Properties

Label 329.1.f.b.46.2
Level $329$
Weight $1$
Character 329.46
Analytic conductor $0.164$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [329,1,Mod(46,329)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(329, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("329.46");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 329 = 7 \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 329.f (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.164192389156\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of 15.1.143108492101942920287.1

Embedding invariants

Embedding label 46.2
Root \(0.913545 + 0.406737i\) of defining polynomial
Character \(\chi\) \(=\) 329.46
Dual form 329.1.f.b.93.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.669131 - 1.15897i) q^{2} +(0.809017 - 1.40126i) q^{3} +(-0.395472 + 0.684977i) q^{4} -2.16535 q^{6} +(0.669131 + 0.743145i) q^{7} -0.279773 q^{8} +(-0.809017 - 1.40126i) q^{9} +(0.639886 + 1.10832i) q^{12} +(0.413545 - 1.27276i) q^{14} +(0.582676 + 1.00922i) q^{16} +(-0.913545 + 1.58231i) q^{17} +(-1.08268 + 1.87525i) q^{18} +(1.58268 - 0.336408i) q^{21} +(-0.226341 + 0.392034i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(-0.773659 + 0.164446i) q^{28} +(0.639886 - 1.10832i) q^{32} +2.44512 q^{34} +1.27977 q^{36} +(-0.913545 - 1.58231i) q^{37} +(-1.44890 - 1.60917i) q^{42} +(-0.500000 - 0.866025i) q^{47} +1.88558 q^{48} +(-0.104528 + 0.994522i) q^{49} +1.33826 q^{50} +(1.47815 + 2.56023i) q^{51} +(0.978148 - 1.69420i) q^{53} +(0.669131 + 1.15897i) q^{54} +(-0.187205 - 0.207912i) q^{56} +(-0.669131 + 1.15897i) q^{59} +(-0.669131 - 1.15897i) q^{61} +(0.500000 - 1.53884i) q^{63} -0.547318 q^{64} +(-0.722562 - 1.25151i) q^{68} +1.82709 q^{71} +(0.226341 + 0.392034i) q^{72} +(-1.22256 + 2.11754i) q^{74} +(0.809017 + 1.40126i) q^{75} +(0.809017 + 1.40126i) q^{79} -1.00000 q^{83} +(-0.395472 + 1.21714i) q^{84} +(-0.309017 - 0.535233i) q^{89} +(-0.669131 + 1.15897i) q^{94} +(-1.03536 - 1.79329i) q^{96} -1.95630 q^{97} +(1.22256 - 0.544320i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 2 q^{3} - 5 q^{4} + 4 q^{6} + q^{7} - 2 q^{8} - 2 q^{9} + 5 q^{12} - 3 q^{14} - 6 q^{16} - q^{17} + 2 q^{18} + 2 q^{21} - 8 q^{24} - 4 q^{25} - 8 q^{27} + 5 q^{32} - 2 q^{34} + 10 q^{36}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/329\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(283\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(3\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(4\) −0.395472 + 0.684977i −0.395472 + 0.684977i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) −2.16535 −2.16535
\(7\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(8\) −0.279773 −0.279773
\(9\) −0.809017 1.40126i −0.809017 1.40126i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0.639886 + 1.10832i 0.639886 + 1.10832i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.413545 1.27276i 0.413545 1.27276i
\(15\) 0 0
\(16\) 0.582676 + 1.00922i 0.582676 + 1.00922i
\(17\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(18\) −1.08268 + 1.87525i −1.08268 + 1.87525i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) 1.58268 0.336408i 1.58268 0.336408i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) −0.226341 + 0.392034i −0.226341 + 0.392034i
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) −0.773659 + 0.164446i −0.773659 + 0.164446i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0.639886 1.10832i 0.639886 1.10832i
\(33\) 0 0
\(34\) 2.44512 2.44512
\(35\) 0 0
\(36\) 1.27977 1.27977
\(37\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −1.44890 1.60917i −1.44890 1.60917i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 0.866025i −0.500000 0.866025i
\(48\) 1.88558 1.88558
\(49\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(50\) 1.33826 1.33826
\(51\) 1.47815 + 2.56023i 1.47815 + 2.56023i
\(52\) 0 0
\(53\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(54\) 0.669131 + 1.15897i 0.669131 + 1.15897i
\(55\) 0 0
\(56\) −0.187205 0.207912i −0.187205 0.207912i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(60\) 0 0
