Properties

Label 329.1.f.b.46.1
Level $329$
Weight $1$
Character 329.46
Analytic conductor $0.164$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [329,1,Mod(46,329)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(329, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("329.46");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 329 = 7 \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 329.f (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.164192389156\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of 15.1.143108492101942920287.1

Embedding invariants

Embedding label 46.1
Root \(-0.978148 + 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 329.46
Dual form 329.1.f.b.93.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.913545 - 1.58231i) q^{2} +(-0.309017 + 0.535233i) q^{3} +(-1.16913 + 2.02499i) q^{4} +1.12920 q^{6} +(0.913545 - 0.406737i) q^{7} +2.44512 q^{8} +(0.309017 + 0.535233i) q^{9} +(-0.722562 - 1.25151i) q^{12} +(-1.47815 - 1.07394i) q^{14} +(-1.06460 - 1.84395i) q^{16} +(0.978148 - 1.69420i) q^{17} +(0.564602 - 0.977920i) q^{18} +(-0.0646021 + 0.614648i) q^{21} +(-0.755585 + 1.30871i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(-0.244415 + 2.32545i) q^{28} +(-0.722562 + 1.25151i) q^{32} -3.57433 q^{34} -1.44512 q^{36} +(0.978148 + 1.69420i) q^{37} +(1.03158 - 0.459289i) q^{42} +(-0.500000 - 0.866025i) q^{47} +1.31592 q^{48} +(0.669131 - 0.743145i) q^{49} +1.82709 q^{50} +(0.604528 + 1.04707i) q^{51} +(0.104528 - 0.181049i) q^{53} +(0.913545 + 1.58231i) q^{54} +(2.23373 - 0.994522i) q^{56} +(-0.913545 + 1.58231i) q^{59} +(-0.913545 - 1.58231i) q^{61} +(0.500000 + 0.363271i) q^{63} +0.511170 q^{64} +(2.28716 + 3.96149i) q^{68} -1.95630 q^{71} +(0.755585 + 1.30871i) q^{72} +(1.78716 - 3.09546i) q^{74} +(-0.309017 - 0.535233i) q^{75} +(-0.309017 - 0.535233i) q^{79} -1.00000 q^{83} +(-1.16913 - 0.849423i) q^{84} +(0.809017 + 1.40126i) q^{89} +(-0.913545 + 1.58231i) q^{94} +(-0.446568 - 0.773479i) q^{96} -0.209057 q^{97} +(-1.78716 - 0.379874i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 2 q^{3} - 5 q^{4} + 4 q^{6} + q^{7} - 2 q^{8} - 2 q^{9} + 5 q^{12} - 3 q^{14} - 6 q^{16} - q^{17} + 2 q^{18} + 2 q^{21} - 8 q^{24} - 4 q^{25} - 8 q^{27} + 5 q^{32} - 2 q^{34} + 10 q^{36}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/329\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(283\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(3\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(4\) −1.16913 + 2.02499i −1.16913 + 2.02499i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 1.12920 1.12920
\(7\) 0.913545 0.406737i 0.913545 0.406737i
\(8\) 2.44512 2.44512
\(9\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −0.722562 1.25151i −0.722562 1.25151i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −1.47815 1.07394i −1.47815 1.07394i
\(15\) 0 0
\(16\) −1.06460 1.84395i −1.06460 1.84395i
\(17\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(18\) 0.564602 0.977920i 0.564602 0.977920i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) −0.755585 + 1.30871i −0.755585 + 1.30871i
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) −0.244415 + 2.32545i −0.244415 + 2.32545i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) −0.722562 + 1.25151i −0.722562 + 1.25151i
\(33\) 0 0
\(34\) −3.57433 −3.57433
\(35\) 0 0
\(36\) −1.44512 −1.44512
\(37\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.03158 0.459289i 1.03158 0.459289i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 0.866025i −0.500000 0.866025i
\(48\) 1.31592 1.31592
\(49\) 0.669131 0.743145i 0.669131 0.743145i
\(50\) 1.82709 1.82709
\(51\) 0.604528 + 1.04707i 0.604528 + 1.04707i
\(52\) 0 0
\(53\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(54\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(55\) 0 0
\(56\) 2.23373 0.994522i 2.23373 0.994522i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(60\) 0 0
\(61\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(62\) 0 0
