Properties

Label 3276.2.bi.c.2449.7
Level 32763276
Weight 22
Character 3276.2449
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1945,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1945");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.bi (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(i)\Q(i)
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+36x14+472x12+2912x10+8914x8+13164x6+8828x4+2648x2+289 x^{16} + 36x^{14} + 472x^{12} + 2912x^{10} + 8914x^{8} + 13164x^{6} + 8828x^{4} + 2648x^{2} + 289 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Embedding invariants

Embedding label 2449.7
Root 1.36847i-1.36847i of defining polynomial
Character χ\chi == 3276.2449
Dual form 3276.2.bi.c.1945.7

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.64651+1.64651i)q5+(2.603860.468972i)q7+(2.25755+2.25755i)q11+(2.846802.21262i)q13+0.368467q17+(3.979043.97904i)q19+1.42196iq23+0.421962iq254.07283q29+(1.278041.27804i)q31+(3.515105.05943i)q35+(2.466142.46614i)q37+(6.191666.19166i)q41+2.85946iq43+(1.71457+1.71457i)q47+(6.56013+2.44227i)q49+5.15043q53+7.43413iq55+(0.539283+0.539283i)q598.98662iq61+(1.044188.33038i)q65+(5.51510+5.51510i)q67+(6.965706.96570i)q71+(3.215273.21527i)q73+(4.819616.93706i)q773.28619q79+(12.133812.1338i)q83+(0.606683+0.606683i)q85+(6.35280+6.35280i)q89+(6.37501+7.09642i)q9113.1030iq95+(3.00228+3.00228i)q97+O(q100)q+(1.64651 + 1.64651i) q^{5} +(-2.60386 - 0.468972i) q^{7} +(2.25755 + 2.25755i) q^{11} +(-2.84680 - 2.21262i) q^{13} +0.368467 q^{17} +(-3.97904 - 3.97904i) q^{19} +1.42196i q^{23} +0.421962i q^{25} -4.07283 q^{29} +(-1.27804 - 1.27804i) q^{31} +(-3.51510 - 5.05943i) q^{35} +(-2.46614 - 2.46614i) q^{37} +(-6.19166 - 6.19166i) q^{41} +2.85946i q^{43} +(-1.71457 + 1.71457i) q^{47} +(6.56013 + 2.44227i) q^{49} +5.15043 q^{53} +7.43413i q^{55} +(-0.539283 + 0.539283i) q^{59} -8.98662i q^{61} +(-1.04418 - 8.33038i) q^{65} +(-5.51510 + 5.51510i) q^{67} +(6.96570 - 6.96570i) q^{71} +(3.21527 - 3.21527i) q^{73} +(-4.81961 - 6.93706i) q^{77} -3.28619 q^{79} +(-12.1338 - 12.1338i) q^{83} +(0.606683 + 0.606683i) q^{85} +(-6.35280 + 6.35280i) q^{89} +(6.37501 + 7.09642i) q^{91} -13.1030i q^{95} +(3.00228 + 3.00228i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q712q1120q29+40q3528q53+20q65+8q67+4q71+4q79+4q85+10q91+O(q100) 16 q - 2 q^{7} - 12 q^{11} - 20 q^{29} + 40 q^{35} - 28 q^{53} + 20 q^{65} + 8 q^{67} + 4 q^{71} + 4 q^{79} + 4 q^{85} + 10 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 e(34)e\left(\frac{3}{4}\right) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 1.64651 + 1.64651i 0.736340 + 0.736340i 0.971868 0.235528i 0.0756819π-0.0756819\pi
−0.235528 + 0.971868i 0.575682π0.575682\pi
66 0 0
77 −2.60386 0.468972i −0.984165 0.177255i
88 0 0
99 0 0
1010 0 0
1111 2.25755 + 2.25755i 0.680677 + 0.680677i 0.960153 0.279476i 0.0901607π-0.0901607\pi
−0.279476 + 0.960153i 0.590161π0.590161\pi
1212 0 0
1313 −2.84680 2.21262i −0.789562 0.613671i
1414 0 0
1515 0 0
1616 0 0
1717 0.368467 0.0893664 0.0446832 0.999001i 0.485772π-0.485772\pi
0.0446832 + 0.999001i 0.485772π0.485772\pi
1818 0 0
1919 −3.97904 3.97904i −0.912854 0.912854i 0.0836415 0.996496i 0.473345π-0.473345\pi
−0.996496 + 0.0836415i 0.973345π0.973345\pi
2020 0 0
2121 0 0
2222 0 0
2323 1.42196i 0.296499i 0.988950 + 0.148250i 0.0473639π0.0473639\pi
−0.988950 + 0.148250i 0.952636π0.952636\pi
2424 0 0
2525 0.421962i 0.0843923i
2626 0 0
2727 0 0
2828 0 0
2929 −4.07283 −0.756305 −0.378153 0.925743i 0.623441π-0.623441\pi
−0.378153 + 0.925743i 0.623441π0.623441\pi
3030 0 0
3131 −1.27804 1.27804i −0.229543 0.229543i 0.582959 0.812502i 0.301895π-0.301895\pi
−0.812502 + 0.582959i 0.801895π0.801895\pi
3232 0 0
3333 0 0
3434 0 0
3535 −3.51510 5.05943i −0.594160 0.855199i
3636 0 0
3737 −2.46614 2.46614i −0.405432 0.405432i 0.474710 0.880142i 0.342553π-0.342553\pi
−0.880142 + 0.474710i 0.842553π0.842553\pi
3838 0 0
3939 0 0
4040 0 0
4141 −6.19166 6.19166i −0.966975 0.966975i 0.0324964 0.999472i 0.489654π-0.489654\pi
−0.999472 + 0.0324964i 0.989654π0.989654\pi
4242 0 0
4343 2.85946i 0.436064i 0.975942 + 0.218032i 0.0699637π0.0699637\pi
−0.975942 + 0.218032i 0.930036π0.930036\pi
4444 0 0
4545 0 0
4646 0 0
4747 −1.71457 + 1.71457i −0.250096 + 0.250096i −0.821010 0.570914i 0.806589π-0.806589\pi
0.570914 + 0.821010i 0.306589π0.306589\pi
4848 0 0
4949 6.56013 + 2.44227i 0.937162 + 0.348896i
5050 0 0
5151 0 0
5252 0 0
5353 5.15043 0.707465 0.353733 0.935347i 0.384912π-0.384912\pi
0.353733 + 0.935347i 0.384912π0.384912\pi
5454 0 0
5555 7.43413i 1.00242i
5656 0 0
5757 0 0
5858 0 0
