Properties

Label 33.2.e.a.25.1
Level $33$
Weight $2$
Character 33.25
Analytic conductor $0.264$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,2,Mod(4,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 33.e (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.263506326670\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 25.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 33.25
Dual form 33.2.e.a.4.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 + 0.951057i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.190983 - 0.587785i) q^{4} +(0.309017 + 0.224514i) q^{5} +(-1.30902 - 0.951057i) q^{6} +(0.927051 - 2.85317i) q^{7} +(-0.690983 - 2.12663i) q^{8} +(-0.809017 + 0.587785i) q^{9} -0.618034 q^{10} +(2.80902 - 1.76336i) q^{11} +0.618034 q^{12} +(-5.04508 + 3.66547i) q^{13} +(1.50000 + 4.61653i) q^{14} +(-0.118034 + 0.363271i) q^{15} +(3.92705 + 2.85317i) q^{16} +(0.500000 + 0.363271i) q^{17} +(0.500000 - 1.53884i) q^{18} +(-0.263932 - 0.812299i) q^{19} +(0.190983 - 0.138757i) q^{20} +3.00000 q^{21} +(-2.00000 + 4.97980i) q^{22} -5.47214 q^{23} +(1.80902 - 1.31433i) q^{24} +(-1.50000 - 4.61653i) q^{25} +(3.11803 - 9.59632i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(-1.50000 - 1.08981i) q^{28} +(-1.38197 + 4.25325i) q^{29} +(-0.190983 - 0.587785i) q^{30} +(3.11803 - 2.26538i) q^{31} -3.38197 q^{32} +(2.54508 + 2.12663i) q^{33} -1.00000 q^{34} +(0.927051 - 0.673542i) q^{35} +(0.190983 + 0.587785i) q^{36} +(-1.30902 + 4.02874i) q^{37} +(1.11803 + 0.812299i) q^{38} +(-5.04508 - 3.66547i) q^{39} +(0.263932 - 0.812299i) q^{40} +(1.83688 + 5.65334i) q^{41} +(-3.92705 + 2.85317i) q^{42} +1.76393 q^{43} +(-0.500000 - 1.98787i) q^{44} -0.381966 q^{45} +(7.16312 - 5.20431i) q^{46} +(-0.190983 - 0.587785i) q^{47} +(-1.50000 + 4.61653i) q^{48} +(-1.61803 - 1.17557i) q^{49} +(6.35410 + 4.61653i) q^{50} +(-0.190983 + 0.587785i) q^{51} +(1.19098 + 3.66547i) q^{52} +(5.97214 - 4.33901i) q^{53} +1.61803 q^{54} +(1.26393 + 0.0857567i) q^{55} -6.70820 q^{56} +(0.690983 - 0.502029i) q^{57} +(-2.23607 - 6.88191i) q^{58} +(-1.64590 + 5.06555i) q^{59} +(0.190983 + 0.138757i) q^{60} +(-0.927051 - 0.673542i) q^{61} +(-1.92705 + 5.93085i) q^{62} +(0.927051 + 2.85317i) q^{63} +(-3.42705 + 2.48990i) q^{64} -2.38197 q^{65} +(-5.35410 - 0.363271i) q^{66} +10.5623 q^{67} +(0.309017 - 0.224514i) q^{68} +(-1.69098 - 5.20431i) q^{69} +(-0.572949 + 1.76336i) q^{70} +(-11.7812 - 8.55951i) q^{71} +(1.80902 + 1.31433i) q^{72} +(0.381966 - 1.17557i) q^{73} +(-2.11803 - 6.51864i) q^{74} +(3.92705 - 2.85317i) q^{75} -0.527864 q^{76} +(-2.42705 - 9.64932i) q^{77} +10.0902 q^{78} +(-0.427051 + 0.310271i) q^{79} +(0.572949 + 1.76336i) q^{80} +(0.309017 - 0.951057i) q^{81} +(-7.78115 - 5.65334i) q^{82} +(10.2812 + 7.46969i) q^{83} +(0.572949 - 1.76336i) q^{84} +(0.0729490 + 0.224514i) q^{85} +(-2.30902 + 1.67760i) q^{86} -4.47214 q^{87} +(-5.69098 - 4.75528i) q^{88} +9.47214 q^{89} +(0.500000 - 0.363271i) q^{90} +(5.78115 + 17.7926i) q^{91} +(-1.04508 + 3.21644i) q^{92} +(3.11803 + 2.26538i) q^{93} +(0.809017 + 0.587785i) q^{94} +(0.100813 - 0.310271i) q^{95} +(-1.04508 - 3.21644i) q^{96} +(-12.1631 + 8.83702i) q^{97} +3.23607 q^{98} +(-1.23607 + 3.07768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - q^{3} + 3 q^{4} - q^{5} - 3 q^{6} - 3 q^{7} - 5 q^{8} - q^{9} + 2 q^{10} + 9 q^{11} - 2 q^{12} - 9 q^{13} + 6 q^{14} + 4 q^{15} + 9 q^{16} + 2 q^{17} + 2 q^{18} - 10 q^{19} + 3 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 + 0.951057i −0.925615 + 0.672499i −0.944915 0.327315i \(-0.893856\pi\)
0.0193004 + 0.999814i \(0.493856\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0.190983 0.587785i 0.0954915 0.293893i
\(5\) 0.309017 + 0.224514i 0.138197 + 0.100406i 0.654736 0.755858i \(-0.272780\pi\)
−0.516539 + 0.856264i \(0.672780\pi\)
\(6\) −1.30902 0.951057i −0.534404 0.388267i
\(7\) 0.927051 2.85317i 0.350392 1.07840i −0.608241 0.793752i \(-0.708125\pi\)
0.958633 0.284644i \(-0.0918755\pi\)
\(8\) −0.690983 2.12663i −0.244299 0.751876i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −0.618034 −0.195440
\(11\) 2.80902 1.76336i 0.846950 0.531672i
\(12\) 0.618034 0.178411
\(13\) −5.04508 + 3.66547i −1.39925 + 1.01662i −0.404478 + 0.914548i \(0.632547\pi\)
−0.994777 + 0.102070i \(0.967453\pi\)
\(14\) 1.50000 + 4.61653i 0.400892 + 1.23382i
\(15\) −0.118034 + 0.363271i −0.0304762 + 0.0937962i
\(16\) 3.92705 + 2.85317i 0.981763 + 0.713292i
\(17\) 0.500000 + 0.363271i 0.121268 + 0.0881062i 0.646766 0.762688i \(-0.276121\pi\)
−0.525498 + 0.850795i \(0.676121\pi\)
\(18\) 0.500000 1.53884i 0.117851 0.362708i
\(19\) −0.263932 0.812299i −0.0605502 0.186354i 0.916206 0.400707i \(-0.131236\pi\)
−0.976756 + 0.214353i \(0.931236\pi\)
\(20\) 0.190983 0.138757i 0.0427051 0.0310271i
\(21\) 3.00000 0.654654
\(22\) −2.00000 + 4.97980i −0.426401 + 1.06170i
\(23\) −5.47214 −1.14102 −0.570510 0.821291i \(-0.693254\pi\)
−0.570510 + 0.821291i \(0.693254\pi\)
\(24\) 1.80902 1.31433i 0.369264 0.268286i
\(25\) −1.50000 4.61653i −0.300000 0.923305i
\(26\) 3.11803 9.59632i 0.611497 1.88199i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) −1.50000 1.08981i −0.283473 0.205955i
\(29\) −1.38197 + 4.25325i −0.256625 + 0.789809i 0.736881 + 0.676023i \(0.236298\pi\)
−0.993505 + 0.113787i \(0.963702\pi\)
\(30\) −0.190983 0.587785i −0.0348686 0.107314i
\(31\) 3.11803 2.26538i 0.560015 0.406875i −0.271449 0.962453i \(-0.587503\pi\)
0.831465 + 0.555578i \(0.187503\pi\)
\(32\) −3.38197 −0.597853
\(33\) 2.54508 + 2.12663i 0.443042 + 0.370198i
\(34\) −1.00000 −0.171499
\(35\) 0.927051 0.673542i 0.156700 0.113849i
\(36\) 0.190983 + 0.587785i 0.0318305 + 0.0979642i
\(37\) −1.30902 + 4.02874i −0.215201 + 0.662321i 0.783938 + 0.620839i \(0.213208\pi\)
−0.999139 + 0.0414819i \(0.986792\pi\)
\(38\) 1.11803 + 0.812299i 0.181369 + 0.131772i
\(39\) −5.04508 3.66547i −0.807860 0.586945i
\(40\) 0.263932 0.812299i 0.0417313 0.128436i