\(63\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(64\) 0.511170 0.511170
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 2.28716 + 3.96149i 2.28716 + 3.96149i
\(69\) 0 0
\(70\) 0 0
\(71\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(72\) 0.755585 + 1.30871i 0.755585 + 1.30871i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 1.78716 3.09546i 1.78716 3.09546i
\(75\) −0.309017 0.535233i −0.309017 0.535233i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) −1.16913 0.849423i −1.16913 0.849423i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(95\) 0 0
\(96\) −0.446568 0.773479i −0.446568 0.773479i
\(97\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(98\) −1.78716 0.379874i −1.78716 0.379874i
\(99\) 0 0
\(100\) −1.16913 2.02499i −1.16913 2.02499i
\(101\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(102\) 1.10453 1.91310i 1.10453 1.91310i
\(103\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.381966 −0.381966
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 1.16913 2.02499i 1.16913 2.02499i
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) −1.20906 −1.20906
\(112\) −1.72256 1.25151i −1.72256 1.25151i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 3.33826 3.33826
\(119\) 0.204489 1.94558i 0.204489 1.94558i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) −1.66913 + 2.89102i −1.66913 + 2.89102i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.118034 1.12302i 0.118034 1.12302i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.255585 + 0.442686i 0.255585 + 0.442686i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 2.39169 4.14253i 2.39169 4.14253i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0.618034 0.618034
\(142\) 1.78716 + 3.09546i 1.78716 + 3.09546i
\(143\) 0 0
\(144\) 0.657960 1.13962i 0.657960 1.13962i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(148\) −4.57433 −4.57433
\(149\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(150\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 1.20906 1.20906
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(158\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(159\) 0.0646021 + 0.111894i 0.0646021 + 0.111894i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −0.157960 + 1.50289i −0.157960 + 1.50289i
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(174\) 0 0
\(175\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(176\) 0 0
\(177\) −0.564602 0.977920i −0.564602 0.977920i
\(178\) 1.47815 2.56023i 1.47815 2.56023i
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 1.12920 1.12920
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 2.33826 2.33826
\(189\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(190\) 0 0
\(191\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −0.157960 + 0.273595i −0.157960 + 0.273595i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(195\) 0 0
\(196\) 0.722562 + 2.22382i 0.722562 + 2.22382i
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(201\) 0 0
\(202\) 2.44512 2.44512
\(203\) 0 0
\(204\) −2.82709 −2.82709
\(205\) 0 0
\(206\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0.244415 + 0.423339i 0.244415 + 0.423339i
\(213\) 0.604528 1.04707i 0.604528 1.04707i
\(214\) 0 0
\(215\) 0 0
\(216\) −2.44512 −2.44512
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 1.10453 + 1.91310i 1.10453 + 1.91310i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −0.151057 + 1.43721i −0.151057 + 1.43721i
\(225\) −0.618034 −0.618034
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.13611 3.69985i −2.13611 3.69985i
\(237\) 0.381966 0.381966
\(238\) −3.26531 + 1.45381i −3.26531 + 1.45381i
\(239\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(240\) 0 0
\(241\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(242\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(243\) −0.500000 0.866025i −0.500000 0.866025i
\(244\) 4.27222 4.27222
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.309017 0.535233i 0.309017 0.535233i
\(250\) 0 0
