Properties

Label 329.1.f.b.46.2
Level 329329
Weight 11
Character 329.46
Analytic conductor 0.1640.164
Analytic rank 00
Dimension 88
Projective image D15D_{15}
CM discriminant -47
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [329,1,Mod(46,329)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(329, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("329.46");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 329=747 329 = 7 \cdot 47
Weight: k k == 1 1
Character orbit: [χ][\chi] == 329.f (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1641923891560.164192389156
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D15D_{15}
Projective field: Galois closure of 15.1.143108492101942920287.1

Embedding invariants

Embedding label 46.2
Root 0.913545+0.406737i0.913545 + 0.406737i of defining polynomial
Character χ\chi == 329.46
Dual form 329.1.f.b.93.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.6691311.15897i)q2+(0.8090171.40126i)q3+(0.395472+0.684977i)q42.16535q6+(0.669131+0.743145i)q70.279773q8+(0.8090171.40126i)q9+(0.639886+1.10832i)q12+(0.4135451.27276i)q14+(0.582676+1.00922i)q16+(0.913545+1.58231i)q17+(1.08268+1.87525i)q18+(1.582680.336408i)q21+(0.226341+0.392034i)q24+(0.500000+0.866025i)q251.00000q27+(0.773659+0.164446i)q28+(0.6398861.10832i)q32+2.44512q34+1.27977q36+(0.9135451.58231i)q37+(1.448901.60917i)q42+(0.5000000.866025i)q47+1.88558q48+(0.104528+0.994522i)q49+1.33826q50+(1.47815+2.56023i)q51+(0.9781481.69420i)q53+(0.669131+1.15897i)q54+(0.1872050.207912i)q56+(0.669131+1.15897i)q59+(0.6691311.15897i)q61+(0.5000001.53884i)q630.547318q64+(0.7225621.25151i)q68+1.82709q71+(0.226341+0.392034i)q72+(1.22256+2.11754i)q74+(0.809017+1.40126i)q75+(0.809017+1.40126i)q791.00000q83+(0.395472+1.21714i)q84+(0.3090170.535233i)q89+(0.669131+1.15897i)q94+(1.035361.79329i)q961.95630q97+(1.222560.544320i)q98+O(q100)q+(-0.669131 - 1.15897i) q^{2} +(0.809017 - 1.40126i) q^{3} +(-0.395472 + 0.684977i) q^{4} -2.16535 q^{6} +(0.669131 + 0.743145i) q^{7} -0.279773 q^{8} +(-0.809017 - 1.40126i) q^{9} +(0.639886 + 1.10832i) q^{12} +(0.413545 - 1.27276i) q^{14} +(0.582676 + 1.00922i) q^{16} +(-0.913545 + 1.58231i) q^{17} +(-1.08268 + 1.87525i) q^{18} +(1.58268 - 0.336408i) q^{21} +(-0.226341 + 0.392034i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(-0.773659 + 0.164446i) q^{28} +(0.639886 - 1.10832i) q^{32} +2.44512 q^{34} +1.27977 q^{36} +(-0.913545 - 1.58231i) q^{37} +(-1.44890 - 1.60917i) q^{42} +(-0.500000 - 0.866025i) q^{47} +1.88558 q^{48} +(-0.104528 + 0.994522i) q^{49} +1.33826 q^{50} +(1.47815 + 2.56023i) q^{51} +(0.978148 - 1.69420i) q^{53} +(0.669131 + 1.15897i) q^{54} +(-0.187205 - 0.207912i) q^{56} +(-0.669131 + 1.15897i) q^{59} +(-0.669131 - 1.15897i) q^{61} +(0.500000 - 1.53884i) q^{63} -0.547318 q^{64} +(-0.722562 - 1.25151i) q^{68} +1.82709 q^{71} +(0.226341 + 0.392034i) q^{72} +(-1.22256 + 2.11754i) q^{74} +(0.809017 + 1.40126i) q^{75} +(0.809017 + 1.40126i) q^{79} -1.00000 q^{83} +(-0.395472 + 1.21714i) q^{84} +(-0.309017 - 0.535233i) q^{89} +(-0.669131 + 1.15897i) q^{94} +(-1.03536 - 1.79329i) q^{96} -1.95630 q^{97} +(1.22256 - 0.544320i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2+2q35q4+4q6+q72q82q9+5q123q146q16q17+2q18+2q218q244q258q27+5q322q34+10q36+q98+O(q100) 8 q - q^{2} + 2 q^{3} - 5 q^{4} + 4 q^{6} + q^{7} - 2 q^{8} - 2 q^{9} + 5 q^{12} - 3 q^{14} - 6 q^{16} - q^{17} + 2 q^{18} + 2 q^{21} - 8 q^{24} - 4 q^{25} - 8 q^{27} + 5 q^{32} - 2 q^{34} + 10 q^{36}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/329Z)×\left(\mathbb{Z}/329\mathbb{Z}\right)^\times.