\(41\) 1.83688 + 5.65334i 0.286873 + 0.882903i 0.985831 + 0.167741i \(0.0536472\pi\)
−0.698958 + 0.715162i \(0.746353\pi\)
\(42\) −3.92705 + 2.85317i −0.605957 + 0.440254i
\(43\) 1.76393 0.268997 0.134499 0.990914i \(-0.457058\pi\)
0.134499 + 0.990914i \(0.457058\pi\)
\(44\) −0.500000 1.98787i −0.0753778 0.299683i
\(45\) −0.381966 −0.0569401
\(46\) 7.16312 5.20431i 1.05614 0.767334i
\(47\) −0.190983 0.587785i −0.0278577 0.0857373i 0.936161 0.351572i \(-0.114353\pi\)
−0.964019 + 0.265834i \(0.914353\pi\)
\(48\) −1.50000 + 4.61653i −0.216506 + 0.666338i
\(49\) −1.61803 1.17557i −0.231148 0.167939i
\(50\) 6.35410 + 4.61653i 0.898606 + 0.652875i
\(51\) −0.190983 + 0.587785i −0.0267430 + 0.0823064i
\(52\) 1.19098 + 3.66547i 0.165160 + 0.508309i
\(53\) 5.97214 4.33901i 0.820336 0.596009i −0.0964728 0.995336i \(-0.530756\pi\)
0.916809 + 0.399327i \(0.130756\pi\)
\(54\) 1.61803 0.220187
\(55\) 1.26393 + 0.0857567i 0.170429 + 0.0115634i
\(56\) −6.70820 −0.896421
\(57\) 0.690983 0.502029i 0.0915229 0.0664953i
\(58\) −2.23607 6.88191i −0.293610 0.903639i
\(59\) −1.64590 + 5.06555i −0.214278 + 0.659479i 0.784926 + 0.619589i \(0.212701\pi\)
−0.999204 + 0.0398899i \(0.987299\pi\)
\(60\) 0.190983 + 0.138757i 0.0246558 + 0.0179135i
\(61\) −0.927051 0.673542i −0.118697 0.0862382i 0.526853 0.849956i \(-0.323372\pi\)
−0.645550 + 0.763718i \(0.723372\pi\)
\(62\) −1.92705 + 5.93085i −0.244736 + 0.753219i
\(63\) 0.927051 + 2.85317i 0.116797 + 0.359466i
\(64\) −3.42705 + 2.48990i −0.428381 + 0.311237i
\(65\) −2.38197 −0.295447
\(66\) −5.35410 0.363271i −0.659044 0.0447156i
\(67\) 10.5623 1.29039 0.645196 0.764017i \(-0.276776\pi\)
0.645196 + 0.764017i \(0.276776\pi\)
\(68\) 0.309017 0.224514i 0.0374738 0.0272263i
\(69\) −1.69098 5.20431i −0.203570 0.626525i
\(70\) −0.572949 + 1.76336i −0.0684805 + 0.210761i
\(71\) −11.7812 8.55951i −1.39817 1.01583i −0.994913 0.100738i \(-0.967880\pi\)
−0.403253 0.915089i \(-0.632120\pi\)
\(72\) 1.80902 + 1.31433i 0.213195 + 0.154895i
\(73\) 0.381966 1.17557i 0.0447057 0.137590i −0.926212 0.377003i \(-0.876955\pi\)
0.970918 + 0.239412i \(0.0769548\pi\)
\(74\) −2.11803 6.51864i −0.246216 0.757776i
\(75\) 3.92705 2.85317i 0.453457 0.329456i
\(76\) −0.527864 −0.0605502
\(77\) −2.42705 9.64932i −0.276588 1.09964i
\(78\) 10.0902 1.14249
\(79\) −0.427051 + 0.310271i −0.0480470 + 0.0349082i −0.611550 0.791206i \(-0.709453\pi\)
0.563503 + 0.826114i \(0.309453\pi\)
\(80\) 0.572949 + 1.76336i 0.0640576 + 0.197149i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −7.78115 5.65334i −0.859285 0.624307i
\(83\) 10.2812 + 7.46969i 1.12850 + 0.819906i 0.985476 0.169813i \(-0.0543165\pi\)
0.143027 + 0.989719i \(0.454316\pi\)
\(84\) 0.572949 1.76336i 0.0625139 0.192398i
\(85\) 0.0729490 + 0.224514i 0.00791243 + 0.0243520i
\(86\) −2.30902 + 1.67760i −0.248988 + 0.180900i
\(87\) −4.47214 −0.479463
\(88\) −5.69098 4.75528i −0.606661 0.506915i
\(89\) 9.47214 1.00404 0.502022 0.864855i \(-0.332590\pi\)
0.502022 + 0.864855i \(0.332590\pi\)
