Properties

Label 329.1.f.b.46.1
Level 329329
Weight 11
Character 329.46
Analytic conductor 0.1640.164
Analytic rank 00
Dimension 88
Projective image D15D_{15}
CM discriminant -47
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [329,1,Mod(46,329)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(329, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("329.46");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 329=747 329 = 7 \cdot 47
Weight: k k == 1 1
Character orbit: [χ][\chi] == 329.f (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1641923891560.164192389156
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D15D_{15}
Projective field: Galois closure of 15.1.143108492101942920287.1

Embedding invariants

Embedding label 46.1
Root 0.978148+0.207912i-0.978148 + 0.207912i of defining polynomial
Character χ\chi == 329.46
Dual form 329.1.f.b.93.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.9135451.58231i)q2+(0.309017+0.535233i)q3+(1.16913+2.02499i)q4+1.12920q6+(0.9135450.406737i)q7+2.44512q8+(0.309017+0.535233i)q9+(0.7225621.25151i)q12+(1.478151.07394i)q14+(1.064601.84395i)q16+(0.9781481.69420i)q17+(0.5646020.977920i)q18+(0.0646021+0.614648i)q21+(0.755585+1.30871i)q24+(0.500000+0.866025i)q251.00000q27+(0.244415+2.32545i)q28+(0.722562+1.25151i)q323.57433q341.44512q36+(0.978148+1.69420i)q37+(1.031580.459289i)q42+(0.5000000.866025i)q47+1.31592q48+(0.6691310.743145i)q49+1.82709q50+(0.604528+1.04707i)q51+(0.1045280.181049i)q53+(0.913545+1.58231i)q54+(2.233730.994522i)q56+(0.913545+1.58231i)q59+(0.9135451.58231i)q61+(0.500000+0.363271i)q63+0.511170q64+(2.28716+3.96149i)q681.95630q71+(0.755585+1.30871i)q72+(1.787163.09546i)q74+(0.3090170.535233i)q75+(0.3090170.535233i)q791.00000q83+(1.169130.849423i)q84+(0.809017+1.40126i)q89+(0.913545+1.58231i)q94+(0.4465680.773479i)q960.209057q97+(1.787160.379874i)q98+O(q100)q+(-0.913545 - 1.58231i) q^{2} +(-0.309017 + 0.535233i) q^{3} +(-1.16913 + 2.02499i) q^{4} +1.12920 q^{6} +(0.913545 - 0.406737i) q^{7} +2.44512 q^{8} +(0.309017 + 0.535233i) q^{9} +(-0.722562 - 1.25151i) q^{12} +(-1.47815 - 1.07394i) q^{14} +(-1.06460 - 1.84395i) q^{16} +(0.978148 - 1.69420i) q^{17} +(0.564602 - 0.977920i) q^{18} +(-0.0646021 + 0.614648i) q^{21} +(-0.755585 + 1.30871i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(-0.244415 + 2.32545i) q^{28} +(-0.722562 + 1.25151i) q^{32} -3.57433 q^{34} -1.44512 q^{36} +(0.978148 + 1.69420i) q^{37} +(1.03158 - 0.459289i) q^{42} +(-0.500000 - 0.866025i) q^{47} +1.31592 q^{48} +(0.669131 - 0.743145i) q^{49} +1.82709 q^{50} +(0.604528 + 1.04707i) q^{51} +(0.104528 - 0.181049i) q^{53} +(0.913545 + 1.58231i) q^{54} +(2.23373 - 0.994522i) q^{56} +(-0.913545 + 1.58231i) q^{59} +(-0.913545 - 1.58231i) q^{61} +(0.500000 + 0.363271i) q^{63} +0.511170 q^{64} +(2.28716 + 3.96149i) q^{68} -1.95630 q^{71} +(0.755585 + 1.30871i) q^{72} +(1.78716 - 3.09546i) q^{74} +(-0.309017 - 0.535233i) q^{75} +(-0.309017 - 0.535233i) q^{79} -1.00000 q^{83} +(-1.16913 - 0.849423i) q^{84} +(0.809017 + 1.40126i) q^{89} +(-0.913545 + 1.58231i) q^{94} +(-0.446568 - 0.773479i) q^{96} -0.209057 q^{97} +(-1.78716 - 0.379874i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2+2q35q4+4q6+q72q82q9+5q123q146q16q17+2q18+2q218q244q258q27+5q322q34+10q36+q98+O(q100) 8 q - q^{2} + 2 q^{3} - 5 q^{4} + 4 q^{6} + q^{7} - 2 q^{8} - 2 q^{9} + 5 q^{12} - 3 q^{14} - 6 q^{16} - q^{17} + 2 q^{18} + 2 q^{21} - 8 q^{24} - 4 q^{25} - 8 q^{27} + 5 q^{32} - 2 q^{34} + 10 q^{36}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/329Z)×\left(\mathbb{Z}/329\mathbb{Z}\right)^\times.