nn 9999 283283
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
33 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
44 −0.395472 + 0.684977i −0.395472 + 0.684977i
55 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
66 −2.16535 −2.16535
77 0.669131 + 0.743145i 0.669131 + 0.743145i
88 −0.279773 −0.279773
99 −0.809017 1.40126i −0.809017 1.40126i
1010 0 0
1111 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 0.639886 + 1.10832i 0.639886 + 1.10832i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0.413545 1.27276i 0.413545 1.27276i
1515 0 0
1616 0.582676 + 1.00922i 0.582676 + 1.00922i
1717 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
1818 −1.08268 + 1.87525i −1.08268 + 1.87525i
1919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 0 0
2121 1.58268 0.336408i 1.58268 0.336408i
2222 0 0
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 −0.226341 + 0.392034i −0.226341 + 0.392034i
2525 −0.500000 + 0.866025i −0.500000 + 0.866025i
2626 0 0
2727 −1.00000 −1.00000
2828 −0.773659 + 0.164446i −0.773659 + 0.164446i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0.639886 1.10832i 0.639886 1.10832i
3333 0 0
3434 2.44512 2.44512
3535 0 0
3636 1.27977 1.27977
3737 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 −1.44890 1.60917i −1.44890 1.60917i
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 −0.500000 0.866025i −0.500000 0.866025i
4848 1.88558 1.88558
4949 −0.104528 + 0.994522i −0.104528 + 0.994522i
5050 1.33826 1.33826
5151 1.47815 + 2.56023i 1.47815 + 2.56023i
5252 0 0
5353 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
5454 0.669131 + 1.15897i 0.669131 + 1.15897i
5555 0 0
5656 −0.187205 0.207912i −0.187205 0.207912i
5757 0 0
5858 0 0
5959 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
6060 0 0
6161 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
6262 0 0
6363 0.500000 1.53884i 0.500000 1.53884i
6464 −0.547318 −0.547318
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 −0.722562 1.25151i −0.722562 1.25151i
6969 0 0
7070 0 0
7171 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
7272 0.226341 + 0.392034i 0.226341 + 0.392034i
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 −1.22256 + 2.11754i −1.22256 + 2.11754i
7575 0.809017 + 1.40126i 0.809017 + 1.40126i
7676 0 0
7777 0 0
7878 0 0
7979 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
8080 0 0
8181 0 0
8282 0 0
8383 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 −0.395472 + 1.21714i −0.395472 + 1.21714i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 −0.669131 + 1.15897i −0.669131 + 1.15897i
9595 0 0
9696 −1.03536 1.79329i −1.03536 1.79329i
9797 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
9898 1.22256 0.544320i 1.22256 0.544320i
9999 0 0
100100 −0.395472 0.684977i −0.395472 0.684977i
101101 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
102102 1.97815 3.42625i 1.97815 3.42625i
103103 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
104104 0 0
105105 0 0
106106 −2.61803 −2.61803
107107 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 0.395472 0.684977i 0.395472 0.684977i
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 −2.95630 −2.95630
112112 −0.360114 + 1.10832i −0.360114 + 1.10832i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 1.79094 1.79094
119119 −1.78716 + 0.379874i −1.78716 + 0.379874i
120120 0 0
121121 −0.500000 0.866025i −0.500000 0.866025i
122122 −0.895472 + 1.55100i −0.895472 + 1.55100i
123123 0 0
124124 0 0
125125 0 0
126126 −2.11803 + 0.450202i −2.11803 + 0.450202i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −0.273659 0.473991i −0.273659 0.473991i
129129 0 0
130130 0 0
131131 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.255585 0.442686i 0.255585 0.442686i
137137 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 −1.61803 −1.61803
142142 −1.22256 2.11754i −1.22256 2.11754i
143143 0 0
144144 0.942790 1.63296i 0.942790 1.63296i
145145 0 0
146146 0 0