\(90\) 0.500000 0.363271i 0.0527046 0.0382922i
\(91\) 5.78115 + 17.7926i 0.606029 + 1.86517i
\(92\) −1.04508 + 3.21644i −0.108958 + 0.335337i
\(93\) 3.11803 + 2.26538i 0.323325 + 0.234909i
\(94\) 0.809017 + 0.587785i 0.0834437 + 0.0606254i
\(95\) 0.100813 0.310271i 0.0103432 0.0318331i
\(96\) −1.04508 3.21644i −0.106664 0.328277i
\(97\) −12.1631 + 8.83702i −1.23498 + 0.897264i −0.997253 0.0740689i \(-0.976402\pi\)
−0.237724 + 0.971333i \(0.576402\pi\)
\(98\) 3.23607 0.326892
\(99\) −1.23607 + 3.07768i −0.124230 + 0.309319i
\(100\) −3.00000 −0.300000
\(101\) 2.42705 1.76336i 0.241501 0.175460i −0.460451 0.887685i \(-0.652312\pi\)
0.701952 + 0.712225i \(0.252312\pi\)
\(102\) −0.309017 0.951057i −0.0305972 0.0941686i
\(103\) −1.85410 + 5.70634i −0.182690 + 0.562262i −0.999901 0.0140765i \(-0.995519\pi\)
0.817211 + 0.576339i \(0.195519\pi\)
\(104\) 11.2812 + 8.19624i 1.10621 + 0.803707i
\(105\) 0.927051 + 0.673542i 0.0904709 + 0.0657310i
\(106\) −3.69098 + 11.3597i −0.358500 + 1.10335i
\(107\) 0.0729490 + 0.224514i 0.00705225 + 0.0217046i 0.954521 0.298145i \(-0.0963678\pi\)
−0.947468 + 0.319849i \(0.896368\pi\)
\(108\) −0.500000 + 0.363271i −0.0481125 + 0.0349558i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −1.73607 + 1.08981i −0.165528 + 0.103910i
\(111\) −4.23607 −0.402070
\(112\) 11.7812 8.55951i 1.11321 0.808798i
\(113\) −3.92705 12.0862i −0.369426 1.13698i −0.947163 0.320753i \(-0.896064\pi\)
0.577737 0.816223i \(-0.303936\pi\)
\(114\) −0.427051 + 1.31433i −0.0399970 + 0.123098i
\(115\) −1.69098 1.22857i −0.157685 0.114565i
\(116\) 2.23607 + 1.62460i 0.207614 + 0.150840i
\(117\) 1.92705 5.93085i 0.178156 0.548308i
\(118\) −2.66312 8.19624i −0.245160 0.754525i
\(119\) 1.50000 1.08981i 0.137505 0.0999031i
\(120\) 0.854102 0.0779685
\(121\) 4.78115 9.90659i 0.434650 0.900599i
\(122\) 1.85410 0.167863
\(123\) −4.80902 + 3.49396i −0.433614 + 0.315039i
\(124\) −0.736068 2.26538i −0.0661009 0.203438i
\(125\) 1.16312 3.57971i 0.104033 0.320179i
\(126\) −3.92705 2.85317i −0.349850 0.254181i
\(127\) −7.85410 5.70634i −0.696939 0.506356i 0.181995 0.983299i \(-0.441745\pi\)
−0.878934 + 0.476944i \(0.841745\pi\)
\(128\) 4.20820 12.9515i 0.371956 1.14476i
\(129\) 0.545085 + 1.67760i 0.0479921 + 0.147704i
\(130\) 3.11803 2.26538i 0.273470 0.198687i
\(131\) −13.8541 −1.21044 −0.605219 0.796059i \(-0.706915\pi\)
−0.605219 + 0.796059i \(0.706915\pi\)
\(132\) 1.73607 1.08981i 0.151105 0.0948561i
\(133\) −2.56231 −0.222180
\(134\) −13.8262 + 10.0453i −1.19441 + 0.867786i
\(135\) −0.118034 0.363271i −0.0101587 0.0312654i
\(136\) 0.427051 1.31433i 0.0366193 0.112703i
\(137\) 1.19098 + 0.865300i 0.101753 + 0.0739276i 0.637498 0.770452i \(-0.279969\pi\)
−0.535746 + 0.844379i \(0.679969\pi\)
\(138\) 7.16312 + 5.20431i 0.609765 + 0.443020i
\(139\) 1.80902 5.56758i 0.153439 0.472236i −0.844561 0.535460i \(-0.820138\pi\)
0.997999 + 0.0632239i \(0.0201382\pi\)
\(140\) −0.218847 0.673542i −0.0184960 0.0569247i