5959 −0.539283 + 0.539283i −0.0702087 + 0.0702087i −0.741339 0.671131i 0.765809π-0.765809\pi
0.671131 + 0.741339i 0.265809π0.265809\pi
6060 0 0
6161 8.98662i 1.15062i −0.817936 0.575309i 0.804882π-0.804882\pi
0.817936 0.575309i 0.195118π-0.195118\pi
6262 0 0
6363 0 0
6464 0 0
6565 −1.04418 8.33038i −0.129515 1.03326i
6666 0 0
6767 −5.51510 + 5.51510i −0.673777 + 0.673777i −0.958585 0.284808i 0.908070π-0.908070\pi
0.284808 + 0.958585i 0.408070π0.408070\pi
6868 0 0
6969 0 0
7070 0 0
7171 6.96570 6.96570i 0.826677 0.826677i −0.160379 0.987056i 0.551272π-0.551272\pi
0.987056 + 0.160379i 0.0512715π0.0512715\pi
7272 0 0
7373 3.21527 3.21527i 0.376319 0.376319i −0.493453 0.869772i 0.664266π-0.664266\pi
0.869772 + 0.493453i 0.164266π0.164266\pi
7474 0 0
7575 0 0
7676 0 0
7777 −4.81961 6.93706i −0.549245 0.790551i
7878 0 0
7979 −3.28619 −0.369726 −0.184863 0.982764i 0.559184π-0.559184\pi
−0.184863 + 0.982764i 0.559184π0.559184\pi
8080 0 0
8181 0 0
8282 0 0
8383 −12.1338 12.1338i −1.33186 1.33186i −0.903705 0.428156i 0.859163π-0.859163\pi
−0.428156 0.903705i 0.640837π-0.640837\pi
8484 0 0
8585 0.606683 + 0.606683i 0.0658040 + 0.0658040i
8686 0 0
8787 0 0
8888 0 0
8989 −6.35280 + 6.35280i −0.673396 + 0.673396i −0.958497 0.285101i 0.907973π-0.907973\pi
0.285101 + 0.958497i 0.407973π0.407973\pi
9090 0 0
9191 6.37501 + 7.09642i 0.668283 + 0.743907i
9292 0 0
9393 0 0
9494 0 0
9595 13.1030i 1.34434i
9696 0 0
9797 3.00228 + 3.00228i 0.304836 + 0.304836i 0.842902 0.538067i 0.180845π-0.180845\pi
−0.538067 + 0.842902i 0.680845π0.680845\pi
9898 0 0
9999 0 0
100100 0 0
101101 −11.8594 −1.18005 −0.590026 0.807384i 0.700883π-0.700883\pi
−0.590026 + 0.807384i 0.700883π0.700883\pi
102102 0 0
103103 −8.85049 −0.872065 −0.436033 0.899931i 0.643617π-0.643617\pi
−0.436033 + 0.899931i 0.643617π0.643617\pi
104104 0 0
105105 0 0
106106 0 0
107107 −4.42708 −0.427982 −0.213991 0.976836i 0.568646π-0.568646\pi
−0.213991 + 0.976836i 0.568646π0.568646\pi
108108 0 0
109109 14.1317 14.1317i 1.35357 1.35357i 0.471935 0.881633i 0.343556π-0.343556\pi
0.881633 0.471935i 0.156444π-0.156444\pi
110110 0 0
111111 0 0
112112 0 0
113113 14.0350 1.32030 0.660149 0.751134i 0.270493π-0.270493\pi
0.660149 + 0.751134i 0.270493π0.270493\pi
114114 0 0
115115 −2.34127 + 2.34127i −0.218324 + 0.218324i
116116 0 0
117117 0 0
118118 0 0
119119 −0.959435 0.172801i −0.0879512 0.0158406i
120120 0 0
121121 0.806943i 0.0733585i
122122 0 0
123123 0 0
124124 0 0
125125 7.53777 7.53777i 0.674198 0.674198i
126126 0 0
127127 16.2535i 1.44226i −0.692800 0.721130i 0.743623π-0.743623\pi
0.692800 0.721130i 0.256377π-0.256377\pi
128128 0 0
129129 0 0
130130 0 0
131131 19.3953i 1.69458i 0.531133 + 0.847289i 0.321767π0.321767\pi
−0.531133 + 0.847289i 0.678233π0.678233\pi
132132 0 0
133133 8.49479 + 12.2269i 0.736592 + 1.06021i
134134 0 0
135135 0 0
136136 0 0
137137 −2.69982 2.69982i −0.230661 0.230661i 0.582307 0.812969i 0.302150π-0.302150\pi
−0.812969 + 0.582307i 0.802150π0.802150\pi
138138 0 0
139139 1.65618i 0.140475i −0.997530 0.0702377i 0.977624π-0.977624\pi
0.997530 0.0702377i 0.0223758π-0.0223758\pi
140140 0 0
141141 0 0
142142 0 0
143143 −1.43170 11.4219i −0.119724 0.955148i
144144 0 0
145145 −6.70593 6.70593i −0.556897 0.556897i
146146 0 0
147147 0 0
148148 0 0
149149 10.6118 10.6118i 0.869353 0.869353i −0.123048 0.992401i 0.539267π-0.539267\pi
0.992401 + 0.123048i 0.0392670π0.0392670\pi
150150 0 0
151151 5.91319 + 5.91319i 0.481208 + 0.481208i 0.905517 0.424309i 0.139483π-0.139483\pi
−0.424309 + 0.905517i 0.639483π0.639483\pi
152152 0 0
153153 0 0
154154 0 0
155155 4.20860i 0.338043i
156156 0 0
157157 11.9648i 0.954898i −0.878660 0.477449i 0.841562π-0.841562\pi
0.878660 0.477449i 0.158438π-0.158438\pi
158158 0 0
159159 0 0
160160 0 0
161161 0.666860 3.70258i 0.0525559 0.291804i
162162 0 0
163163 −12.2388 12.2388i −0.958616 0.958616i 0.0405609 0.999177i 0.487086π-0.487086\pi
−0.999177 + 0.0405609i 0.987086π0.987086\pi
164164 0 0
165165 0 0
166166 0 0
167167 −15.7272 + 15.7272i −1.21701 + 1.21701i −0.248337 + 0.968674i 0.579884π0.579884\pi
−0.968674 + 0.248337i 0.920116π0.920116\pi
168168 0 0
169169 3.20860 + 12.5978i 0.246815 + 0.969063i
170170 0 0
171171 0 0
172172 0 0
173173 13.1471 0.999555 0.499778 0.866154i 0.333415π-0.333415\pi
0.499778 + 0.866154i 0.333415π0.333415\pi
174174 0 0
175175 0.197888 1.09873i 0.0149589 0.0830559i
176176 0 0
177177 0 0
178178 0 0
179179 15.1508i 1.13242i 0.824260 + 0.566211i 0.191591π0.191591\pi
−0.824260 + 0.566211i 0.808409π0.808409\pi
180180 0 0
181181 −26.4016 −1.96242 −0.981208 0.192955i 0.938193π-0.938193\pi
−0.981208 + 0.192955i 0.938193π0.938193\pi
182182 0 0
183183 0 0