\(251\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(252\) −1.32019 + 0.587785i −1.32019 + 0.587785i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.722562 1.25151i 0.722562 1.25151i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 1.58268 + 1.14988i 1.58268 + 1.14988i
\(260\) 0 0
\(261\) 0 0
\(262\) 0.190983 0.330792i 0.190983 0.330792i
\(263\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.00000 −1.00000
\(268\) 0 0
\(269\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(270\) 0 0
\(271\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) −4.16535 −4.16535
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −0.564602 0.977920i −0.564602 0.977920i
\(283\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(284\) 2.28716 3.96149i 2.28716 3.96149i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.893136 −0.893136
\(289\) −1.41355 2.44833i −1.41355 2.44833i
\(290\) 0 0
\(291\) 0.0646021 0.111894i 0.0646021 0.111894i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.755585 0.839162i 0.755585 0.839162i
\(295\) 0 0
\(296\) 2.39169 + 4.14253i 2.39169 + 4.14253i
\(297\) 0 0
\(298\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(299\) 0 0
\(300\) 1.44512 1.44512
\(301\) 0 0
\(302\) 0 0
\(303\) −0.413545 0.716282i −0.413545 0.716282i
\(304\) 0 0
\(305\) 0 0
\(306\) −1.10453 1.91310i −1.10453 1.91310i
\(307\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(308\) 0 0
\(309\) 0.827091 0.827091
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) −2.95630 −2.95630
\(315\) 0 0
\(316\) 1.44512 1.44512
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) 0.118034 0.204441i 0.118034 0.204441i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.809017 0.587785i −0.809017 0.587785i
\(330\) 0 0
\(331\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(332\) 1.16913 2.02499i 1.16913 2.02499i
\(333\) −0.604528 + 1.04707i −0.604528 + 1.04707i
\(334\) 0 0
\(335\) 0 0
\(336\) 1.20215 0.535233i 1.20215 0.535233i
\(337\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(338\) −0.913545 1.58231i −0.913545 1.58231i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.309017 0.951057i 0.309017 0.951057i
\(344\) 0 0
\(345\) 0 0
\(346\) 0.190983 0.330792i 0.190983 0.330792i
\(347\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.66913 0.743145i 1.66913 0.743145i
\(351\) 0 0
\(352\) 0 0
\(353\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(354\) −1.03158 + 1.78675i −1.03158 + 1.78675i
\(355\) 0 0
\(356\) −3.78339 −3.78339
\(357\) 0.978148 + 0.710666i 0.978148 + 0.710666i
\(358\) 0 0
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 0.618034 0.618034
\(364\) 0 0
\(365\) 0 0
\(366\) −1.03158 1.78675i −1.03158 1.78675i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.0218524 0.207912i 0.0218524 0.207912i
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.22256 2.11754i −1.22256 2.11754i
\(377\) 0 0
\(378\) 1.47815 + 1.07394i 1.47815 + 1.07394i
\(379\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.913545 1.58231i 0.913545 1.58231i
\(383\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(384\) −0.315921 −0.315921
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.244415 0.423339i 0.244415 0.423339i
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.63611 1.81708i 1.63611 1.81708i
\(393\) −0.129204 −0.129204
\(394\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.12920 2.12920
\(401\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.56460 2.70997i −1.56460 2.70997i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.47815 + 2.56023i 1.47815 + 2.56023i
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.12920 3.12920
\(413\) −0.190983 + 1.81708i −0.190983 + 1.81708i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0.309017 0.535233i 0.309017 0.535233i
\(424\) 0.255585 0.442686i 0.255585 0.442686i
\(425\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(426\) −2.20906 −2.20906