\(141\) 0.500000 0.363271i 0.0421076 0.0305930i
\(142\) 23.5623 1.97730
\(143\) −7.70820 + 19.1926i −0.644592 + 1.60497i
\(144\) −4.85410 −0.404508
\(145\) −1.38197 + 1.00406i −0.114766 + 0.0833824i
\(146\) 0.618034 + 1.90211i 0.0511489 + 0.157420i
\(147\) 0.618034 1.90211i 0.0509746 0.156884i
\(148\) 2.11803 + 1.53884i 0.174101 + 0.126492i
\(149\) −12.1353 8.81678i −0.994159 0.722299i −0.0333309 0.999444i \(-0.510612\pi\)
−0.960828 + 0.277146i \(0.910612\pi\)
\(150\) −2.42705 + 7.46969i −0.198168 + 0.609898i
\(151\) 0.618034 + 1.90211i 0.0502949 + 0.154792i 0.973050 0.230596i \(-0.0740676\pi\)
−0.922755 + 0.385388i \(0.874068\pi\)
\(152\) −1.54508 + 1.12257i −0.125323 + 0.0910524i
\(153\) −0.618034 −0.0499651
\(154\) 12.3541 + 10.3229i 0.995522 + 0.831840i
\(155\) 1.47214 0.118245
\(156\) −3.11803 + 2.26538i −0.249643 + 0.181376i
\(157\) 3.00000 + 9.23305i 0.239426 + 0.736878i 0.996503 + 0.0835524i \(0.0266266\pi\)
−0.757077 + 0.653325i \(0.773373\pi\)
\(158\) 0.263932 0.812299i 0.0209973 0.0646231i
\(159\) 5.97214 + 4.33901i 0.473621 + 0.344106i
\(160\) −1.04508 0.759299i −0.0826212 0.0600278i
\(161\) −5.07295 + 15.6129i −0.399804 + 1.23047i
\(162\) 0.500000 + 1.53884i 0.0392837 + 0.120903i
\(163\) 12.3541 8.97578i 0.967648 0.703037i 0.0127336 0.999919i \(-0.495947\pi\)
0.954914 + 0.296882i \(0.0959467\pi\)
\(164\) 3.67376 0.286873
\(165\) 0.309017 + 1.22857i 0.0240569 + 0.0956441i
\(166\) −20.5623 −1.59594
\(167\) 15.3992 11.1882i 1.19162 0.865766i 0.198190 0.980164i \(-0.436494\pi\)
0.993435 + 0.114398i \(0.0364938\pi\)
\(168\) −2.07295 6.37988i −0.159931 0.492219i
\(169\) 8.00000 24.6215i 0.615385 1.89396i
\(170\) −0.309017 0.224514i −0.0237005 0.0172194i
\(171\) 0.690983 + 0.502029i 0.0528408 + 0.0383911i
\(172\) 0.336881 1.03681i 0.0256869 0.0790563i
\(173\) 5.44427 + 16.7557i 0.413920 + 1.27392i 0.913213 + 0.407482i \(0.133593\pi\)
−0.499293 + 0.866433i \(0.666407\pi\)
\(174\) 5.85410 4.25325i 0.443798 0.322438i
\(175\) −14.5623 −1.10081
\(176\) 16.0623 + 1.08981i 1.21074 + 0.0821478i
\(177\) −5.32624 −0.400345
\(178\) −12.3992 + 9.00854i −0.929358 + 0.675218i
\(179\) 0.690983 + 2.12663i 0.0516465 + 0.158952i 0.973553 0.228460i \(-0.0733691\pi\)
−0.921907 + 0.387412i \(0.873369\pi\)
\(180\) −0.0729490 + 0.224514i −0.00543730 + 0.0167343i
\(181\) 6.89919 + 5.01255i 0.512813 + 0.372580i 0.813889 0.581020i \(-0.197346\pi\)
−0.301077 + 0.953600i \(0.597346\pi\)
\(182\) −24.4894 17.7926i −1.81527 1.31887i
\(183\) 0.354102 1.08981i 0.0261760 0.0805614i
\(184\) 3.78115 + 11.6372i 0.278750 + 0.857905i
\(185\) −1.30902 + 0.951057i −0.0962408 + 0.0699231i
\(186\) −6.23607 −0.457251
\(187\) 2.04508 + 0.138757i 0.149551 + 0.0101469i
\(188\) −0.381966 −0.0278577
\(189\) −2.42705 + 1.76336i −0.176542 + 0.128265i
\(190\) 0.163119 + 0.502029i 0.0118339 + 0.0364210i
\(191\) 0.454915 1.40008i 0.0329165 0.101307i −0.933248 0.359232i \(-0.883039\pi\)
0.966165 + 0.257925i \(0.0830388\pi\)
\(192\) −3.42705 2.48990i −0.247326 0.179693i