147147 1.30902 + 0.951057i 1.30902 + 0.951057i
148148 1.44512 1.44512
149149 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
150150 1.08268 1.87525i 1.08268 1.87525i
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 2.95630 2.95630
154154 0 0
155155 0 0
156156 0 0
157157 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
158158 1.08268 1.87525i 1.08268 1.87525i
159159 −1.58268 2.74128i −1.58268 2.74128i
160160 0 0
161161 0 0
162162 0 0
163163 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 0.669131 + 1.15897i 0.669131 + 1.15897i
167167 0 0 1.00000 00
−1.00000 π\pi
168168 −0.442790 + 0.0941179i −0.442790 + 0.0941179i
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
174174 0 0
175175 −0.978148 + 0.207912i −0.978148 + 0.207912i
176176 0 0
177177 1.08268 + 1.87525i 1.08268 + 1.87525i
178178 −0.413545 + 0.716282i −0.413545 + 0.716282i
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 −2.16535 −2.16535
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0.790943 0.790943
189189 −0.669131 0.743145i −0.669131 0.743145i
190190 0 0
191191 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 −0.442790 + 0.766934i −0.442790 + 0.766934i
193193 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 1.30902 + 2.26728i 1.30902 + 2.26728i
195195 0 0
196196 −0.639886 0.464905i −0.639886 0.464905i
197197 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0.139886 0.242290i 0.139886 0.242290i
201201 0 0
202202 −0.279773 −0.279773
203203 0 0
204204 −2.33826 −2.33826
205205 0 0
206206 0.139886 0.242290i 0.139886 0.242290i
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0.773659 + 1.34002i 0.773659 + 1.34002i
213213 1.47815 2.56023i 1.47815 2.56023i
214214 0 0
215215 0 0
216216 0.279773 0.279773
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 1.97815 + 3.42625i 1.97815 + 3.42625i
223223 0 0 1.00000 00
−1.00000 π\pi
224224 1.25181 0.266080i 1.25181 0.266080i
225225 1.61803 1.61803
226226 0 0
227227 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 0 0
235235 0 0
236236 −0.529244 0.916678i −0.529244 0.916678i
237237 2.61803 2.61803
238238 1.63611 + 1.81708i 1.63611 + 1.81708i
239239 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
240240 0 0
241241 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
242242 −0.669131 + 1.15897i −0.669131 + 1.15897i
243243 −0.500000 0.866025i −0.500000 0.866025i
244244 1.05849 1.05849
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 −0.809017 + 1.40126i −0.809017 + 1.40126i
250250 0 0
251251 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
252252 0.856335 + 0.951057i 0.856335 + 0.951057i
253253 0 0
254254 0 0
255255 0 0
256256 −0.639886 + 1.10832i −0.639886 + 1.10832i
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 0 0
259259 0.564602 1.73767i 0.564602 1.73767i
260260 0 0
261261 0 0
262262 1.30902 2.26728i 1.30902 2.26728i
263263 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
264264 0 0
265265 0 0
266266 0 0
267267 −1.00000 −1.00000
268268 0 0
269269 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
270270 0 0
271271 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
272272 −2.12920 −2.12920
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 1.08268 + 1.87525i 1.08268 + 1.87525i
283283 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
284284 −0.722562 + 1.25151i −0.722562 + 1.25151i
285285 0 0
286286 0 0
287287 0 0
288288 −2.07072 −2.07072
289289 −1.16913 2.02499i −1.16913 2.02499i
290290 0 0
291291 −1.58268 + 2.74128i −1.58268 + 2.74128i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0.226341 2.15349i 0.226341 2.15349i
295295 0 0
296296 0.255585 + 0.442686i 0.255585 + 0.442686i
297297 0 0
298298 0.139886 0.242290i 0.139886 0.242290i
299299 0 0
300300 −1.27977 −1.27977
301301 0 0
302302 0 0
303303 −0.169131 0.292943i −0.169131 0.292943i
304304 0 0
305305 0 0
306306 −1.97815 3.42625i −1.97815 3.42625i
307307 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
308308 0 0
309309 0.338261 0.338261