184184 0 0
185185 8.12104i 0.597071i
186186 0 0
187187 0.831832 + 0.831832i 0.0608296 + 0.0608296i
188188 0 0
189189 0 0
190190 0 0
191191 −12.2814 −0.888653 −0.444326 0.895865i 0.646557π-0.646557\pi
−0.444326 + 0.895865i 0.646557π0.646557\pi
192192 0 0
193193 −9.98958 9.98958i −0.719066 0.719066i 0.249348 0.968414i 0.419784π-0.419784\pi
−0.968414 + 0.249348i 0.919784π0.919784\pi
194194 0 0
195195 0 0
196196 0 0
197197 −13.4522 + 13.4522i −0.958427 + 0.958427i −0.999170 0.0407431i 0.987027π-0.987027\pi
0.0407431 + 0.999170i 0.487027π0.487027\pi
198198 0 0
199199 −20.2609 −1.43626 −0.718129 0.695910i 0.755001π-0.755001\pi
−0.718129 + 0.695910i 0.755001π0.755001\pi
200200 0 0
201201 0 0
202202 0 0
203203 10.6051 + 1.91004i 0.744329 + 0.134059i
204204 0 0
205205 20.3892i 1.42404i
206206 0 0
207207 0 0
208208 0 0
209209 17.9658i 1.24272i
210210 0 0
211211 27.4417 1.88917 0.944584 0.328271i 0.106466π-0.106466\pi
0.944584 + 0.328271i 0.106466π0.106466\pi
212212 0 0
213213 0 0
214214 0 0
215215 −4.70812 + 4.70812i −0.321091 + 0.321091i
216216 0 0
217217 2.72846 + 3.92719i 0.185220 + 0.266595i
218218 0 0
219219 0 0
220220 0 0
221221 −1.04895 0.815279i −0.0705602 0.0548416i
222222 0 0
223223 3.04351 + 3.04351i 0.203809 + 0.203809i 0.801630 0.597821i 0.203967π-0.203967\pi
−0.597821 + 0.801630i 0.703967π0.703967\pi
224224 0 0
225225 0 0
226226 0 0
227227 7.11475 + 7.11475i 0.472223 + 0.472223i 0.902633 0.430411i 0.141631π-0.141631\pi
−0.430411 + 0.902633i 0.641631π0.641631\pi
228228 0 0
229229 1.56971 1.56971i 0.103729 0.103729i −0.653337 0.757067i 0.726632π-0.726632\pi
0.757067 + 0.653337i 0.226632π0.226632\pi
230230 0 0
231231 0 0
232232 0 0
233233 5.15077i 0.337438i −0.985664 0.168719i 0.946037π-0.946037\pi
0.985664 0.168719i 0.0539631π-0.0539631\pi
234234 0 0
235235 −5.64610 −0.368311
236236 0 0
237237 0 0
238238 0 0
239239 9.51510 9.51510i 0.615481 0.615481i −0.328888 0.944369i 0.606674π-0.606674\pi
0.944369 + 0.328888i 0.106674π0.106674\pi
240240 0 0
241241 17.6376 17.6376i 1.13614 1.13614i 0.147005 0.989136i 0.453037π-0.453037\pi
0.989136 0.147005i 0.0469632π-0.0469632\pi
242242 0 0
243243 0 0
244244 0 0
245245 6.78008 + 14.8225i 0.433163 + 0.946975i
246246 0 0
247247 2.52343 + 20.1317i 0.160562 + 1.28095i
248248 0 0
249249 0 0
250250 0 0
251251 −7.29977 −0.460757 −0.230379 0.973101i 0.573996π-0.573996\pi
−0.230379 + 0.973101i 0.573996π0.573996\pi
252252 0 0
253253 −3.21015 + 3.21015i −0.201820 + 0.201820i
254254 0 0
255255 0 0
256256 0 0
257257 −4.24293 −0.264667 −0.132333 0.991205i 0.542247π-0.542247\pi
−0.132333 + 0.991205i 0.542247π0.542247\pi
258258 0 0
259259 5.26493 + 7.57804i 0.327147 + 0.470876i
260260 0 0
261261 0 0
262262 0 0
263263 −14.0926 −0.868987 −0.434494 0.900675i 0.643073π-0.643073\pi
−0.434494 + 0.900675i 0.643073π0.643073\pi
264264 0 0
265265 8.48020 + 8.48020i 0.520935 + 0.520935i
266266 0 0
267267 0 0
268268 0 0
269269 16.9965i 1.03629i −0.855292 0.518147i 0.826622π-0.826622\pi
0.855292 0.518147i 0.173378π-0.173378\pi
270270 0 0
271271 9.85314 9.85314i 0.598536 0.598536i −0.341387 0.939923i 0.610897π-0.610897\pi
0.939923 + 0.341387i 0.110897π0.110897\pi
272272 0 0
273273 0 0
274274 0 0
275275 −0.952599 + 0.952599i −0.0574439 + 0.0574439i
276276 0 0
277277 2.13012i 0.127986i 0.997950 + 0.0639932i 0.0203836π0.0203836\pi
−0.997950 + 0.0639932i 0.979616π0.979616\pi
278278 0 0
279279 0 0
280280 0 0
281281 7.26232 + 7.26232i 0.433234 + 0.433234i 0.889727 0.456493i 0.150895π-0.150895\pi
−0.456493 + 0.889727i 0.650895π0.650895\pi
282282 0 0
283283 −13.5156 −0.803417 −0.401708 0.915768i 0.631583π-0.631583\pi
−0.401708 + 0.915768i 0.631583π0.631583\pi
284284 0 0
285285 0 0
286286 0 0
287287 13.2185 + 19.0259i 0.780262 + 1.12306i
288288 0 0
289289 −16.8642 −0.992014
290290 0 0
291291 0 0
292292 0 0
293293 17.7862 17.7862i 1.03908 1.03908i 0.0398769 0.999205i 0.487303π-0.487303\pi
0.999205 0.0398769i 0.0126966π-0.0126966\pi
294294 0 0
295295 −1.77587 −0.103395
296296 0 0
297297 0 0
298298 0 0
299299 3.14627 4.04805i 0.181953 0.234105i
300300 0 0
301301 1.34101 7.44563i 0.0772944 0.429159i
302302 0 0
303303 0 0
304304 0 0
305305 14.7965 14.7965i 0.847246 0.847246i
306306 0 0
307307 18.5912 18.5912i 1.06106 1.06106i 0.0630456 0.998011i 0.479919π-0.479919\pi
0.998011 0.0630456i 0.0200814π-0.0200814\pi
308308 0 0
309309 0 0
310310 0 0
311311 −24.3138 −1.37871 −0.689356 0.724423i 0.742106π-0.742106\pi
−0.689356 + 0.724423i 0.742106π0.742106\pi
312312 0 0
313313 23.4557i 1.32580i 0.748709 + 0.662899i 0.230674π0.230674\pi
−0.748709 + 0.662899i 0.769326π0.769326\pi
314314 0 0
315315 0 0
316316 0 0