\(61\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(62\) 0 0
\(63\) 0.500000 1.53884i 0.500000 1.53884i
\(64\) −0.547318 −0.547318
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −0.722562 1.25151i −0.722562 1.25151i
\(69\) 0 0
\(70\) 0 0
\(71\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(72\) 0.226341 + 0.392034i 0.226341 + 0.392034i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(75\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) −0.395472 + 1.21714i −0.395472 + 1.21714i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(95\) 0 0
\(96\) −1.03536 1.79329i −1.03536 1.79329i
\(97\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(98\) 1.22256 0.544320i 1.22256 0.544320i
\(99\) 0 0
\(100\) −0.395472 0.684977i −0.395472 0.684977i
\(101\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(102\) 1.97815 3.42625i 1.97815 3.42625i
\(103\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.61803 −2.61803
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 0.395472 0.684977i 0.395472 0.684977i
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) −2.95630 −2.95630
\(112\) −0.360114 + 1.10832i −0.360114 + 1.10832i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 1.79094 1.79094
\(119\) −1.78716 + 0.379874i −1.78716 + 0.379874i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) −0.895472 + 1.55100i −0.895472 + 1.55100i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −2.11803 + 0.450202i −2.11803 + 0.450202i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −0.273659 0.473991i −0.273659 0.473991i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.255585 0.442686i 0.255585 0.442686i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −1.61803 −1.61803
\(142\) −1.22256 2.11754i −1.22256 2.11754i
\(143\) 0 0
\(144\) 0.942790 1.63296i 0.942790 1.63296i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(148\) 1.44512 1.44512
\(149\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) 1.08268 1.87525i 1.08268 1.87525i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 2.95630 2.95630
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(158\) 1.08268 1.87525i 1.08268 1.87525i
\(159\) −1.58268 2.74128i −1.58268 2.74128i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.669131 + 1.15897i 0.669131 + 1.15897i
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −0.442790 + 0.0941179i −0.442790 + 0.0941179i
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(174\) 0 0
\(175\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(176\) 0 0
\(177\) 1.08268 + 1.87525i 1.08268 + 1.87525i
\(178\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −2.16535 −2.16535
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.790943 0.790943
\(189\) −0.669131 0.743145i −0.669131 0.743145i
\(190\) 0 0
\(191\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −0.442790 + 0.766934i −0.442790 + 0.766934i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(195\) 0 0
\(196\) −0.639886 0.464905i −0.639886 0.464905i
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0.139886 0.242290i 0.139886 0.242290i
\(201\) 0 0
\(202\) −0.279773 −0.279773
\(203\) 0 0
\(204\) −2.33826 −2.33826
\(205\) 0 0
\(206\) 0.139886 0.242290i 0.139886 0.242290i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0.773659 + 1.34002i 0.773659 + 1.34002i
\(213\) 1.47815 2.56023i 1.47815 2.56023i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.279773 0.279773
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 1.97815 + 3.42625i 1.97815 + 3.42625i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 1.25181 0.266080i 1.25181 0.266080i
\(225\) 1.61803 1.61803
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.529244 0.916678i −0.529244 0.916678i
\(237\) 2.61803 2.61803
\(238\) 1.63611 + 1.81708i 1.63611 + 1.81708i
\(239\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(240\) 0 0
\(241\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(242\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(243\) −0.500000 0.866025i −0.500000 0.866025i
\(244\) 1.05849 1.05849