\(193\) −1.26393 0.918300i −0.0909798 0.0661007i 0.541365 0.840787i \(-0.317908\pi\)
−0.632345 + 0.774687i \(0.717908\pi\)
\(194\) 7.51722 23.1356i 0.539705 1.66104i
\(195\) −0.736068 2.26538i −0.0527109 0.162228i
\(196\) −1.00000 + 0.726543i −0.0714286 + 0.0518959i
\(197\) 26.6180 1.89646 0.948228 0.317590i \(-0.102873\pi\)
0.948228 + 0.317590i \(0.102873\pi\)
\(198\) −1.30902 5.20431i −0.0930278 0.369854i
\(199\) −3.29180 −0.233349 −0.116675 0.993170i \(-0.537223\pi\)
−0.116675 + 0.993170i \(0.537223\pi\)
\(200\) −8.78115 + 6.37988i −0.620921 + 0.451126i
\(201\) 3.26393 + 10.0453i 0.230220 + 0.708544i
\(202\) −1.50000 + 4.61653i −0.105540 + 0.324818i
\(203\) 10.8541 + 7.88597i 0.761809 + 0.553486i
\(204\) 0.309017 + 0.224514i 0.0216355 + 0.0157191i
\(205\) −0.701626 + 2.15938i −0.0490037 + 0.150818i
\(206\) −3.00000 9.23305i −0.209020 0.643297i
\(207\) 4.42705 3.21644i 0.307701 0.223558i
\(208\) −30.2705 −2.09888
\(209\) −2.17376 1.81636i −0.150362 0.125640i
\(210\) −1.85410 −0.127945
\(211\) −9.11803 + 6.62464i −0.627711 + 0.456059i −0.855607 0.517627i \(-0.826816\pi\)
0.227895 + 0.973686i \(0.426816\pi\)
\(212\) −1.40983 4.33901i −0.0968275 0.298004i
\(213\) 4.50000 13.8496i 0.308335 0.948957i
\(214\) −0.309017 0.224514i −0.0211240 0.0153475i
\(215\) 0.545085 + 0.396027i 0.0371745 + 0.0270088i
\(216\) −0.690983 + 2.12663i −0.0470154 + 0.144699i
\(217\) −3.57295 10.9964i −0.242548 0.746485i
\(218\) 0 0
\(219\) 1.23607 0.0835257
\(220\) 0.291796 0.726543i 0.0196729 0.0489835i
\(221\) −3.85410 −0.259255
\(222\) 5.54508 4.02874i 0.372162 0.270391i
\(223\) −3.92705 12.0862i −0.262975 0.809353i −0.992153 0.125029i \(-0.960097\pi\)
0.729178 0.684324i \(-0.239903\pi\)
\(224\) −3.13525 + 9.64932i −0.209483 + 0.644722i
\(225\) 3.92705 + 2.85317i 0.261803 + 0.190211i
\(226\) 16.6353 + 12.0862i 1.10656 + 0.803963i
\(227\) 3.36475 10.3556i 0.223326 0.687327i −0.775131 0.631800i \(-0.782316\pi\)
0.998457 0.0555264i \(-0.0176837\pi\)
\(228\) −0.163119 0.502029i −0.0108028 0.0332477i
\(229\) −8.09017 + 5.87785i −0.534613 + 0.388419i −0.822081 0.569371i \(-0.807187\pi\)
0.287467 + 0.957790i \(0.407187\pi\)
\(230\) 3.38197 0.223000
\(231\) 8.42705 5.29007i 0.554459 0.348061i
\(232\) 10.0000 0.656532
\(233\) −7.01722 + 5.09831i −0.459713 + 0.334001i −0.793419 0.608676i \(-0.791701\pi\)
0.333705 + 0.942677i \(0.391701\pi\)
\(234\) 3.11803 + 9.59632i 0.203832 + 0.627331i
\(235\) 0.0729490 0.224514i 0.00475867 0.0146457i
\(236\) 2.66312 + 1.93487i 0.173354 + 0.125949i
\(237\) −0.427051 0.310271i −0.0277399 0.0201542i
\(238\) −0.927051 + 2.85317i −0.0600918 + 0.184944i
\(239\) −5.42705 16.7027i −0.351047 1.08041i −0.958266 0.285877i \(-0.907715\pi\)
0.607220 0.794534i \(-0.292285\pi\)
\(240\) −1.50000 + 1.08981i −0.0968246 + 0.0703472i
\(241\) 17.1246 1.10309 0.551547 0.834144i \(-0.314038\pi\)
0.551547 + 0.834144i \(0.314038\pi\)
\(242\) 3.16312 + 17.5150i 0.203333 + 1.12591i
\(243\) 1.00000 0.0641500