317317 −14.7762 + 14.7762i −0.829915 + 0.829915i −0.987505 0.157590i 0.949628π-0.949628\pi
0.157590 + 0.987505i 0.449628π0.449628\pi
318318 0 0
319319 −9.19461 9.19461i −0.514799 0.514799i
320320 0 0
321321 0 0
322322 0 0
323323 −1.46614 1.46614i −0.0815785 0.0815785i
324324 0 0
325325 0.933642 1.20124i 0.0517891 0.0666329i
326326 0 0
327327 0 0
328328 0 0
329329 5.26858 3.66041i 0.290466 0.201805i
330330 0 0
331331 −16.8013 + 16.8013i −0.923483 + 0.923483i −0.997274 0.0737912i 0.976490π-0.976490\pi
0.0737912 + 0.997274i 0.476490π0.476490\pi
332332 0 0
333333 0 0
334334 0 0
335335 −18.1613 −0.992257
336336 0 0
337337 23.9848i 1.30654i 0.757127 + 0.653268i 0.226602π0.226602\pi
−0.757127 + 0.653268i 0.773398π0.773398\pi
338338 0 0
339339 0 0
340340 0 0
341341 5.77047i 0.312488i
342342 0 0
343343 −15.9363 9.43584i −0.860478 0.509487i
344344 0 0
345345 0 0
346346 0 0
347347 −12.2340 −0.656757 −0.328378 0.944546i 0.606502π-0.606502\pi
−0.328378 + 0.944546i 0.606502π0.606502\pi
348348 0 0
349349 9.27735 9.27735i 0.496605 0.496605i −0.413774 0.910379i 0.635790π-0.635790\pi
0.910379 + 0.413774i 0.135790π0.135790\pi
350350 0 0
351351 0 0
352352 0 0
353353 −23.2276 23.2276i −1.23628 1.23628i −0.961509 0.274772i 0.911398π-0.911398\pi
−0.274772 0.961509i 0.588602π-0.588602\pi
354354 0 0
355355 22.9381 1.21743
356356 0 0
357357 0 0
358358 0 0
359359 −20.1218 20.1218i −1.06199 1.06199i −0.997947 0.0640396i 0.979602π-0.979602\pi
−0.0640396 0.997947i 0.520398π-0.520398\pi
360360 0 0
361361 12.6655i 0.666607i
362362 0 0
363363 0 0
364364 0 0
365365 10.5879 0.554197
366366 0 0
367367 30.4871i 1.59141i 0.605682 + 0.795707i 0.292900π0.292900\pi
−0.605682 + 0.795707i 0.707100π0.707100\pi
368368 0 0
369369 0 0
370370 0 0
371371 −13.4110 2.41541i −0.696263 0.125402i
372372 0 0
373373 8.17639 0.423357 0.211679 0.977339i 0.432107π-0.432107\pi
0.211679 + 0.977339i 0.432107π0.432107\pi
374374 0 0
375375 0 0
376376 0 0
377377 11.5945 + 9.01163i 0.597149 + 0.464123i
378378 0 0
379379 −3.68940 + 3.68940i −0.189512 + 0.189512i −0.795485 0.605973i 0.792784π-0.792784\pi
0.605973 + 0.795485i 0.292784π0.292784\pi
380380 0 0
381381 0 0
382382 0 0
383383 5.69455 + 5.69455i 0.290978 + 0.290978i 0.837467 0.546489i 0.184036π-0.184036\pi
−0.546489 + 0.837467i 0.684036π0.684036\pi
384384 0 0
385385 3.48640 19.3574i 0.177683 0.986545i
386386 0 0
387387 0 0
388388 0 0
389389 13.8745i 0.703463i −0.936101 0.351732i 0.885593π-0.885593\pi
0.936101 0.351732i 0.114407π-0.114407\pi
390390 0 0
391391 0.523946i 0.0264971i
392392 0 0
393393 0 0
394394 0 0
395395 −5.41074 5.41074i −0.272244 0.272244i
396396 0 0
397397 −21.6070 + 21.6070i −1.08442 + 1.08442i −0.0883336 + 0.996091i 0.528154π0.528154\pi
−0.996091 + 0.0883336i 0.971846π0.971846\pi
398398 0 0
399399 0 0
400400 0 0
401401 9.66075 + 9.66075i 0.482435 + 0.482435i 0.905909 0.423473i 0.139189π-0.139189\pi
−0.423473 + 0.905909i 0.639189π0.639189\pi
402402 0 0
403403 0.810508 + 6.46614i 0.0403743 + 0.322102i
404404 0 0
405405 0 0
406406 0 0
407407 11.1349i 0.551936i
408408 0 0
409409 −4.81778 4.81778i −0.238224 0.238224i 0.577890 0.816114i 0.303876π-0.303876\pi
−0.816114 + 0.577890i 0.803876π0.803876\pi
410410 0 0
411411 0 0
412412 0 0
413413 1.65712 1.15131i 0.0815417 0.0566521i
414414 0 0
415415 39.9568i 1.96140i
416416 0 0
417417 0 0
418418 0 0
419419 28.5299i 1.39378i 0.717179 + 0.696889i 0.245433π0.245433\pi
−0.717179 + 0.696889i 0.754567π0.754567\pi
420420 0 0
421421 6.99113 6.99113i 0.340727 0.340727i −0.515914 0.856641i 0.672547π-0.672547\pi
0.856641 + 0.515914i 0.172547π0.172547\pi
422422 0 0
423423 0 0
424424 0 0
425425 0.155479i 0.00754183i
426426 0 0
427427 −4.21447 + 23.3999i −0.203953 + 1.13240i
428428 0 0
429429 0 0
430430 0 0
431431 −8.37456 + 8.37456i −0.403388 + 0.403388i −0.879425 0.476037i 0.842073π-0.842073\pi
0.476037 + 0.879425i 0.342073π0.342073\pi
432432 0 0
433433 −16.0716 −0.772354 −0.386177 0.922425i 0.626205π-0.626205\pi
−0.386177 + 0.922425i 0.626205π0.626205\pi
434434 0 0
435435 0 0
436436 0 0
437437 5.65804 5.65804i 0.270661 0.270661i
438438 0 0
439439 14.2525 0.680235 0.340117 0.940383i 0.389533π-0.389533\pi
0.340117 + 0.940383i 0.389533π0.389533\pi
440440 0 0
441441 0 0
442442 0 0
443443 29.2490 1.38966 0.694832 0.719172i 0.255479π-0.255479\pi
0.694832 + 0.719172i 0.255479π0.255479\pi
444444 0 0
445445 −20.9199 −0.991696
446446 0 0
447447 0 0
448448 0 0
449449 −2.05252 2.05252i −0.0968643 0.0968643i 0.657014 0.753878i 0.271819π-0.271819\pi
−0.753878 + 0.657014i 0.771819π0.771819\pi
450450 0 0
451451 27.9560i 1.31640i
452452 0 0
453453 0 0
454454 0 0
455455 −1.18781 + 22.1808i −0.0556854 + 1.03985i