\(427\) −1.47815 1.07394i −1.47815 1.07394i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(432\) 1.06460 + 1.84395i 1.06460 + 1.84395i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0.604528 + 0.128496i 0.604528 + 0.128496i
\(442\) 0 0
\(443\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 1.41355 2.44833i 1.41355 2.44833i
\(445\) 0 0
\(446\) 0 0
\(447\) 0.827091 0.827091
\(448\) 0.466977 0.207912i 0.466977 0.207912i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.564602 + 0.977920i 0.564602 + 0.977920i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(458\) 0 0
\(459\) −0.978148 + 1.69420i −0.978148 + 1.69420i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(472\) −2.23373 + 3.86894i −2.23373 + 3.86894i
\(473\) 0 0
\(474\) −0.348943 0.604388i −0.348943 0.604388i
\(475\) 0 0
\(476\) 3.70071 + 2.68872i 3.70071 + 2.68872i
\(477\) 0.129204 0.129204
\(478\) −1.22256 2.11754i −1.22256 2.11754i
\(479\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.44512 2.44512
\(483\) 0 0
\(484\) 2.33826 2.33826
\(485\) 0 0
\(486\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(487\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(488\) −2.23373 3.86894i −2.23373 3.86894i
\(489\) 0 0
\(490\) 0 0
\(491\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.78716 + 0.795697i −1.78716 + 0.795697i
\(498\) −1.12920 −1.12920
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.22256 2.11754i −1.22256 2.11754i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.22256 + 0.888244i 1.22256 + 0.888244i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2.12920 −2.12920
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.373619 3.55475i 0.373619 3.55475i
\(519\) −0.129204 −0.129204
\(520\) 0 0
\(521\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(522\) 0 0
\(523\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) −0.488830 −0.488830
\(525\) −0.500000 0.363271i −0.500000 0.363271i
\(526\) −2.95630 −2.95630
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) −1.12920 −1.12920
\(532\) 0 0
\(533\) 0 0
\(534\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.82709 −1.82709
\(539\) 0 0
\(540\) 0 0
\(541\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(542\) 1.78716 3.09546i 1.78716 3.09546i
\(543\) 0 0
\(544\) 1.41355 + 2.44833i 1.41355 + 2.44833i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0.564602 0.977920i 0.564602 0.977920i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.500000 0.363271i −0.500000 0.363271i
\(554\) 1.12920 1.12920
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) −0.722562 + 1.25151i −0.722562 + 1.25151i
\(565\) 0 0
\(566\) −0.381966 −0.381966
\(567\) 0 0
\(568\) −4.78339 −4.78339
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(572\) 0 0
\(573\) −0.618034 −0.618034
\(574\) 0 0
\(575\) 0 0
\(576\) 0.157960 + 0.273595i 0.157960 + 0.273595i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −2.58268 + 4.47333i −2.58268 + 4.47333i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(582\) −0.236068 −0.236068
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.41355 0.300458i −1.41355 0.300458i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.309017 0.535233i 0.309017 0.535233i
\(592\) 2.08268 3.60730i 2.08268 3.60730i
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.12920 3.12920
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −0.755585 1.30871i −0.755585 1.30871i
\(601\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −0.755585 + 1.30871i −0.755585 + 1.30871i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.41355 + 2.44833i −1.41355 + 2.44833i
\(613\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(614\) 1.78716 + 3.09546i 1.78716 + 3.09546i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(618\) −0.755585 1.30871i −0.755585 1.30871i
\(619\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.89169 + 3.27651i 1.89169 + 3.27651i
\(629\) 3.82709 3.82709
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −0.755585 1.30871i −0.755585 1.30871i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −0.302113 −0.302113
\(637\) 0 0