\(244\) −0.572949 + 0.416272i −0.0366793 + 0.0266491i
\(245\) −0.236068 0.726543i −0.0150818 0.0464171i
\(246\) 2.97214 9.14729i 0.189496 0.583210i
\(247\) 4.30902 + 3.13068i 0.274176 + 0.199201i
\(248\) −6.97214 5.06555i −0.442731 0.321663i
\(249\) −3.92705 + 12.0862i −0.248867 + 0.765933i
\(250\) 1.88197 + 5.79210i 0.119026 + 0.366324i
\(251\) −13.5902 + 9.87384i −0.857804 + 0.623231i −0.927287 0.374352i \(-0.877865\pi\)
0.0694827 + 0.997583i \(0.477865\pi\)
\(252\) 1.85410 0.116797
\(253\) −15.3713 + 9.64932i −0.966387 + 0.606648i
\(254\) 15.7082 0.985620
\(255\) −0.190983 + 0.138757i −0.0119598 + 0.00868932i
\(256\) 4.19098 + 12.8985i 0.261936 + 0.806157i
\(257\) −8.44427 + 25.9888i −0.526739 + 1.62114i 0.234112 + 0.972210i \(0.424782\pi\)
−0.760851 + 0.648927i \(0.775218\pi\)
\(258\) −2.30902 1.67760i −0.143753 0.104443i
\(259\) 10.2812 + 7.46969i 0.638840 + 0.464144i
\(260\) −0.454915 + 1.40008i −0.0282126 + 0.0868296i
\(261\) −1.38197 4.25325i −0.0855415 0.263270i
\(262\) 18.1353 13.1760i 1.12040 0.814018i
\(263\) −0.673762 −0.0415459 −0.0207730 0.999784i \(-0.506613\pi\)
−0.0207730 + 0.999784i \(0.506613\pi\)
\(264\) 2.76393 6.88191i 0.170108 0.423552i
\(265\) 2.81966 0.173210
\(266\) 3.35410 2.43690i 0.205653 0.149416i
\(267\) 2.92705 + 9.00854i 0.179133 + 0.551313i
\(268\) 2.01722 6.20837i 0.123221 0.379236i
\(269\) −19.7984 14.3844i −1.20713 0.877030i −0.212161 0.977235i \(-0.568050\pi\)
−0.994967 + 0.100205i \(0.968050\pi\)
\(270\) 0.500000 + 0.363271i 0.0304290 + 0.0221080i
\(271\) 1.93769 5.96361i 0.117707 0.362263i −0.874795 0.484493i \(-0.839004\pi\)
0.992502 + 0.122229i \(0.0390043\pi\)
\(272\) 0.927051 + 2.85317i 0.0562107 + 0.172999i
\(273\) −15.1353 + 10.9964i −0.916027 + 0.665533i
\(274\) −2.38197 −0.143900
\(275\) −12.3541 10.3229i −0.744980 0.622492i
\(276\) −3.38197 −0.203570
\(277\) −8.44427 + 6.13512i −0.507367 + 0.368624i −0.811824 0.583902i \(-0.801525\pi\)
0.304457 + 0.952526i \(0.401525\pi\)
\(278\) 2.92705 + 9.00854i 0.175553 + 0.540296i
\(279\) −1.19098 + 3.66547i −0.0713023 + 0.219446i
\(280\) −2.07295 1.50609i −0.123882 0.0900058i
\(281\) 4.23607 + 3.07768i 0.252703 + 0.183599i 0.706924 0.707290i \(-0.250082\pi\)
−0.454221 + 0.890889i \(0.650082\pi\)
\(282\) −0.309017 + 0.951057i −0.0184017 + 0.0566346i
\(283\) −6.85410 21.0948i −0.407434 1.25395i −0.918846 0.394617i \(-0.870877\pi\)
0.511412 0.859336i \(-0.329123\pi\)
\(284\) −7.28115 + 5.29007i −0.432057 + 0.313908i
\(285\) 0.326238 0.0193247
\(286\) −8.16312 32.4544i −0.482695 1.91907i
\(287\) 17.8328 1.05264
\(288\) 2.73607 1.98787i 0.161224 0.117136i
\(289\) −5.13525 15.8047i −0.302074 0.929688i
\(290\) 0.854102 2.62866i 0.0501546 0.154360i
\(291\) −12.1631 8.83702i −0.713015 0.518035i
\(292\) −0.618034 0.449028i −0.0361677 0.0262774i
\(293\) 5.54508 17.0660i 0.323947 0.997007i −0.647966 0.761669i \(-0.724380\pi\)
0.971914 0.235338i \(-0.0756198\pi\)
\(294\) 1.00000 + 3.07768i 0.0583212 + 0.179494i
\(295\) −1.64590 + 1.19581i −0.0958279 + 0.0696230i