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(250\) 0 0
\(251\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(252\) 0.856335 + 0.951057i 0.856335 + 0.951057i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.639886 + 1.10832i −0.639886 + 1.10832i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0.564602 1.73767i 0.564602 1.73767i
\(260\) 0 0
\(261\) 0 0
\(262\) 1.30902 2.26728i 1.30902 2.26728i
\(263\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.00000 −1.00000
\(268\) 0 0
\(269\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(270\) 0 0
\(271\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(272\) −2.12920 −2.12920
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 1.08268 + 1.87525i 1.08268 + 1.87525i
\(283\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(284\) −0.722562 + 1.25151i −0.722562 + 1.25151i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.07072 −2.07072
\(289\) −1.16913 2.02499i −1.16913 2.02499i
\(290\) 0 0
\(291\) −1.58268 + 2.74128i −1.58268 + 2.74128i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.226341 2.15349i 0.226341 2.15349i
\(295\) 0 0
\(296\) 0.255585 + 0.442686i 0.255585 + 0.442686i
\(297\) 0 0
\(298\) 0.139886 0.242290i 0.139886 0.242290i
\(299\) 0 0
\(300\) −1.27977 −1.27977
\(301\) 0 0
\(302\) 0 0
\(303\) −0.169131 0.292943i −0.169131 0.292943i
\(304\) 0 0
\(305\) 0 0
\(306\) −1.97815 3.42625i −1.97815 3.42625i
\(307\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(308\) 0 0
\(309\) 0.338261 0.338261
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0.827091 0.827091
\(315\) 0 0
\(316\) −1.27977 −1.27977
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) −2.11803 + 3.66854i −2.11803 + 3.66854i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.309017 0.951057i 0.309017 0.951057i
\(330\) 0 0
\(331\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(332\) 0.395472 0.684977i 0.395472 0.684977i
\(333\) −1.47815 + 2.56023i −1.47815 + 2.56023i
\(334\) 0 0
\(335\) 0 0
\(336\) 1.26170 + 1.40126i 1.26170 + 1.40126i
\(337\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(338\) −0.669131 1.15897i −0.669131 1.15897i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(344\) 0 0
\(345\) 0 0
\(346\) 1.30902 2.26728i 1.30902 2.26728i
\(347\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0.895472 + 0.994522i 0.895472 + 0.994522i
\(351\) 0 0
\(352\) 0 0
\(353\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(354\) 1.44890 2.50957i 1.44890 2.50957i
\(355\) 0 0
\(356\) 0.488830 0.488830
\(357\) −0.913545 + 2.81160i −0.913545 + 2.81160i
\(358\) 0 0
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) −1.61803 −1.61803
\(364\) 0 0
\(365\) 0 0
\(366\) 1.44890 + 2.50957i 1.44890 + 2.50957i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.91355 0.406737i 1.91355 0.406737i
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.139886 + 0.242290i 0.139886 + 0.242290i
\(377\) 0 0
\(378\) −0.413545 + 1.27276i −0.413545 + 1.27276i
\(379\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.669131 1.15897i 0.669131 1.15897i
\(383\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(384\) −0.885579 −0.885579
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.773659 1.34002i 0.773659 1.34002i
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.0292442 0.278240i 0.0292442 0.278240i
\(393\) 3.16535 3.16535
\(394\) 0.669131 + 1.15897i 0.669131 + 1.15897i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.16535 −1.16535
\(401\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.0826761 + 0.143199i 0.0826761 + 0.143199i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.413545 0.716282i −0.413545 0.716282i
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.165352 −0.165352
\(413\) −1.30902 + 0.278240i −1.30902 + 0.278240i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(424\) −0.273659 + 0.473991i −0.273659 + 0.473991i
\(425\) −0.913545 1.58231i −0.913545 1.58231i
\(426\) −3.95630 −3.95630