\(638\) 0 0
\(639\) −0.604528 1.04707i −0.604528 1.04707i
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −0.190983 + 1.81708i −0.190983 + 1.81708i
\(659\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(660\) 0 0
\(661\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(662\) 1.47815 2.56023i 1.47815 2.56023i
\(663\) 0 0
\(664\) −2.44512 −2.44512
\(665\) 0 0
\(666\) 2.20906 2.20906
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −0.722562 0.524972i −0.722562 0.524972i
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(675\) 0.500000 0.866025i 0.500000 0.866025i
\(676\) −1.16913 + 2.02499i −1.16913 + 2.02499i
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) −0.190983 + 0.0850311i −0.190983 + 0.0850311i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.78716 + 0.379874i −1.78716 + 0.379874i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) −0.488830 −0.488830
\(693\) 0 0
\(694\) 2.44512 2.44512
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.89169 1.37440i −1.89169 1.37440i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 3.33826 3.33826
\(707\) −0.139886 + 1.33093i −0.139886 + 1.33093i
\(708\) 2.64037 2.64037
\(709\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) 0 0
\(711\) 0.190983 0.330792i 0.190983 0.330792i
\(712\) 1.97815 + 3.42625i 1.97815 + 3.42625i
\(713\) 0 0
\(714\) 0.230909 2.19696i 0.230909 2.19696i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(718\) 0 0
\(719\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(720\) 0 0
\(721\) −1.08268 0.786610i −1.08268 0.786610i
\(722\) 1.82709 1.82709
\(723\) −0.413545 0.716282i −0.413545 0.716282i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.564602 0.977920i −0.564602 0.977920i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0.618034 0.618034
\(730\) 0 0
\(731\) 0 0
\(732\) −1.32019 + 2.28663i −1.32019 + 2.28663i
\(733\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.348943 + 0.155360i −0.348943 + 0.155360i
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.309017 0.535233i −0.309017 0.535233i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) −1.06460 + 1.84395i −1.06460 + 1.84395i
\(753\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(754\) 0 0
\(755\) 0 0
\(756\) 0.244415 2.32545i 0.244415 2.32545i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −1.66913 2.89102i −1.66913 2.89102i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.33826 −2.33826
\(765\) 0 0
\(766\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(767\) 0 0
\(768\) 0.446568 + 0.773479i 0.446568 + 0.773479i
\(769\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.511170 −0.511170
\(777\) −1.10453 + 0.491768i −1.10453 + 0.491768i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −2.08268 0.442686i −2.08268 0.442686i
\(785\) 0 0
\(786\) 0.118034 + 0.204441i 0.118034 + 0.204441i
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 1.16913 2.02499i 1.16913 2.02499i
\(789\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −1.95630 −1.95630
\(800\) −0.722562 1.25151i −0.722562 1.25151i
\(801\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(802\) 1.78716 3.09546i 1.78716 3.09546i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(808\) −1.63611 + 2.83382i −1.63611 + 2.83382i
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(812\) 0 0
\(813\) −1.20906 −1.20906
\(814\) 0 0
\(815\) 0 0
\(816\) 1.28716 2.22943i 1.28716 2.22943i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(824\) −1.63611 2.83382i −1.63611 2.83382i
\(825\) 0 0
\(826\) 3.04965 1.35779i 3.04965 1.35779i
\(827\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) −0.190983 0.330792i −0.190983 0.330792i
\(832\) 0 0
\(833\) −0.604528 1.86055i −0.604528 1.86055i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) −1.12920 −1.12920
\(847\) −0.809017 0.587785i −0.809017 0.587785i
\(848\) −0.445125 −0.445125
\(849\) 0.0646021 + 0.111894i 0.0646021 + 0.111894i
\(850\) 1.78716 3.09546i 1.78716 3.09546i
\(851\) 0 0
\(852\) 1.41355 + 2.44833i 1.41355 + 2.44833i