456456 0 0
457457 −20.7348 + 20.7348i −0.969932 + 0.969932i −0.999561 0.0296286i 0.990568π-0.990568\pi
0.0296286 + 0.999561i 0.490568π0.490568\pi
458458 0 0
459459 0 0
460460 0 0
461461 12.7852 + 12.7852i 0.595465 + 0.595465i 0.939102 0.343638i 0.111659π-0.111659\pi
−0.343638 + 0.939102i 0.611659π0.611659\pi
462462 0 0
463463 −19.4709 19.4709i −0.904890 0.904890i 0.0909640 0.995854i 0.471005π-0.471005\pi
−0.995854 + 0.0909640i 0.971005π0.971005\pi
464464 0 0
465465 0 0
466466 0 0
467467 −13.7822 −0.637765 −0.318883 0.947794i 0.603308π-0.603308\pi
−0.318883 + 0.947794i 0.603308π0.603308\pi
468468 0 0
469469 16.9469 11.7741i 0.782537 0.543677i
470470 0 0
471471 0 0
472472 0 0
473473 −6.45538 + 6.45538i −0.296819 + 0.296819i
474474 0 0
475475 1.67900 1.67900i 0.0770379 0.0770379i
476476 0 0
477477 0 0
478478 0 0
479479 28.1324 28.1324i 1.28540 1.28540i 0.347857 0.937548i 0.386910π-0.386910\pi
0.937548 0.347857i 0.113090π-0.113090\pi
480480 0 0
481481 1.56398 + 12.4773i 0.0713115 + 0.568915i
482482 0 0
483483 0 0
484484 0 0
485485 9.88655i 0.448925i
486486 0 0
487487 10.1660 10.1660i 0.460664 0.460664i −0.438209 0.898873i 0.644387π-0.644387\pi
0.898873 + 0.438209i 0.144387π0.144387\pi
488488 0 0
489489 0 0
490490 0 0
491491 9.86423i 0.445167i −0.974914 0.222583i 0.928551π-0.928551\pi
0.974914 0.222583i 0.0714489π-0.0714489\pi
492492 0 0
493493 −1.50070 −0.0675882
494494 0 0
495495 0 0
496496 0 0
497497 −21.4044 + 14.8710i −0.960119 + 0.667054i
498498 0 0
499499 21.2400 21.2400i 0.950833 0.950833i −0.0480138 0.998847i 0.515289π-0.515289\pi
0.998847 + 0.0480138i 0.0152891π0.0152891\pi
500500 0 0
501501 0 0
502502 0 0
503503 21.6809i 0.966704i 0.875426 + 0.483352i 0.160581π0.160581\pi
−0.875426 + 0.483352i 0.839419π0.839419\pi
504504 0 0
505505 −19.5265 19.5265i −0.868920 0.868920i
506506 0 0
507507 0 0
508508 0 0
509509 −3.95221 3.95221i −0.175178 0.175178i 0.614072 0.789250i 0.289531π-0.289531\pi
−0.789250 + 0.614072i 0.789531π0.789531\pi
510510 0 0
511511 −9.87998 + 6.86423i −0.437064 + 0.303656i
512512 0 0
513513 0 0
514514 0 0
515515 −14.5724 14.5724i −0.642136 0.642136i
516516 0 0
517517 −7.74145 −0.340469
518518 0 0
519519 0 0
520520 0 0
521521 9.80601i 0.429609i −0.976657 0.214805i 0.931089π-0.931089\pi
0.976657 0.214805i 0.0689115π-0.0689115\pi
522522 0 0
523523 32.6498i 1.42768i 0.700310 + 0.713839i 0.253045π0.253045\pi
−0.700310 + 0.713839i 0.746955π0.746955\pi
524524 0 0
525525 0 0
526526 0 0
527527 −0.470915 0.470915i −0.0205134 0.0205134i
528528 0 0
529529 20.9780 0.912088
530530 0 0
531531 0 0
532532 0 0
533533 3.92664 + 31.3263i 0.170082 + 1.35689i
534534 0 0
535535 −7.28921 7.28921i −0.315140 0.315140i
536536 0 0
537537 0 0
538538 0 0
539539 9.29627 + 20.3234i 0.400419 + 0.875389i
540540 0 0
541541 31.0636 + 31.0636i 1.33553 + 1.33553i 0.900338 + 0.435191i 0.143319π0.143319\pi
0.435191 + 0.900338i 0.356681π0.356681\pi
542542 0 0
543543 0 0
544544 0 0
545545 46.5357 1.99337
546546 0 0
547547 −9.24833 −0.395430 −0.197715 0.980260i 0.563352π-0.563352\pi
−0.197715 + 0.980260i 0.563352π0.563352\pi
548548 0 0
549549 0 0
550550 0 0
551551 16.2059 + 16.2059i 0.690397 + 0.690397i
552552 0 0
553553 8.55677 + 1.54113i 0.363871 + 0.0655356i
554554 0 0
555555 0 0
556556 0 0
557557 −2.84869 2.84869i −0.120703 0.120703i 0.644175 0.764878i 0.277201π-0.277201\pi
−0.764878 + 0.644175i 0.777201π0.777201\pi
558558 0 0
559559 6.32691 8.14033i 0.267600 0.344299i
560560 0 0
561561 0 0
562562 0 0
563563 17.6797 0.745113 0.372556 0.928010i 0.378481π-0.378481\pi
0.372556 + 0.928010i 0.378481π0.378481\pi
564564 0 0
565565 23.1087 + 23.1087i 0.972188 + 0.972188i
566566 0 0
567567 0 0
568568 0 0
569569 28.0449i 1.17570i 0.808969 + 0.587851i 0.200026π0.200026\pi
−0.808969 + 0.587851i 0.799974π0.799974\pi
570570 0 0
571571 20.2857i 0.848928i −0.905445 0.424464i 0.860462π-0.860462\pi
0.905445 0.424464i 0.139538π-0.139538\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.600013 −0.0250223
576576 0 0
577577 −7.74415 7.74415i −0.322393 0.322393i 0.527291 0.849685i 0.323208π-0.323208\pi
−0.849685 + 0.527291i 0.823208π0.823208\pi
578578 0 0
579579 0 0
580580 0 0
581581 25.9043 + 37.2852i 1.07469 + 1.54685i
582582 0 0
583583 11.6273 + 11.6273i 0.481555 + 0.481555i
584584 0 0
585585 0 0
586586 0 0
587587 −1.33555 1.33555i −0.0551240 0.0551240i 0.679007 0.734131i 0.262410π-0.262410\pi
−0.734131 + 0.679007i 0.762410π0.762410\pi
588588 0 0
589589 10.1707i 0.419078i
590590 0 0
591591 0 0
592592 0 0
593593 9.49913 9.49913i 0.390083 0.390083i −0.484634 0.874717i 0.661047π-0.661047\pi
0.874717 + 0.484634i 0.161047π0.161047\pi