nn 9999 283283
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
33 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
44 −1.16913 + 2.02499i −1.16913 + 2.02499i
55 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
66 1.12920 1.12920
77 0.913545 0.406737i 0.913545 0.406737i
88 2.44512 2.44512
99 0.309017 + 0.535233i 0.309017 + 0.535233i
1010 0 0
1111 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 −0.722562 1.25151i −0.722562 1.25151i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 −1.47815 1.07394i −1.47815 1.07394i
1515 0 0
1616 −1.06460 1.84395i −1.06460 1.84395i
1717 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
1818 0.564602 0.977920i 0.564602 0.977920i
1919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 0 0
2121 −0.0646021 + 0.614648i −0.0646021 + 0.614648i
2222 0 0
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 −0.755585 + 1.30871i −0.755585 + 1.30871i
2525 −0.500000 + 0.866025i −0.500000 + 0.866025i
2626 0 0
2727 −1.00000 −1.00000
2828 −0.244415 + 2.32545i −0.244415 + 2.32545i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 −0.722562 + 1.25151i −0.722562 + 1.25151i
3333 0 0
3434 −3.57433 −3.57433
3535 0 0
3636 −1.44512 −1.44512
3737 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 1.03158 0.459289i 1.03158 0.459289i
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 −0.500000 0.866025i −0.500000 0.866025i
4848 1.31592 1.31592
4949 0.669131 0.743145i 0.669131 0.743145i
5050 1.82709 1.82709
5151 0.604528 + 1.04707i 0.604528 + 1.04707i
5252 0 0
5353 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
5454 0.913545 + 1.58231i 0.913545 + 1.58231i
5555 0 0
5656 2.23373 0.994522i 2.23373 0.994522i
5757 0 0
5858 0 0
5959 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
6060 0 0
6161 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
6262 0 0
6363 0.500000 + 0.363271i 0.500000 + 0.363271i
6464 0.511170 0.511170
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 2.28716 + 3.96149i 2.28716 + 3.96149i
6969 0 0
7070 0 0
7171 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
7272 0.755585 + 1.30871i 0.755585 + 1.30871i
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 1.78716 3.09546i 1.78716 3.09546i
7575 −0.309017 0.535233i −0.309017 0.535233i
7676 0 0
7777 0 0
7878 0 0
7979 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
8080 0 0
8181 0 0
8282 0 0
8383 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 −1.16913 0.849423i −1.16913 0.849423i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 −0.913545 + 1.58231i −0.913545 + 1.58231i
9595 0 0
9696 −0.446568 0.773479i −0.446568 0.773479i
9797 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
9898 −1.78716 0.379874i −1.78716 0.379874i
9999 0 0
100100 −1.16913 2.02499i −1.16913 2.02499i
101101 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
102102 1.10453 1.91310i 1.10453 1.91310i
103103 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
104104 0 0
105105 0 0
106106 −0.381966 −0.381966
107107 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 1.16913 2.02499i 1.16913 2.02499i
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 −1.20906 −1.20906
112112 −1.72256 1.25151i −1.72256 1.25151i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 3.33826 3.33826
119119 0.204489 1.94558i 0.204489 1.94558i
120120 0 0
121121 −0.500000 0.866025i −0.500000 0.866025i
122122 −1.66913 + 2.89102i −1.66913 + 2.89102i
123123 0 0
124124 0 0
125125 0 0
126126 0.118034 1.12302i 0.118034 1.12302i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.255585 + 0.442686i 0.255585 + 0.442686i
129129 0 0
130130 0 0
131131 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 2.39169 4.14253i 2.39169 4.14253i
137137 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0.618034 0.618034
142142 1.78716 + 3.09546i 1.78716 + 3.09546i
143143 0 0
144144 0.657960 1.13962i 0.657960 1.13962i
145145 0 0
146146 0 0
147147 0.190983 + 0.587785i 0.190983 + 0.587785i
148148 −4.57433 −4.57433