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0.827091 0.827091
315315 0 0
316316 −1.27977 −1.27977
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 −2.11803 + 3.66854i −2.11803 + 3.66854i
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0.309017 0.951057i 0.309017 0.951057i
330330 0 0
331331 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
332332 0.395472 0.684977i 0.395472 0.684977i
333333 −1.47815 + 2.56023i −1.47815 + 2.56023i
334334 0 0
335335 0 0
336336 1.26170 + 1.40126i 1.26170 + 1.40126i
337337 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
338338 −0.669131 1.15897i −0.669131 1.15897i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −0.809017 + 0.587785i −0.809017 + 0.587785i
344344 0 0
345345 0 0
346346 1.30902 2.26728i 1.30902 2.26728i
347347 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0.895472 + 0.994522i 0.895472 + 0.994522i
351351 0 0
352352 0 0
353353 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
354354 1.44890 2.50957i 1.44890 2.50957i
355355 0 0
356356 0.488830 0.488830
357357 −0.913545 + 2.81160i −0.913545 + 2.81160i
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 0 0
363363 −1.61803 −1.61803
364364 0 0
365365 0 0
366366 1.44890 + 2.50957i 1.44890 + 2.50957i
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 0 0
370370 0 0
371371 1.91355 0.406737i 1.91355 0.406737i
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0 0
376376 0.139886 + 0.242290i 0.139886 + 0.242290i
377377 0 0
378378 −0.413545 + 1.27276i −0.413545 + 1.27276i
379379 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
380380 0 0
381381 0 0
382382 0.669131 1.15897i 0.669131 1.15897i
383383 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
384384 −0.885579 −0.885579
385385 0 0
386386 0 0
387387 0 0
388388 0.773659 1.34002i 0.773659 1.34002i
389389 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 0 0
392392 0.0292442 0.278240i 0.0292442 0.278240i
393393 3.16535 3.16535
394394 0.669131 + 1.15897i 0.669131 + 1.15897i
395395 0 0
396396 0 0
397397 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
398398 0 0
399399 0 0
400400 −1.16535 −1.16535
401401 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
402402 0 0
403403 0 0
404404 0.0826761 + 0.143199i 0.0826761 + 0.143199i
405405 0 0
406406 0 0
407407 0 0
408408 −0.413545 0.716282i −0.413545 0.716282i
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0 0
412412 −0.165352 −0.165352
413413 −1.30902 + 0.278240i −1.30902 + 0.278240i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 −0.809017 + 1.40126i −0.809017 + 1.40126i
424424 −0.273659 + 0.473991i −0.273659 + 0.473991i
425425 −0.913545 1.58231i −0.913545 1.58231i
426426 −3.95630 −3.95630
427427 0.413545 1.27276i 0.413545 1.27276i
428428 0 0
429429 0 0
430430 0 0
431431 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
432432 −0.582676 1.00922i −0.582676 1.00922i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 1.47815 0.658114i 1.47815 0.658114i
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 1.16913 2.02499i 1.16913 2.02499i
445445 0 0
446446 0 0
447447 0.338261 0.338261
448448 −0.366227 0.406737i −0.366227 0.406737i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −1.08268 1.87525i −1.08268 1.87525i
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
458458 0 0
459459 0.913545 1.58231i 0.913545 1.58231i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.500000 + 0.866025i 0.500000 + 0.866025i
472472 0.187205 0.324248i 0.187205 0.324248i
473473 0 0
474474 −1.75181 3.03422i −1.75181 3.03422i
475475 0 0
476476 0.446568 1.37440i 0.446568 1.37440i
477477 −3.16535 −3.16535
478478 0.139886 + 0.242290i 0.139886 + 0.242290i
479479 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
480480 0 0
481481 0 0
482482 −0.279773 −0.279773
483483 0 0
484484 0.790943 0.790943
485485 0 0
486486 −0.669131 + 1.15897i −0.669131 + 1.15897i
487487 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
488488 0.187205 + 0.324248i 0.187205 + 0.324248i