594594 0 0
595595 −1.29520 1.86423i −0.0530979 0.0764261i
596596 0 0
597597 0 0
598598 0 0
599599 −2.24887 −0.0918862 −0.0459431 0.998944i 0.514629π-0.514629\pi
−0.0459431 + 0.998944i 0.514629π0.514629\pi
600600 0 0
601601 20.5600i 0.838660i −0.907834 0.419330i 0.862265π-0.862265\pi
0.907834 0.419330i 0.137735π-0.137735\pi
602602 0 0
603603 0 0
604604 0 0
605605 1.32864 1.32864i 0.0540168 0.0540168i
606606 0 0
607607 11.7557i 0.477149i 0.971124 + 0.238574i 0.0766801π0.0766801\pi
−0.971124 + 0.238574i 0.923320π0.923320\pi
608608 0 0
609609 0 0
610610 0 0
611611 8.67474 1.08735i 0.350942 0.0439894i
612612 0 0
613613 −0.130998 + 0.130998i −0.00529095 + 0.00529095i −0.709747 0.704456i 0.751191π-0.751191\pi
0.704456 + 0.709747i 0.251191π0.251191\pi
614614 0 0
615615 0 0
616616 0 0
617617 −30.6432 + 30.6432i −1.23365 + 1.23365i −0.271097 + 0.962552i 0.587386π0.587386\pi
−0.962552 + 0.271097i 0.912614π0.912614\pi
618618 0 0
619619 −0.285066 + 0.285066i −0.0114578 + 0.0114578i −0.712812 0.701355i 0.752579π-0.752579\pi
0.701355 + 0.712812i 0.252579π0.252579\pi
620620 0 0
621621 0 0
622622 0 0
623623 19.5211 13.5625i 0.782095 0.543370i
624624 0 0
625625 26.9318 1.07727
626626 0 0
627627 0 0
628628 0 0
629629 −0.908693 0.908693i −0.0362320 0.0362320i
630630 0 0
631631 −1.45216 1.45216i −0.0578095 0.0578095i 0.677611 0.735421i 0.263015π-0.263015\pi
−0.735421 + 0.677611i 0.763015π0.763015\pi
632632 0 0
633633 0 0
634634 0 0
635635 26.7614 26.7614i 1.06199 1.06199i
636636 0 0
637637 −13.2716 21.4678i −0.525839 0.850584i
638638 0 0
639639 0 0
640640 0 0
641641 40.6275i 1.60469i 0.596861 + 0.802344i 0.296414π0.296414\pi
−0.596861 + 0.802344i 0.703586π0.703586\pi
642642 0 0
643643 5.27242 + 5.27242i 0.207924 + 0.207924i 0.803384 0.595461i 0.203030π-0.203030\pi
−0.595461 + 0.803384i 0.703030π0.703030\pi
644644 0 0
645645 0 0
646646 0 0
647647 −23.4908 −0.923519 −0.461759 0.887005i 0.652782π-0.652782\pi
−0.461759 + 0.887005i 0.652782π0.652782\pi
648648 0 0
649649 −2.43492 −0.0955788
650650 0 0
651651 0 0
652652 0 0
653653 44.1177 1.72646 0.863229 0.504812i 0.168438π-0.168438\pi
0.863229 + 0.504812i 0.168438π0.168438\pi
654654 0 0
655655 −31.9345 + 31.9345i −1.24778 + 1.24778i
656656 0 0
657657 0 0
658658 0 0
659659 −28.5292 −1.11134 −0.555670 0.831403i 0.687538π-0.687538\pi
−0.555670 + 0.831403i 0.687538π0.687538\pi
660660 0 0
661661 11.6885 11.6885i 0.454630 0.454630i −0.442258 0.896888i 0.645822π-0.645822\pi
0.896888 + 0.442258i 0.145822π0.145822\pi
662662 0 0
663663 0 0
664664 0 0
665665 −6.14495 + 34.1184i −0.238291 + 1.32305i
666666 0 0
667667 5.79140i 0.224244i
668668 0 0
669669 0 0
670670 0 0
671671 20.2877 20.2877i 0.783199 0.783199i
672672 0 0
673673 44.6749i 1.72209i 0.508529 + 0.861045i 0.330190π0.330190\pi
−0.508529 + 0.861045i 0.669810π0.669810\pi
674674 0 0
675675 0 0
676676 0 0
677677 31.3759i 1.20587i 0.797789 + 0.602936i 0.206003π0.206003\pi
−0.797789 + 0.602936i 0.793997π0.793997\pi
678678 0 0
679679 −6.40953 9.22550i −0.245975 0.354042i
680680 0 0
681681 0 0
682682 0 0
683683 30.1759 + 30.1759i 1.15465 + 1.15465i 0.985610 + 0.169037i 0.0540658π0.0540658\pi
0.169037 + 0.985610i 0.445934π0.445934\pi
684684 0 0
685685 8.89054i 0.339690i
686686 0 0
687687 0 0
688688 0 0
689689 −14.6623 11.3960i −0.558588 0.434151i
690690 0 0
691691 18.2601 + 18.2601i 0.694648 + 0.694648i 0.963251 0.268603i 0.0865619π-0.0865619\pi
−0.268603 + 0.963251i 0.586562π0.586562\pi
692692 0 0
693693 0 0
694694 0 0
695695 2.72691 2.72691i 0.103438 0.103438i
696696 0 0
697697 −2.28142 2.28142i −0.0864151 0.0864151i
698698 0 0
699699 0 0
700700 0 0
701701 46.9199i 1.77214i −0.463553 0.886069i 0.653426π-0.653426\pi
0.463553 0.886069i 0.346574π-0.346574\pi
702702 0 0
703703 19.6258i 0.740200i
704704 0 0
705705 0 0
706706 0 0
707707 30.8801 + 5.56172i 1.16137 + 0.209170i
708708 0 0
709709 9.25702 + 9.25702i 0.347655 + 0.347655i 0.859235 0.511581i 0.170940π-0.170940\pi
−0.511581 + 0.859235i 0.670940π0.670940\pi
710710 0 0
711711 0 0
712712 0 0
713713 1.81732 1.81732i 0.0680592 0.0680592i
714714 0 0
715715 16.4489 21.1635i 0.615155 0.791471i
716716 0 0
717717 0 0
718718 0 0
719719 2.79206 0.104126 0.0520631 0.998644i 0.483420π-0.483420\pi
0.0520631 + 0.998644i 0.483420π0.483420\pi
720720 0 0
721721 23.0454 + 4.15063i 0.858256 + 0.154578i
722722 0 0
723723 0 0
724724 0 0
725725 1.71858i 0.0638263i
726726 0 0
727727 43.3520 1.60784 0.803919 0.594739i 0.202745π-0.202745\pi
0.803919 + 0.594739i 0.202745π0.202745\pi
728728 0 0
729729 0 0
730730 0 0
731731 1.05362i 0.0389694i
732732 0 0
733733 19.4587 + 19.4587i 0.718722 + 0.718722i 0.968344 0.249621i 0.0803061π-0.0803061\pi