149149 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
150150 −0.564602 + 0.977920i −0.564602 + 0.977920i
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 1.20906 1.20906
154154 0 0
155155 0 0
156156 0 0
157157 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
158158 −0.564602 + 0.977920i −0.564602 + 0.977920i
159159 0.0646021 + 0.111894i 0.0646021 + 0.111894i
160160 0 0
161161 0 0
162162 0 0
163163 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 0.913545 + 1.58231i 0.913545 + 1.58231i
167167 0 0 1.00000 00
−1.00000 π\pi
168168 −0.157960 + 1.50289i −0.157960 + 1.50289i
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
174174 0 0
175175 −0.104528 + 0.994522i −0.104528 + 0.994522i
176176 0 0
177177 −0.564602 0.977920i −0.564602 0.977920i
178178 1.47815 2.56023i 1.47815 2.56023i
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 1.12920 1.12920
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 2.33826 2.33826
189189 −0.913545 + 0.406737i −0.913545 + 0.406737i
190190 0 0
191191 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 −0.157960 + 0.273595i −0.157960 + 0.273595i
193193 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0.190983 + 0.330792i 0.190983 + 0.330792i
195195 0 0
196196 0.722562 + 2.22382i 0.722562 + 2.22382i
197197 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 −1.22256 + 2.11754i −1.22256 + 2.11754i
201201 0 0
202202 2.44512 2.44512
203203 0 0
204204 −2.82709 −2.82709
205205 0 0
206206 −1.22256 + 2.11754i −1.22256 + 2.11754i
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0.244415 + 0.423339i 0.244415 + 0.423339i
213213 0.604528 1.04707i 0.604528 1.04707i
214214 0 0
215215 0 0
216216 −2.44512 −2.44512
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 1.10453 + 1.91310i 1.10453 + 1.91310i
223223 0 0 1.00000 00
−1.00000 π\pi
224224 −0.151057 + 1.43721i −0.151057 + 1.43721i
225225 −0.618034 −0.618034
226226 0 0
227227 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 0 0
235235 0 0
236236 −2.13611 3.69985i −2.13611 3.69985i
237237 0.381966 0.381966
238238 −3.26531 + 1.45381i −3.26531 + 1.45381i
239239 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
240240 0 0
241241 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
242242 −0.913545 + 1.58231i −0.913545 + 1.58231i
243243 −0.500000 0.866025i −0.500000 0.866025i
244244 4.27222 4.27222
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0.309017 0.535233i 0.309017 0.535233i
250250 0 0
251251 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
252252 −1.32019 + 0.587785i −1.32019 + 0.587785i
253253 0 0
254254 0 0
255255 0 0
256256 0.722562 1.25151i 0.722562 1.25151i
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 0 0
259259 1.58268 + 1.14988i 1.58268 + 1.14988i
260260 0 0
261261 0 0
262262 0.190983 0.330792i 0.190983 0.330792i
263263 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
264264 0 0
265265 0 0
266266 0 0
267267 −1.00000 −1.00000
268268 0 0
269269 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
270270 0 0
271271 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
272272 −4.16535 −4.16535
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 −0.564602 0.977920i −0.564602 0.977920i
283283 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
284284 2.28716 3.96149i 2.28716 3.96149i
285285 0 0
286286 0 0
287287 0 0
288288 −0.893136 −0.893136
289289 −1.41355 2.44833i −1.41355 2.44833i
290290 0 0
291291 0.0646021 0.111894i 0.0646021 0.111894i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0.755585 0.839162i 0.755585 0.839162i
295295 0 0
296296 2.39169 + 4.14253i 2.39169 + 4.14253i
297297 0 0
298298 −1.22256 + 2.11754i −1.22256 + 2.11754i
299299 0 0
300300 1.44512 1.44512
301301 0 0
302302 0 0
303303 −0.413545 0.716282i −0.413545 0.716282i
304304 0 0
305305 0 0
306306 −1.10453 1.91310i −1.10453 1.91310i
307307 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
308308 0 0
309309 0.827091 0.827091
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 −2.95630 −2.95630