489489 0 0
490490 0 0
491491 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 1.22256 + 1.35779i 1.22256 + 1.35779i
498498 2.16535 2.16535
499499 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 0 0
501501 0 0
502502 0.139886 + 0.242290i 0.139886 + 0.242290i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 −0.139886 + 0.430526i −0.139886 + 0.430526i
505505 0 0
506506 0 0
507507 0.809017 1.40126i 0.809017 1.40126i
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 1.16535 1.16535
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 −2.39169 + 0.508370i −2.39169 + 0.508370i
519519 3.16535 3.16535
520520 0 0
521521 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
522522 0 0
523523 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 −1.54732 −1.54732
525525 −0.500000 + 1.53884i −0.500000 + 1.53884i
526526 0.827091 0.827091
527527 0 0
528528 0 0
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 0 0
531531 2.16535 2.16535
532532 0 0
533533 0 0
534534 0.669131 + 1.15897i 0.669131 + 1.15897i
535535 0 0
536536 0 0
537537 0 0
538538 −1.33826 −1.33826
539539 0 0
540540 0 0
541541 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
542542 −1.22256 + 2.11754i −1.22256 + 2.11754i
543543 0 0
544544 1.16913 + 2.02499i 1.16913 + 2.02499i
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 −1.08268 + 1.87525i −1.08268 + 1.87525i
550550 0 0
551551 0 0
552552 0 0
553553 −0.500000 + 1.53884i −0.500000 + 1.53884i
554554 −2.16535 −2.16535
555555 0 0
556556 0 0
557557 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0.639886 1.10832i 0.639886 1.10832i
565565 0 0
566566 −2.61803 −2.61803
567567 0 0
568568 −0.511170 −0.511170
569569 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
572572 0 0
573573 1.61803 1.61803
574574 0 0
575575 0 0
576576 0.442790 + 0.766934i 0.442790 + 0.766934i
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 −1.56460 + 2.70997i −1.56460 + 2.70997i
579579 0 0
580580 0 0
581581 −0.669131 0.743145i −0.669131 0.743145i
582582 4.23607 4.23607
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 −1.16913 + 0.520530i −1.16913 + 0.520530i
589589 0 0
590590 0 0
591591 −0.809017 + 1.40126i −0.809017 + 1.40126i
592592 1.06460 1.84395i 1.06460 1.84395i
593593 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 0 0
596596 −0.165352 −0.165352
597597 0 0
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 −0.226341 0.392034i −0.226341 0.392034i
601601 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 −0.226341 + 0.392034i −0.226341 + 0.392034i
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −1.16913 + 2.02499i −1.16913 + 2.02499i
613613 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
614614 −1.22256 2.11754i −1.22256 2.11754i
615615 0 0
616616 0 0
617617 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
618618 −0.226341 0.392034i −0.226341 0.392034i
619619 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0.190983 0.587785i 0.190983 0.587785i
624624 0 0
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 −0.244415 0.423339i −0.244415 0.423339i
629629 3.33826 3.33826
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 −0.226341 0.392034i −0.226341 0.392034i
633633 0 0
634634 0 0
635635 0 0
636636 2.50361 2.50361
637637 0 0
638638 0 0
639639 −1.47815 2.56023i −1.47815 2.56023i
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 −1.30902 + 0.278240i −1.30902 + 0.278240i
659659 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
660660 0 0
661661 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
662662 −0.413545 + 0.716282i −0.413545 + 0.716282i
663663 0 0
664664 0.279773 0.279773
665665 0 0
666666 3.95630 3.95630
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0.639886 1.96937i 0.639886 1.96937i
673673 0 0 1.00000 00
−1.00000 π\pi
674674 1.30902 + 2.26728i 1.30902 + 2.26728i
675675 0.500000 0.866025i 0.500000 0.866025i
676676 −0.395472 + 0.684977i −0.395472 + 0.684977i