\(427\) 0.413545 1.27276i 0.413545 1.27276i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(432\) −0.582676 1.00922i −0.582676 1.00922i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 1.47815 0.658114i 1.47815 0.658114i
\(442\) 0 0
\(443\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 1.16913 2.02499i 1.16913 2.02499i
\(445\) 0 0
\(446\) 0 0
\(447\) 0.338261 0.338261
\(448\) −0.366227 0.406737i −0.366227 0.406737i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.08268 1.87525i −1.08268 1.87525i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(458\) 0 0
\(459\) 0.913545 1.58231i 0.913545 1.58231i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(472\) 0.187205 0.324248i 0.187205 0.324248i
\(473\) 0 0
\(474\) −1.75181 3.03422i −1.75181 3.03422i
\(475\) 0 0
\(476\) 0.446568 1.37440i 0.446568 1.37440i
\(477\) −3.16535 −3.16535
\(478\) 0.139886 + 0.242290i 0.139886 + 0.242290i
\(479\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.279773 −0.279773
\(483\) 0 0
\(484\) 0.790943 0.790943
\(485\) 0 0
\(486\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(487\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(488\) 0.187205 + 0.324248i 0.187205 + 0.324248i
\(489\) 0 0
\(490\) 0 0
\(491\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.22256 + 1.35779i 1.22256 + 1.35779i
\(498\) 2.16535 2.16535
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.139886 + 0.242290i 0.139886 + 0.242290i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −0.139886 + 0.430526i −0.139886 + 0.430526i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.809017 1.40126i 0.809017 1.40126i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.16535 1.16535
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −2.39169 + 0.508370i −2.39169 + 0.508370i
\(519\) 3.16535 3.16535
\(520\) 0 0
\(521\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(522\) 0 0
\(523\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) −1.54732 −1.54732
\(525\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(526\) 0.827091 0.827091
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 2.16535 2.16535
\(532\) 0 0
\(533\) 0 0
\(534\) 0.669131 + 1.15897i 0.669131 + 1.15897i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.33826 −1.33826
\(539\) 0 0
\(540\) 0 0
\(541\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(542\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(543\) 0 0
\(544\) 1.16913 + 2.02499i 1.16913 + 2.02499i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −1.08268 + 1.87525i −1.08268 + 1.87525i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(554\) −2.16535 −2.16535
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0.639886 1.10832i 0.639886 1.10832i
\(565\) 0 0
\(566\) −2.61803 −2.61803
\(567\) 0 0
\(568\) −0.511170 −0.511170
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) 0 0
\(573\) 1.61803 1.61803
\(574\) 0 0
\(575\) 0 0
\(576\) 0.442790 + 0.766934i 0.442790 + 0.766934i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −1.56460 + 2.70997i −1.56460 + 2.70997i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.669131 0.743145i −0.669131 0.743145i
\(582\) 4.23607 4.23607
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.16913 + 0.520530i −1.16913 + 0.520530i
\(589\) 0 0
\(590\) 0 0
\(591\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(592\) 1.06460 1.84395i 1.06460 1.84395i
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.165352 −0.165352
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −0.226341 0.392034i −0.226341 0.392034i
\(601\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −0.226341 + 0.392034i −0.226341 + 0.392034i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.16913 + 2.02499i −1.16913 + 2.02499i
\(613\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(614\) −1.22256 2.11754i −1.22256 2.11754i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(618\) −0.226341 0.392034i −0.226341 0.392034i
\(619\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.190983 0.587785i 0.190983 0.587785i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.244415 0.423339i −0.244415 0.423339i
\(629\) 3.33826 3.33826