315315 0 0
316316 1.44512 1.44512
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0.118034 0.204441i 0.118034 0.204441i
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 −0.809017 0.587785i −0.809017 0.587785i
330330 0 0
331331 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
332332 1.16913 2.02499i 1.16913 2.02499i
333333 −0.604528 + 1.04707i −0.604528 + 1.04707i
334334 0 0
335335 0 0
336336 1.20215 0.535233i 1.20215 0.535233i
337337 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
338338 −0.913545 1.58231i −0.913545 1.58231i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0.309017 0.951057i 0.309017 0.951057i
344344 0 0
345345 0 0
346346 0.190983 0.330792i 0.190983 0.330792i
347347 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 1.66913 0.743145i 1.66913 0.743145i
351351 0 0
352352 0 0
353353 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
354354 −1.03158 + 1.78675i −1.03158 + 1.78675i
355355 0 0
356356 −3.78339 −3.78339
357357 0.978148 + 0.710666i 0.978148 + 0.710666i
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 0 0
363363 0.618034 0.618034
364364 0 0
365365 0 0
366366 −1.03158 1.78675i −1.03158 1.78675i
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 0 0
370370 0 0
371371 0.0218524 0.207912i 0.0218524 0.207912i
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0 0
376376 −1.22256 2.11754i −1.22256 2.11754i
377377 0 0
378378 1.47815 + 1.07394i 1.47815 + 1.07394i
379379 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
380380 0 0
381381 0 0
382382 0.913545 1.58231i 0.913545 1.58231i
383383 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
384384 −0.315921 −0.315921
385385 0 0
386386 0 0
387387 0 0
388388 0.244415 0.423339i 0.244415 0.423339i
389389 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 0 0
392392 1.63611 1.81708i 1.63611 1.81708i
393393 −0.129204 −0.129204
394394 0.913545 + 1.58231i 0.913545 + 1.58231i
395395 0 0
396396 0 0
397397 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
398398 0 0
399399 0 0
400400 2.12920 2.12920
401401 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
402402 0 0
403403 0 0
404404 −1.56460 2.70997i −1.56460 2.70997i
405405 0 0
406406 0 0
407407 0 0
408408 1.47815 + 2.56023i 1.47815 + 2.56023i
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0 0
412412 3.12920 3.12920
413413 −0.190983 + 1.81708i −0.190983 + 1.81708i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0.309017 0.535233i 0.309017 0.535233i
424424 0.255585 0.442686i 0.255585 0.442686i
425425 0.978148 + 1.69420i 0.978148 + 1.69420i
426426 −2.20906 −2.20906
427427 −1.47815 1.07394i −1.47815 1.07394i
428428 0 0
429429 0 0
430430 0 0
431431 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
432432 1.06460 + 1.84395i 1.06460 + 1.84395i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0.604528 + 0.128496i 0.604528 + 0.128496i
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 1.41355 2.44833i 1.41355 2.44833i
445445 0 0
446446 0 0
447447 0.827091 0.827091
448448 0.466977 0.207912i 0.466977 0.207912i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0.564602 + 0.977920i 0.564602 + 0.977920i
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
458458 0 0
459459 −0.978148 + 1.69420i −0.978148 + 1.69420i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.500000 + 0.866025i 0.500000 + 0.866025i
472472 −2.23373 + 3.86894i −2.23373 + 3.86894i
473473 0 0
474474 −0.348943 0.604388i −0.348943 0.604388i
475475 0 0
476476 3.70071 + 2.68872i 3.70071 + 2.68872i
477477 0.129204 0.129204
478478 −1.22256 2.11754i −1.22256 2.11754i
479479 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
480480 0 0
481481 0 0
482482 2.44512 2.44512
483483 0 0
484484 2.33826 2.33826
485485 0 0
486486 −0.913545 + 1.58231i −0.913545 + 1.58231i
487487 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
488488 −2.23373 3.86894i −2.23373 3.86894i
489489 0 0
490490 0 0
491491 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −1.78716 + 0.795697i −1.78716 + 0.795697i