\(853\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(854\) −0.348943 + 3.31997i −0.348943 + 3.31997i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.381966 −0.381966
\(863\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(864\) 0.722562 1.25151i 0.722562 1.25151i
\(865\) 0 0
\(866\) 0 0
\(867\) 1.74724 1.74724
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.0646021 0.111894i −0.0646021 0.111894i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0.913545 1.58231i 0.913545 1.58231i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.348943 1.07394i −0.348943 1.07394i
\(883\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) −2.95630 −2.95630
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −0.755585 1.30871i −0.755585 1.30871i
\(895\) 0 0
\(896\) 0.413545 + 0.300458i 0.413545 + 0.300458i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.722562 1.25151i 0.722562 1.25151i
\(901\) −0.204489 0.354185i −0.204489 0.354185i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(908\) 0 0
\(909\) −0.827091 −0.827091
\(910\) 0 0
\(911\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(915\) 0 0
\(916\) 0 0
\(917\) 0.169131 + 0.122881i 0.169131 + 0.122881i
\(918\) 3.57433 3.57433
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0.604528 1.04707i 0.604528 1.04707i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.95630 −1.95630
\(926\) 0 0
\(927\) 0.413545 0.716282i 0.413545 0.716282i
\(928\) 0 0
\(929\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(942\) 0.913545 1.58231i 0.913545 1.58231i
\(943\) 0 0
\(944\) 3.89025 3.89025
\(945\) 0 0
\(946\) 0 0
\(947\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) −0.446568 + 0.773479i −0.446568 + 0.773479i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0.500000 4.75718i 0.500000 4.75718i
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) −0.118034 0.204441i −0.118034 0.204441i
\(955\) 0 0
\(956\) −1.56460 + 2.70997i −1.56460 + 2.70997i
\(957\) 0 0
\(958\) −2.95630 −2.95630
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.56460 2.70997i −1.56460 2.70997i
\(965\) 0 0
\(966\) 0 0
\(967\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(968\) −1.22256 2.11754i −1.22256 2.11754i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 2.33826 2.33826
\(973\) 0 0
\(974\) −1.82709 −1.82709
\(975\) 0 0
\(976\) −1.94512 + 3.36906i −1.94512 + 3.36906i
\(977\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 1.47815 + 2.56023i 1.47815 + 2.56023i
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0.564602 0.251377i 0.564602 0.251377i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(992\) 0 0
\(993\) −1.00000 −1.00000
\(994\) 2.89169 + 2.10094i 2.89169 + 2.10094i
\(995\) 0 0
\(996\) 0.722562 + 1.25151i 0.722562 + 1.25151i
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) −0.978148 1.69420i −0.978148 1.69420i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 329.1.f.b.46.1 8
3.2 odd 2 2961.1.x.d.46.4 8
7.2 even 3 inner 329.1.f.b.93.1 yes 8
7.3 odd 6 2303.1.d.e.2255.4 4
7.4 even 3 2303.1.d.d.2255.4 4
7.5 odd 6 2303.1.f.d.422.1 8
7.6 odd 2 2303.1.f.d.704.1 8
21.2 odd 6 2961.1.x.d.1738.4 8
47.46 odd 2 CM 329.1.f.b.46.1 8
141.140 even 2 2961.1.x.d.46.4 8
329.46 odd 6 2303.1.d.d.2255.4 4
329.93 odd 6 inner 329.1.f.b.93.1 yes 8
329.187 even 6 2303.1.f.d.422.1 8
329.234 even 6 2303.1.d.e.2255.4 4
329.328 even 2 2303.1.f.d.704.1 8
987.422 even 6 2961.1.x.d.1738.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
329.1.f.b.46.1 8 1.1 even 1 trivial
329.1.f.b.46.1 8 47.46 odd 2 CM
329.1.f.b.93.1 yes 8 7.2 even 3 inner
329.1.f.b.93.1 yes 8 329.93 odd 6 inner
2303.1.d.d.2255.4 4 7.4 even 3
2303.1.d.d.2255.4 4 329.46 odd 6
2303.1.d.e.2255.4 4 7.3 odd 6
2303.1.d.e.2255.4 4 329.234 even 6
2303.1.f.d.422.1 8 7.5 odd 6
2303.1.f.d.422.1 8 329.187 even 6
2303.1.f.d.704.1 8 7.6 odd 2
2303.1.f.d.704.1 8 329.328 even 2
2961.1.x.d.46.4 8 3.2 odd 2
2961.1.x.d.46.4 8 141.140 even 2
2961.1.x.d.1738.4 8 21.2 odd 6
2961.1.x.d.1738.4 8 987.422 even 6