q^{37} + 3 q^{47} + q^{49} + 3 q^{59} + 2 q^{64} - q^{67} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3267\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(3026\)
\(\chi(n)\) \(1\) \(-\zeta_{6}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1574.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 −0.500000 0.866025i −1.50000 + 0.866025i 0 0 0 0 0
2663.1 0 0 −0.500000 + 0.866025i −1.50000 0.866025i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
9.d odd 6 1 inner
99.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3267.1.i.a 2
3.b odd 2 1 1089.1.i.a 2
9.c even 3 1 1089.1.i.a 2
9.d odd 6 1 inner 3267.1.i.a 2
11.b odd 2 1 CM 3267.1.i.a 2
11.c even 5 4 3267.1.v.a 8
11.d odd 10 4 3267.1.v.a 8
33.d even 2 1 1089.1.i.a 2
33.f even 10 4 1089.1.r.a 8
33.h odd 10 4 1089.1.r.a 8
99.g even 6 1 inner 3267.1.i.a 2
99.h odd 6 1 1089.1.i.a 2
99.m even 15 4 1089.1.r.a 8
99.n odd 30 4 3267.1.v.a 8
99.o odd 30 4 1089.1.r.a 8
99.p even 30 4 3267.1.v.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1089.1.i.a 2 3.b odd 2 1
1089.1.i.a 2 9.c even 3 1
1089.1.i.a 2 33.d even 2 1
1089.1.i.a 2 99.h odd 6 1
1089.1.r.a 8 33.f even 10 4
1089.1.r.a 8 33.h odd 10 4
1089.1.r.a 8 99.m even 15 4
1089.1.r.a 8 99.o odd 30 4
3267.1.i.a 2 1.a even 1 1 trivial
3267.1.i.a 2 9.d odd 6 1 inner
3267.1.i.a 2 11.b odd 2 1 CM
3267.1.i.a 2 99.g even 6 1 inner
3267.1.v.a 8 11.c even 5 4
3267.1.v.a 8 11.d odd 10 4
3267.1.v.a 8 99.n odd 30 4
3267.1.v.a 8 99.p even 30 4

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3267, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$53$ \( T^{2} + 3 \) Copy content Toggle raw display
$59$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} + 3 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less