498498 −1.12920 −1.12920
499499 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 0 0
501501 0 0
502502 −1.22256 2.11754i −1.22256 2.11754i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 1.22256 + 0.888244i 1.22256 + 0.888244i
505505 0 0
506506 0 0
507507 −0.309017 + 0.535233i −0.309017 + 0.535233i
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 −2.12920 −2.12920
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0.373619 3.55475i 0.373619 3.55475i
519519 −0.129204 −0.129204
520520 0 0
521521 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
522522 0 0
523523 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 −0.488830 −0.488830
525525 −0.500000 0.363271i −0.500000 0.363271i
526526 −2.95630 −2.95630
527527 0 0
528528 0 0
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 0 0
531531 −1.12920 −1.12920
532532 0 0
533533 0 0
534534 0.913545 + 1.58231i 0.913545 + 1.58231i
535535 0 0
536536 0 0
537537 0 0
538538 −1.82709 −1.82709
539539 0 0
540540 0 0
541541 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
542542 1.78716 3.09546i 1.78716 3.09546i
543543 0 0
544544 1.41355 + 2.44833i 1.41355 + 2.44833i
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0.564602 0.977920i 0.564602 0.977920i
550550 0 0
551551 0 0
552552 0 0
553553 −0.500000 0.363271i −0.500000 0.363271i
554554 1.12920 1.12920
555555 0 0
556556 0 0
557557 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 −0.722562 + 1.25151i −0.722562 + 1.25151i
565565 0 0
566566 −0.381966 −0.381966
567567 0 0
568568 −4.78339 −4.78339
569569 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
572572 0 0
573573 −0.618034 −0.618034
574574 0 0
575575 0 0
576576 0.157960 + 0.273595i 0.157960 + 0.273595i
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 −2.58268 + 4.47333i −2.58268 + 4.47333i
579579 0 0
580580 0 0
581581 −0.913545 + 0.406737i −0.913545 + 0.406737i
582582 −0.236068 −0.236068
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 −1.41355 0.300458i −1.41355 0.300458i
589589 0 0
590590 0 0
591591 0.309017 0.535233i 0.309017 0.535233i
592592 2.08268 3.60730i 2.08268 3.60730i
593593 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 0 0
596596 3.12920 3.12920
597597 0 0
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 −0.755585 1.30871i −0.755585 1.30871i
601601 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 −0.755585 + 1.30871i −0.755585 + 1.30871i
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −1.41355 + 2.44833i −1.41355 + 2.44833i
613613 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
614614 1.78716 + 3.09546i 1.78716 + 3.09546i
615615 0 0
616616 0 0
617617 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
618618 −0.755585 1.30871i −0.755585 1.30871i
619619 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0 0
622622 0 0
623623 1.30902 + 0.951057i 1.30902 + 0.951057i
624624 0 0
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 1.89169 + 3.27651i 1.89169 + 3.27651i
629629 3.82709 3.82709
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 −0.755585 1.30871i −0.755585 1.30871i
633633 0 0
634634 0 0
635635 0 0
636636 −0.302113 −0.302113
637637 0 0
638638 0 0
639639 −0.604528 1.04707i −0.604528 1.04707i
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
644644 0 0
645645 0 0
646646 0 0
647647 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 −0.190983 + 1.81708i −0.190983 + 1.81708i
659659 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
660660 0 0
661661 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
662662 1.47815 2.56023i 1.47815 2.56023i
663663 0 0
664664 −2.44512 −2.44512
665665 0 0
666666 2.20906 2.20906
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 −0.722562 0.524972i −0.722562 0.524972i
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0.190983 + 0.330792i 0.190983 + 0.330792i
675675 0.500000 0.866025i 0.500000 0.866025i
676676 −1.16913 + 2.02499i −1.16913 + 2.02499i