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 −1.30902 1.45381i −1.30902 1.45381i
680680 0 0
681681 0 0
682682 0 0
683683 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
684684 0 0
685685 0 0
686686 1.22256 + 0.544320i 1.22256 + 0.544320i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 −1.54732 −1.54732
693693 0 0
694694 −0.279773 −0.279773
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.244415 0.752232i 0.244415 0.752232i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1.79094 1.79094
707707 0.204489 0.0434654i 0.204489 0.0434654i
708708 −1.71267 −1.71267
709709 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
710710 0 0
711711 1.30902 2.26728i 1.30902 2.26728i
712712 0.0864545 + 0.149744i 0.0864545 + 0.149744i
713713 0 0
714714 3.86984 0.822560i 3.86984 0.822560i
715715 0 0
716716 0 0
717717 −0.169131 + 0.292943i −0.169131 + 0.292943i
718718 0 0
719719 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
720720 0 0
721721 −0.0646021 + 0.198825i −0.0646021 + 0.198825i
722722 1.33826 1.33826
723723 −0.169131 0.292943i −0.169131 0.292943i
724724 0 0
725725 0 0
726726 1.08268 + 1.87525i 1.08268 + 1.87525i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 −1.61803 −1.61803
730730 0 0
731731 0 0
732732 0.856335 1.48322i 0.856335 1.48322i
733733 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
740740 0 0
741741 0 0
742742 −1.75181 1.94558i −1.75181 1.94558i
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0.809017 + 1.40126i 0.809017 + 1.40126i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 0.582676 1.00922i 0.582676 1.00922i
753753 −0.169131 + 0.292943i −0.169131 + 0.292943i
754754 0 0
755755 0 0
756756 0.773659 0.164446i 0.773659 0.164446i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −0.895472 1.55100i −0.895472 1.55100i
759759 0 0
760760 0 0
761761 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 −0.790943 −0.790943
765765 0 0
766766 0.139886 0.242290i 0.139886 0.242290i
767767 0 0
768768 1.03536 + 1.79329i 1.03536 + 1.79329i
769769 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
774774 0 0
775775 0 0
776776 0.547318 0.547318
777777 −1.97815 2.19696i −1.97815 2.19696i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.06460 + 0.473991i −1.06460 + 0.473991i
785785 0 0
786786 −2.11803 3.66854i −2.11803 3.66854i
787787 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0.395472 0.684977i 0.395472 0.684977i
789789 0.500000 + 0.866025i 0.500000 + 0.866025i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0.139886 0.242290i 0.139886 0.242290i
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 1.82709 1.82709
800800 0.639886 + 1.10832i 0.639886 + 1.10832i
801801 −0.500000 + 0.866025i −0.500000 + 0.866025i
802802 −1.22256 + 2.11754i −1.22256 + 2.11754i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 −0.809017 1.40126i −0.809017 1.40126i
808808 −0.0292442 + 0.0506525i −0.0292442 + 0.0506525i
809809 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
812812 0 0
813813 −2.95630 −2.95630
814814 0 0
815815 0 0
816816 −1.72256 + 2.98357i −1.72256 + 2.98357i
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
824824 −0.0292442 0.0506525i −0.0292442 0.0506525i
825825 0 0
826826 1.19837 + 1.33093i 1.19837 + 1.33093i
827827 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
828828 0 0
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 −1.30902 2.26728i −1.30902 2.26728i
832832 0 0
833833 −1.47815 1.07394i −1.47815 1.07394i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 2.16535 2.16535
847847 0.309017 0.951057i 0.309017 0.951057i
848848 2.27977 2.27977
849849 −1.58268 2.74128i −1.58268 2.74128i
850850 −1.22256 + 2.11754i −1.22256 + 2.11754i
851851 0 0
852852 1.16913 + 2.02499i 1.16913 + 2.02499i
853853 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
854854 −1.75181 + 0.372358i −1.75181 + 0.372358i
855855 0 0
856856 0 0
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 0 0
861861 0 0
862862 −2.61803 −2.61803