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −0.226341 0.392034i −0.226341 0.392034i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 2.50361 2.50361
\(637\) 0 0
\(638\) 0 0
\(639\) −1.47815 2.56023i −1.47815 2.56023i
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −1.30902 + 0.278240i −1.30902 + 0.278240i
\(659\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(662\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(663\) 0 0
\(664\) 0.279773 0.279773
\(665\) 0 0
\(666\) 3.95630 3.95630
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.639886 1.96937i 0.639886 1.96937i
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(675\) 0.500000 0.866025i 0.500000 0.866025i
\(676\) −0.395472 + 0.684977i −0.395472 + 0.684977i
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) −1.30902 1.45381i −1.30902 1.45381i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.22256 + 0.544320i 1.22256 + 0.544320i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) −1.54732 −1.54732
\(693\) 0 0
\(694\) −0.279773 −0.279773
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.244415 0.752232i 0.244415 0.752232i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.79094 1.79094
\(707\) 0.204489 0.0434654i 0.204489 0.0434654i
\(708\) −1.71267 −1.71267
\(709\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 1.30902 2.26728i 1.30902 2.26728i
\(712\) 0.0864545 + 0.149744i 0.0864545 + 0.149744i
\(713\) 0 0
\(714\) 3.86984 0.822560i 3.86984 0.822560i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.169131 + 0.292943i −0.169131 + 0.292943i
\(718\) 0 0
\(719\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(720\) 0 0
\(721\) −0.0646021 + 0.198825i −0.0646021 + 0.198825i
\(722\) 1.33826 1.33826
\(723\) −0.169131 0.292943i −0.169131 0.292943i
\(724\) 0 0
\(725\) 0 0
\(726\) 1.08268 + 1.87525i 1.08268 + 1.87525i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.61803 −1.61803
\(730\) 0 0
\(731\) 0 0
\(732\) 0.856335 1.48322i 0.856335 1.48322i
\(733\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.75181 1.94558i −1.75181 1.94558i
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0.582676 1.00922i 0.582676 1.00922i
\(753\) −0.169131 + 0.292943i −0.169131 + 0.292943i
\(754\) 0 0
\(755\) 0 0
\(756\) 0.773659 0.164446i 0.773659 0.164446i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −0.895472 1.55100i −0.895472 1.55100i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.790943 −0.790943
\(765\) 0 0
\(766\) 0.139886 0.242290i 0.139886 0.242290i
\(767\) 0 0
\(768\) 1.03536 + 1.79329i 1.03536 + 1.79329i
\(769\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.547318 0.547318
\(777\) −1.97815 2.19696i −1.97815 2.19696i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.06460 + 0.473991i −1.06460 + 0.473991i
\(785\) 0 0
\(786\) −2.11803 3.66854i −2.11803 3.66854i
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0.395472 0.684977i 0.395472 0.684977i
\(789\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.139886 0.242290i 0.139886 0.242290i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 1.82709 1.82709
\(800\) 0.639886 + 1.10832i 0.639886 + 1.10832i
\(801\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(802\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.809017 1.40126i −0.809017 1.40126i
\(808\) −0.0292442 + 0.0506525i −0.0292442 + 0.0506525i
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(812\) 0 0
\(813\) −2.95630 −2.95630
\(814\) 0 0
\(815\) 0 0
\(816\) −1.72256 + 2.98357i −1.72256 + 2.98357i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(824\) −0.0292442 0.0506525i −0.0292442 0.0506525i
\(825\) 0 0
\(826\) 1.19837 + 1.33093i 1.19837 + 1.33093i
\(827\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) −1.30902 2.26728i −1.30902 2.26728i
\(832\) 0 0
\(833\) −1.47815 1.07394i −1.47815 1.07394i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 2.16535 2.16535
\(847\) 0.309017 0.951057i 0.309017 0.951057i
\(848\) 2.27977 2.27977
\(849\) −1.58268 2.74128i −1.58268 2.74128i
\(850\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(851\) 0 0