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 −0.190983 + 0.0850311i −0.190983 + 0.0850311i
680680 0 0
681681 0 0
682682 0 0
683683 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
684684 0 0
685685 0 0
686686 −1.78716 + 0.379874i −1.78716 + 0.379874i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 −0.488830 −0.488830
693693 0 0
694694 2.44512 2.44512
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −1.89169 1.37440i −1.89169 1.37440i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 3.33826 3.33826
707707 −0.139886 + 1.33093i −0.139886 + 1.33093i
708708 2.64037 2.64037
709709 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
710710 0 0
711711 0.190983 0.330792i 0.190983 0.330792i
712712 1.97815 + 3.42625i 1.97815 + 3.42625i
713713 0 0
714714 0.230909 2.19696i 0.230909 2.19696i
715715 0 0
716716 0 0
717717 −0.413545 + 0.716282i −0.413545 + 0.716282i
718718 0 0
719719 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
720720 0 0
721721 −1.08268 0.786610i −1.08268 0.786610i
722722 1.82709 1.82709
723723 −0.413545 0.716282i −0.413545 0.716282i
724724 0 0
725725 0 0
726726 −0.564602 0.977920i −0.564602 0.977920i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0.618034 0.618034
730730 0 0
731731 0 0
732732 −1.32019 + 2.28663i −1.32019 + 2.28663i
733733 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
740740 0 0
741741 0 0
742742 −0.348943 + 0.155360i −0.348943 + 0.155360i
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 −0.309017 0.535233i −0.309017 0.535233i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 −1.06460 + 1.84395i −1.06460 + 1.84395i
753753 −0.413545 + 0.716282i −0.413545 + 0.716282i
754754 0 0
755755 0 0
756756 0.244415 2.32545i 0.244415 2.32545i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −1.66913 2.89102i −1.66913 2.89102i
759759 0 0
760760 0 0
761761 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 −2.33826 −2.33826
765765 0 0
766766 −1.22256 + 2.11754i −1.22256 + 2.11754i
767767 0 0
768768 0.446568 + 0.773479i 0.446568 + 0.773479i
769769 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
770770 0 0
771771 0 0
772772 0 0
773773 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
774774 0 0
775775 0 0
776776 −0.511170 −0.511170
777777 −1.10453 + 0.491768i −1.10453 + 0.491768i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −2.08268 0.442686i −2.08268 0.442686i
785785 0 0
786786 0.118034 + 0.204441i 0.118034 + 0.204441i
787787 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 1.16913 2.02499i 1.16913 2.02499i
789789 0.500000 + 0.866025i 0.500000 + 0.866025i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −1.22256 + 2.11754i −1.22256 + 2.11754i
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 −1.95630 −1.95630
800800 −0.722562 1.25151i −0.722562 1.25151i
801801 −0.500000 + 0.866025i −0.500000 + 0.866025i
802802 1.78716 3.09546i 1.78716 3.09546i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0.309017 + 0.535233i 0.309017 + 0.535233i
808808 −1.63611 + 2.83382i −1.63611 + 2.83382i
809809 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
812812 0 0
813813 −1.20906 −1.20906
814814 0 0
815815 0 0
816816 1.28716 2.22943i 1.28716 2.22943i
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
824824 −1.63611 2.83382i −1.63611 2.83382i
825825 0 0
826826 3.04965 1.35779i 3.04965 1.35779i
827827 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
828828 0 0
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 −0.190983 0.330792i −0.190983 0.330792i
832832 0 0
833833 −0.604528 1.86055i −0.604528 1.86055i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 −1.12920 −1.12920
847847 −0.809017 0.587785i −0.809017 0.587785i
848848 −0.445125 −0.445125
849849 0.0646021 + 0.111894i 0.0646021 + 0.111894i
850850 1.78716 3.09546i 1.78716 3.09546i
851851 0 0
852852 1.41355 + 2.44833i 1.41355 + 2.44833i
853853 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
854854 −0.348943 + 3.31997i −0.348943 + 3.31997i
855855 0 0
856856 0 0
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 0 0