863863 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
864864 −0.639886 + 1.10832i −0.639886 + 1.10832i
865865 0 0
866866 0 0
867867 −3.78339 −3.78339
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 1.58268 + 2.74128i 1.58268 + 2.74128i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 0.669131 1.15897i 0.669131 1.15897i
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −1.75181 1.27276i −1.75181 1.27276i
883883 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 0.827091 0.827091
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 −0.226341 0.392034i −0.226341 0.392034i
895895 0 0
896896 0.169131 0.520530i 0.169131 0.520530i
897897 0 0
898898 0 0
899899 0 0
900900 −0.639886 + 1.10832i −0.639886 + 1.10832i
901901 1.78716 + 3.09546i 1.78716 + 3.09546i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
908908 0 0
909909 −0.338261 −0.338261
910910 0 0
911911 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
912912 0 0
913913 0 0
914914 1.08268 1.87525i 1.08268 1.87525i
915915 0 0
916916 0 0
917917 −0.604528 + 1.86055i −0.604528 + 1.86055i
918918 −2.44512 −2.44512
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 1.47815 2.56023i 1.47815 2.56023i
922922 0 0
923923 0 0
924924 0 0
925925 1.82709 1.82709
926926 0 0
927927 0.169131 0.292943i 0.169131 0.292943i
928928 0 0
929929 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
942942 0.669131 1.15897i 0.669131 1.15897i
943943 0 0
944944 −1.55955 −1.55955
945945 0 0
946946 0 0
947947 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 −1.03536 + 1.79329i −1.03536 + 1.79329i
949949 0 0
950950 0 0
951951 0 0
952952 0.500000 0.106278i 0.500000 0.106278i
953953 0 0 1.00000 00
−1.00000 π\pi
954954 2.11803 + 3.66854i 2.11803 + 3.66854i
955955 0 0
956956 0.0826761 0.143199i 0.0826761 0.143199i
957957 0 0
958958 0.827091 0.827091
959959 0 0
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 0.0826761 + 0.143199i 0.0826761 + 0.143199i
965965 0 0
966966 0 0
967967 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
968968 0.139886 + 0.242290i 0.139886 + 0.242290i
969969 0 0
970970 0 0
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 0.790943 0.790943
973973 0 0
974974 −1.33826 −1.33826
975975 0 0
976976 0.779773 1.35061i 0.779773 1.35061i
977977 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 −0.413545 0.716282i −0.413545 0.716282i
983983 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 0 0
986986 0 0
987987 −1.08268 1.20243i −1.08268 1.20243i
988988 0 0
989989 0 0
990990 0 0
991991 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
992992 0 0
993993 −1.00000 −1.00000
994994 0.755585 2.32545i 0.755585 2.32545i
995995 0 0
996996 −0.639886 1.10832i −0.639886 1.10832i
997997 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 0.913545 + 1.58231i 0.913545 + 1.58231i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 329.1.f.b.46.2 8
3.2 odd 2 2961.1.x.d.46.3 8
7.2 even 3 inner 329.1.f.b.93.2 yes 8
7.3 odd 6 2303.1.d.e.2255.3 4
7.4 even 3 2303.1.d.d.2255.3 4
7.5 odd 6 2303.1.f.d.422.2 8
7.6 odd 2 2303.1.f.d.704.2 8
21.2 odd 6 2961.1.x.d.1738.3 8
47.46 odd 2 CM 329.1.f.b.46.2 8
141.140 even 2 2961.1.x.d.46.3 8
329.46 odd 6 2303.1.d.d.2255.3 4
329.93 odd 6 inner 329.1.f.b.93.2 yes 8
329.187 even 6 2303.1.f.d.422.2 8
329.234 even 6 2303.1.d.e.2255.3 4
329.328 even 2 2303.1.f.d.704.2 8
987.422 even 6 2961.1.x.d.1738.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
329.1.f.b.46.2 8 1.1 even 1 trivial
329.1.f.b.46.2 8 47.46 odd 2 CM
329.1.f.b.93.2 yes 8 7.2 even 3 inner
329.1.f.b.93.2 yes 8 329.93 odd 6 inner
2303.1.d.d.2255.3 4 7.4 even 3
2303.1.d.d.2255.3 4 329.46 odd 6
2303.1.d.e.2255.3 4 7.3 odd 6
2303.1.d.e.2255.3 4 329.234 even 6
2303.1.f.d.422.2 8 7.5 odd 6
2303.1.f.d.422.2 8 329.187 even 6
2303.1.f.d.704.2 8 7.6 odd 2
2303.1.f.d.704.2 8 329.328 even 2
2961.1.x.d.46.3 8 3.2 odd 2
2961.1.x.d.46.3 8 141.140 even 2
2961.1.x.d.1738.3 8 21.2 odd 6
2961.1.x.d.1738.3 8 987.422 even 6