\(852\) 1.16913 + 2.02499i 1.16913 + 2.02499i
\(853\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(854\) −1.75181 + 0.372358i −1.75181 + 0.372358i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.61803 −2.61803
\(863\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(864\) −0.639886 + 1.10832i −0.639886 + 1.10832i
\(865\) 0 0
\(866\) 0 0
\(867\) −3.78339 −3.78339
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.58268 + 2.74128i 1.58268 + 2.74128i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0.669131 1.15897i 0.669131 1.15897i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −1.75181 1.27276i −1.75181 1.27276i
\(883\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0.827091 0.827091
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −0.226341 0.392034i −0.226341 0.392034i
\(895\) 0 0
\(896\) 0.169131 0.520530i 0.169131 0.520530i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.639886 + 1.10832i −0.639886 + 1.10832i
\(901\) 1.78716 + 3.09546i 1.78716 + 3.09546i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(908\) 0 0
\(909\) −0.338261 −0.338261
\(910\) 0 0
\(911\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.08268 1.87525i 1.08268 1.87525i
\(915\) 0 0
\(916\) 0 0
\(917\) −0.604528 + 1.86055i −0.604528 + 1.86055i
\(918\) −2.44512 −2.44512
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 1.47815 2.56023i 1.47815 2.56023i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.82709 1.82709
\(926\) 0 0
\(927\) 0.169131 0.292943i 0.169131 0.292943i
\(928\) 0 0
\(929\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(942\) 0.669131 1.15897i 0.669131 1.15897i
\(943\) 0 0
\(944\) −1.55955 −1.55955
\(945\) 0 0
\(946\) 0 0
\(947\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) −1.03536 + 1.79329i −1.03536 + 1.79329i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0.500000 0.106278i 0.500000 0.106278i
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 2.11803 + 3.66854i 2.11803 + 3.66854i
\(955\) 0 0
\(956\) 0.0826761 0.143199i 0.0826761 0.143199i
\(957\) 0 0
\(958\) 0.827091 0.827091
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0.0826761 + 0.143199i 0.0826761 + 0.143199i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(968\) 0.139886 + 0.242290i 0.139886 + 0.242290i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 0.790943 0.790943
\(973\) 0 0
\(974\) −1.33826 −1.33826
\(975\) 0 0
\(976\) 0.779773 1.35061i 0.779773 1.35061i
\(977\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.413545 0.716282i −0.413545 0.716282i
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.08268 1.20243i −1.08268 1.20243i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(992\) 0 0
\(993\) −1.00000 −1.00000
\(994\) 0.755585 2.32545i 0.755585 2.32545i
\(995\) 0 0
\(996\) −0.639886 1.10832i −0.639886 1.10832i
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) 0.913545 + 1.58231i 0.913545 + 1.58231i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 329.1.f.b.46.2 8
3.2 odd 2 2961.1.x.d.46.3 8
7.2 even 3 inner 329.1.f.b.93.2 yes 8
7.3 odd 6 2303.1.d.e.2255.3 4
7.4 even 3 2303.1.d.d.2255.3 4
7.5 odd 6 2303.1.f.d.422.2 8
7.6 odd 2 2303.1.f.d.704.2 8
21.2 odd 6 2961.1.x.d.1738.3 8
47.46 odd 2 CM 329.1.f.b.46.2 8
141.140 even 2 2961.1.x.d.46.3 8
329.46 odd 6 2303.1.d.d.2255.3 4
329.93 odd 6 inner 329.1.f.b.93.2 yes 8
329.187 even 6 2303.1.f.d.422.2 8
329.234 even 6 2303.1.d.e.2255.3 4
329.328 even 2 2303.1.f.d.704.2 8
987.422 even 6 2961.1.x.d.1738.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
329.1.f.b.46.2 8 1.1 even 1 trivial
329.1.f.b.46.2 8 47.46 odd 2 CM
329.1.f.b.93.2 yes 8 7.2 even 3 inner
329.1.f.b.93.2 yes 8 329.93 odd 6 inner
2303.1.d.d.2255.3 4 7.4 even 3
2303.1.d.d.2255.3 4 329.46 odd 6
2303.1.d.e.2255.3 4 7.3 odd 6
2303.1.d.e.2255.3 4 329.234 even 6
2303.1.f.d.422.2 8 7.5 odd 6
2303.1.f.d.422.2 8 329.187 even 6
2303.1.f.d.704.2 8 7.6 odd 2
2303.1.f.d.704.2 8 329.328 even 2
2961.1.x.d.46.3 8 3.2 odd 2
2961.1.x.d.46.3 8 141.140 even 2
2961.1.x.d.1738.3 8 21.2 odd 6
2961.1.x.d.1738.3 8 987.422 even 6