861861 0 0
862862 −0.381966 −0.381966
863863 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
864864 0.722562 1.25151i 0.722562 1.25151i
865865 0 0
866866 0 0
867867 1.74724 1.74724
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −0.0646021 0.111894i −0.0646021 0.111894i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 0.913545 1.58231i 0.913545 1.58231i
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −0.348943 1.07394i −0.348943 1.07394i
883883 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 −2.95630 −2.95630
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 −0.755585 1.30871i −0.755585 1.30871i
895895 0 0
896896 0.413545 + 0.300458i 0.413545 + 0.300458i
897897 0 0
898898 0 0
899899 0 0
900900 0.722562 1.25151i 0.722562 1.25151i
901901 −0.204489 0.354185i −0.204489 0.354185i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
908908 0 0
909909 −0.827091 −0.827091
910910 0 0
911911 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
912912 0 0
913913 0 0
914914 −0.564602 + 0.977920i −0.564602 + 0.977920i
915915 0 0
916916 0 0
917917 0.169131 + 0.122881i 0.169131 + 0.122881i
918918 3.57433 3.57433
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 0.604528 1.04707i 0.604528 1.04707i
922922 0 0
923923 0 0
924924 0 0
925925 −1.95630 −1.95630
926926 0 0
927927 0.413545 0.716282i 0.413545 0.716282i
928928 0 0
929929 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
942942 0.913545 1.58231i 0.913545 1.58231i
943943 0 0
944944 3.89025 3.89025
945945 0 0
946946 0 0
947947 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 −0.446568 + 0.773479i −0.446568 + 0.773479i
949949 0 0
950950 0 0
951951 0 0
952952 0.500000 4.75718i 0.500000 4.75718i
953953 0 0 1.00000 00
−1.00000 π\pi
954954 −0.118034 0.204441i −0.118034 0.204441i
955955 0 0
956956 −1.56460 + 2.70997i −1.56460 + 2.70997i
957957 0 0
958958 −2.95630 −2.95630
959959 0 0
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 −1.56460 2.70997i −1.56460 2.70997i
965965 0 0
966966 0 0
967967 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
968968 −1.22256 2.11754i −1.22256 2.11754i
969969 0 0
970970 0 0
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 2.33826 2.33826
973973 0 0
974974 −1.82709 −1.82709
975975 0 0
976976 −1.94512 + 3.36906i −1.94512 + 3.36906i
977977 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 1.47815 + 2.56023i 1.47815 + 2.56023i
983983 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0.564602 0.251377i 0.564602 0.251377i
988988 0 0
989989 0 0
990990 0 0
991991 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
992992 0 0
993993 −1.00000 −1.00000
994994 2.89169 + 2.10094i 2.89169 + 2.10094i
995995 0 0
996996 0.722562 + 1.25151i 0.722562 + 1.25151i
997997 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 −0.978148 1.69420i −0.978148 1.69420i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 329.1.f.b.46.1 8
3.2 odd 2 2961.1.x.d.46.4 8
7.2 even 3 inner 329.1.f.b.93.1 yes 8
7.3 odd 6 2303.1.d.e.2255.4 4
7.4 even 3 2303.1.d.d.2255.4 4
7.5 odd 6 2303.1.f.d.422.1 8
7.6 odd 2 2303.1.f.d.704.1 8
21.2 odd 6 2961.1.x.d.1738.4 8
47.46 odd 2 CM 329.1.f.b.46.1 8
141.140 even 2 2961.1.x.d.46.4 8
329.46 odd 6 2303.1.d.d.2255.4 4
329.93 odd 6 inner 329.1.f.b.93.1 yes 8
329.187 even 6 2303.1.f.d.422.1 8
329.234 even 6 2303.1.d.e.2255.4 4
329.328 even 2 2303.1.f.d.704.1 8
987.422 even 6 2961.1.x.d.1738.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
329.1.f.b.46.1 8 1.1 even 1 trivial
329.1.f.b.46.1 8 47.46 odd 2 CM
329.1.f.b.93.1 yes 8 7.2 even 3 inner
329.1.f.b.93.1 yes 8 329.93 odd 6 inner
2303.1.d.d.2255.4 4 7.4 even 3
2303.1.d.d.2255.4 4 329.46 odd 6
2303.1.d.e.2255.4 4 7.3 odd 6
2303.1.d.e.2255.4 4 329.234 even 6
2303.1.f.d.422.1 8 7.5 odd 6
2303.1.f.d.422.1 8 329.187 even 6
2303.1.f.d.704.1 8 7.6 odd 2
2303.1.f.d.704.1 8 329.328 even 2
2961.1.x.d.46.4 8 3.2 odd 2
2961.1.x.d.46.4 8 141.140 even 2
2961.1.x.d.1738.4 8 21.2 odd 6
2961.1.x.d.1738.4 8 987.422 even 6