−0.249621 + 0.968344i 0.580306π0.580306\pi
734734 0 0
735735 0 0
736736 0 0
737737 −24.9012 −0.917248
738738 0 0
739739 27.7343 + 27.7343i 1.02022 + 1.02022i 0.999791 + 0.0204297i 0.00650343π0.00650343\pi
0.0204297 + 0.999791i 0.493497π0.493497\pi
740740 0 0
741741 0 0
742742 0 0
743743 −17.7559 + 17.7559i −0.651401 + 0.651401i −0.953330 0.301929i 0.902369π-0.902369\pi
0.301929 + 0.953330i 0.402369π0.402369\pi
744744 0 0
745745 34.9448 1.28028
746746 0 0
747747 0 0
748748 0 0
749749 11.5275 + 2.07618i 0.421205 + 0.0758618i
750750 0 0
751751 15.2391i 0.556084i 0.960569 + 0.278042i 0.0896855π0.0896855\pi
−0.960569 + 0.278042i 0.910315π0.910315\pi
752752 0 0
753753 0 0
754754 0 0
755755 19.4722i 0.708665i
756756 0 0
757757 14.7640 0.536605 0.268303 0.963335i 0.413537π-0.413537\pi
0.268303 + 0.963335i 0.413537π0.413537\pi
758758 0 0
759759 0 0
760760 0 0
761761 2.16681 2.16681i 0.0785467 0.0785467i −0.666742 0.745289i 0.732312π-0.732312\pi
0.745289 + 0.666742i 0.232312π0.232312\pi
762762 0 0
763763 −43.4242 + 30.1695i −1.57206 + 1.09221i
764764 0 0
765765 0 0
766766 0 0
767767 2.72846 0.342003i 0.0985191 0.0123490i
768768 0 0
769769 0.594774 + 0.594774i 0.0214481 + 0.0214481i 0.717750 0.696301i 0.245172π-0.245172\pi
−0.696301 + 0.717750i 0.745172π0.745172\pi
770770 0 0
771771 0 0
772772 0 0
773773 −22.6910 22.6910i −0.816140 0.816140i 0.169406 0.985546i 0.445815π-0.445815\pi
−0.985546 + 0.169406i 0.945815π0.945815\pi
774774 0 0
775775 0.539283 0.539283i 0.0193716 0.0193716i
776776 0 0
777777 0 0
778778 0 0
779779 49.2738i 1.76542i
780780 0 0
781781 31.4508 1.12540
782782 0 0
783783 0 0
784784 0 0
785785 19.7002 19.7002i 0.703129 0.703129i
786786 0 0
787787 −14.7361 + 14.7361i −0.525285 + 0.525285i −0.919163 0.393878i 0.871133π-0.871133\pi
0.393878 + 0.919163i 0.371133π0.371133\pi
788788 0 0
789789 0 0
790790 0 0
791791 −36.5450 6.58201i −1.29939 0.234029i
792792 0 0
793793 −19.8840 + 25.5832i −0.706102 + 0.908485i
794794 0 0
795795 0 0
796796 0 0
797797 −28.4856 −1.00901 −0.504507 0.863408i 0.668326π-0.668326\pi
−0.504507 + 0.863408i 0.668326π0.668326\pi
798798 0 0
799799 −0.631762 + 0.631762i −0.0223501 + 0.0223501i
800800 0 0
801801 0 0
802802 0 0
803803 14.5173 0.512303
804804 0 0
805805 7.19431 4.99833i 0.253566 0.176168i
806806 0 0
807807 0 0
808808 0 0
809809 42.7032 1.50136 0.750682 0.660663i 0.229725π-0.229725\pi
0.750682 + 0.660663i 0.229725π0.229725\pi
810810 0 0
811811 −20.0832 20.0832i −0.705216 0.705216i 0.260310 0.965525i 0.416175π-0.416175\pi
−0.965525 + 0.260310i 0.916175π0.916175\pi
812812 0 0
813813 0 0
814814 0 0
815815 40.3025i 1.41173i
816816 0 0
817817 11.3779 11.3779i 0.398063 0.398063i
818818 0 0
819819 0 0
820820 0 0
821821 19.0251 19.0251i 0.663980 0.663980i −0.292336 0.956316i 0.594433π-0.594433\pi
0.956316 + 0.292336i 0.0944325π0.0944325\pi
822822 0 0
823823 21.8267i 0.760832i −0.924816 0.380416i 0.875781π-0.875781\pi
0.924816 0.380416i 0.124219π-0.124219\pi
824824 0 0
825825 0 0
826826 0 0
827827 12.2190 + 12.2190i 0.424897 + 0.424897i 0.886886 0.461989i 0.152864π-0.152864\pi
−0.461989 + 0.886886i 0.652864π0.652864\pi
828828 0 0
829829 −21.7902 −0.756805 −0.378402 0.925641i 0.623526π-0.623526\pi
−0.378402 + 0.925641i 0.623526π0.623526\pi
830830 0 0
831831 0 0
832832 0 0
833833 2.41719 + 0.899896i 0.0837507 + 0.0311795i
834834 0 0
835835 −51.7900 −1.79227
836836 0 0
837837 0 0
838838 0 0
839839 −14.7255 + 14.7255i −0.508380 + 0.508380i −0.914029 0.405649i 0.867046π-0.867046\pi
0.405649 + 0.914029i 0.367046π0.367046\pi
840840 0 0
841841 −12.4121 −0.428003
842842 0 0
843843 0 0
844844 0 0
845845 −15.4594 + 26.0253i −0.531820 + 0.895299i
846846 0 0
847847 −0.378434 + 2.10116i −0.0130031 + 0.0721968i
848848 0 0
849849 0 0
850850 0 0
851851 3.50676 3.50676i 0.120210 0.120210i
852852 0 0
853853 −4.44429 + 4.44429i −0.152170 + 0.152170i −0.779086 0.626917i 0.784317π-0.784317\pi
0.626917 + 0.779086i 0.284317π0.284317\pi
854854 0 0
855855 0 0
856856 0 0
857857 29.9919 1.02451 0.512253 0.858835i 0.328811π-0.328811\pi
0.512253 + 0.858835i 0.328811π0.328811\pi
858858 0 0
859859 19.4814i 0.664698i 0.943157 + 0.332349i 0.107841π0.107841\pi
−0.943157 + 0.332349i 0.892159π0.892159\pi
860860 0 0
861861 0 0
862862 0 0
863863 −13.8213 + 13.8213i −0.470481 + 0.470481i −0.902070 0.431589i 0.857953π-0.857953\pi
0.431589 + 0.902070i 0.357953π0.357953\pi
864864 0 0
865865 21.6468 + 21.6468i 0.736012 + 0.736012i
866866 0 0
867867 0 0
868868 0 0
869869 −7.41874 7.41874i −0.251664 0.251664i
870870 0 0
871871 27.9032 3.49757i 0.945465 0.118511i
872872 0 0
873873 0 0
874874 0 0
875875 −23.1623 + 16.0923i −0.783027 + 0.544018i
876876 0 0
877877 −1.29305 + 1.29305i −0.0436632 + 0.0436632i −0.728601 0.684938i 0.759829π-0.759829\pi
0.684938 + 0.728601i 0.259829π0.259829\pi
878878 0 0
879879 0 0
880880 0 0
881881 51.9470 1.75014 0.875069 0.483998i 0.160816π-0.160816\pi
0.875069 + 0.483998i 0.160816π0.160816\pi
882882 0 0
883883 14.1938i 0.477658i −0.971062 0.238829i 0.923236π-0.923236\pi
0.971062 0.238829i 0.0767635π-0.0767635\pi
884884 0 0
885885 0 0
886886 0 0
887887 40.4060i 1.35670i 0.734738 + 0.678351i 0.237305π0.237305\pi
−0.734738 + 0.678351i 0.762695π0.762695\pi
888888 0 0
889889 −7.62241 + 42.3216i −0.255647 + 1.41942i
890890 0 0
891891 0 0
892892 0 0
893893 13.6447 0.456602
894894 0 0
895895 −24.9458 + 24.9458i −0.833847 + 0.833847i
896896 0 0
897897 0 0
898898 0 0
899899 5.20523 + 5.20523i 0.173604 + 0.173604i
900900 0 0
901901 1.89776 0.0632236
902902 0 0
903903 0 0
904904 0 0
905905 −43.4704 43.4704i −1.44500 1.44500i
906906 0 0
907907 14.2188i 0.472129i 0.971737 + 0.236064i 0.0758576π0.0758576\pi
−0.971737 + 0.236064i 0.924142π0.924142\pi
908908 0 0
909909 0 0
910910 0 0
911911 11.7804 0.390304 0.195152 0.980773i 0.437480π-0.437480\pi
0.195152 + 0.980773i 0.437480π0.437480\pi
912912 0 0
913913 54.7854i 1.81313i
914914 0 0
915915 0 0
916916 0 0
917917 9.09586 50.5026i 0.300372 1.66774i
918918 0 0
919919 23.4944 0.775010 0.387505 0.921868i 0.373337π-0.373337\pi
0.387505 + 0.921868i 0.373337π0.373337\pi
920920 0 0
921921 0 0
922922 0 0
923923 −35.2425 + 4.41752i −1.16002 + 0.145404i
924924 0 0
925925 1.04062 1.04062i 0.0342153 0.0342153i
926926 0 0
927927 0 0
928928 0 0
929929 22.0147 + 22.0147i 0.722280 + 0.722280i 0.969069 0.246789i 0.0793754π-0.0793754\pi
−0.246789 + 0.969069i 0.579375π0.579375\pi
930930 0 0
931931 −16.3851 35.8209i −0.537001 1.17398i
932932 0 0
933933 0 0
934934 0 0
935935 2.73923i 0.0895825i
936936 0 0
937937 19.9597i 0.652056i −0.945360 0.326028i 0.894290π-0.894290\pi
0.945360 0.326028i 0.105710π-0.105710\pi
938938 0 0
939939 0 0
940940 0 0
941941 −18.0404 18.0404i −0.588101 0.588101i 0.349016 0.937117i 0.386516π-0.386516\pi
−0.937117 + 0.349016i 0.886516π0.886516\pi
942942 0 0
943943 8.80431 8.80431i 0.286708 0.286708i
944944 0 0
945945 0 0
946946 0 0
947947 −36.8882 36.8882i −1.19871 1.19871i −0.974554 0.224153i 0.928039π-0.928039\pi
−0.224153 0.974554i 0.571961π-0.571961\pi
948948 0 0
949949 −16.2674 + 2.03907i −0.528063 + 0.0661909i
950950 0 0
951951 0 0
952952 0 0
953953 38.2580i 1.23930i 0.784879 + 0.619650i 0.212725π0.212725\pi
−0.784879 + 0.619650i 0.787275π0.787275\pi
954954 0 0
955955 −20.2214 20.2214i −0.654350 0.654350i
956956 0 0
957957 0 0
958958 0 0
959959 5.76380 + 8.29608i 0.186123 + 0.267894i
960960 0 0
961961 27.7332i 0.894620i
962962 0 0
963963 0 0
964964 0 0
965965 32.8958i 1.05895i
966966 0 0
967967 −27.8001 + 27.8001i −0.893991 + 0.893991i −0.994896 0.100905i 0.967826π-0.967826\pi
0.100905 + 0.994896i 0.467826π0.467826\pi
968968 0 0
969969 0 0
970970 0 0
971971 19.3267i 0.620223i −0.950700 0.310112i 0.899634π-0.899634\pi
0.950700 0.310112i 0.100366π-0.100366\pi
972972 0 0
973973 −0.776703 + 4.31246i −0.0248999 + 0.138251i
974974 0 0
975975 0 0
976976 0 0
977977 −38.7868 + 38.7868i −1.24090 + 1.24090i −0.281270 + 0.959629i 0.590756π0.590756\pi
−0.959629 + 0.281270i 0.909244π0.909244\pi
978978 0 0
979979 −28.6835 −0.916730
980980 0 0
981981 0 0
982982 0 0
983983 23.6735 23.6735i 0.755066 0.755066i −0.220354 0.975420i 0.570721π-0.570721\pi
0.975420 + 0.220354i 0.0707213π0.0707213\pi
984984 0 0
985985 −44.2981 −1.41146
986986 0 0
987987 0 0
988988 0 0
989989 −4.06604 −0.129293
990990 0 0
991991 −16.0410 −0.509558 −0.254779 0.966999i 0.582003π-0.582003\pi
−0.254779 + 0.966999i 0.582003π0.582003\pi
992992 0 0
993993 0 0
994994 0 0
995995 −33.3597 33.3597i −1.05757 1.05757i
996996 0 0
997997 12.8936i 0.408346i −0.978935 0.204173i 0.934550π-0.934550\pi
0.978935 0.204173i 0.0654505π-0.0654505\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.bi.c.2449.7 16
3.2 odd 2 364.2.n.a.265.5 yes 16
7.6 odd 2 inner 3276.2.bi.c.2449.2 16
13.8 odd 4 inner 3276.2.bi.c.1945.2 16
21.20 even 2 364.2.n.a.265.4 yes 16
39.8 even 4 364.2.n.a.125.5 yes 16
91.34 even 4 inner 3276.2.bi.c.1945.7 16
273.125 odd 4 364.2.n.a.125.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.n.a.125.4 16 273.125 odd 4
364.2.n.a.125.5 yes 16 39.8 even 4
364.2.n.a.265.4 yes 16 21.20 even 2
364.2.n.a.265.5 yes 16 3.2 odd 2
3276.2.bi.c.1945.2 16 13.8 odd 4 inner
3276.2.bi.c.1945.7 16 91.34 even 4 inner
3276.2.bi.c.2449.2 16 7.6 odd 2 inner
3276.2.bi.c.2449.7 16 1.1 even 1 trivial