\(296\) 9.47214 0.550557
\(297\) −3.30902 0.224514i −0.192009 0.0130276i
\(298\) 24.2705 1.40595
\(299\) 27.6074 20.0579i 1.59658 1.15998i
\(300\) −0.927051 2.85317i −0.0535233 0.164728i
\(301\) 1.63525 5.03280i 0.0942545 0.290086i
\(302\) −2.61803 1.90211i −0.150651 0.109454i
\(303\) 2.42705 + 1.76336i 0.139430 + 0.101302i
\(304\) 1.28115 3.94298i 0.0734792 0.226146i
\(305\) −0.135255 0.416272i −0.00774467 0.0238357i
\(306\) 0.809017 0.587785i 0.0462484 0.0336014i
\(307\) −19.5623 −1.11648 −0.558240 0.829680i \(-0.688523\pi\)
−0.558240 + 0.829680i \(0.688523\pi\)
\(308\) −6.13525 0.416272i −0.349589 0.0237193i
\(309\) −6.00000 −0.341328
\(310\) −1.92705 + 1.40008i −0.109449 + 0.0795195i
\(311\) 3.54508 + 10.9106i 0.201023 + 0.618686i 0.999853 + 0.0171293i \(0.00545269\pi\)
−0.798830 + 0.601557i \(0.794547\pi\)
\(312\) −4.30902 + 13.2618i −0.243950 + 0.750801i
\(313\) 22.5172 + 16.3597i 1.27275 + 0.924706i 0.999308 0.0371831i \(-0.0118385\pi\)
0.273440 + 0.961889i \(0.411838\pi\)
\(314\) −12.7082 9.23305i −0.717165 0.521051i
\(315\) −0.354102 + 1.08981i −0.0199514 + 0.0614041i
\(316\) 0.100813 + 0.310271i 0.00567118 + 0.0174541i
\(317\) −20.5172 + 14.9066i −1.15236 + 0.837240i −0.988793 0.149292i \(-0.952301\pi\)
−0.163569 + 0.986532i \(0.552301\pi\)
\(318\) −11.9443 −0.669802
\(319\) 3.61803 + 14.3844i 0.202571 + 0.805370i
\(320\) −1.61803 −0.0904508
\(321\) −0.190983 + 0.138757i −0.0106596 + 0.00774468i
\(322\) −8.20820 25.2623i −0.457425 1.40781i
\(323\) 0.163119 0.502029i 0.00907618 0.0279336i
\(324\) −0.500000 0.363271i −0.0277778 0.0201817i
\(325\) 24.4894 + 17.7926i 1.35843 + 0.986954i
\(326\) −7.63525 + 23.4989i −0.422878 + 1.30148i
\(327\) 0 0
\(328\) 10.7533 7.81272i 0.593751 0.431385i
\(329\) −1.85410 −0.102220
\(330\) −1.57295 1.31433i −0.0865880 0.0723514i
\(331\) −22.5967 −1.24203 −0.621015 0.783799i \(-0.713279\pi\)
−0.621015 + 0.783799i \(0.713279\pi\)
\(332\) 6.35410 4.61653i 0.348727 0.253365i
\(333\) −1.30902 4.02874i −0.0717337 0.220774i
\(334\) −9.51722 + 29.2910i −0.520759 + 1.60273i
\(335\) 3.26393 + 2.37139i 0.178328 + 0.129563i
\(336\) 11.7812 + 8.55951i 0.642715 + 0.466959i
\(337\) −4.23607 + 13.0373i −0.230753 + 0.710186i 0.766903 + 0.641763i \(0.221797\pi\)
−0.997656 + 0.0684228i \(0.978203\pi\)
\(338\) 12.9443 + 39.8384i 0.704076 + 2.16692i
\(339\) 10.2812 7.46969i 0.558396 0.405698i
\(340\) 0.145898 0.00791243
\(341\) 4.76393 11.8617i 0.257981 0.642347i
\(342\) −1.38197 −0.0747282
\(343\) 12.1353 8.81678i 0.655242 0.476061i
\(344\) −1.21885 3.75123i −0.0657158 0.202253i
\(345\) 0.645898 1.98787i 0.0347740 0.107023i
\(346\) −23.0623 16.7557i −1.23984 0.900794i
\(347\) 2.47214 + 1.79611i 0.132711 + 0.0964203i 0.652160 0.758081i \(-0.273863\pi\)
−0.519449 + 0.854501i \(0.673863\pi\)
\(348\) −0.854102 + 2.62866i −0.0457847 + 0.140911i
\(349\) 9.30902 + 28.6502i 0.498300 + 1.53361i 0.811750 + 0.584006i \(0.198515\pi\)
−0.313449 + 0.949605i \(0.601485\pi\)
\(350\) 19.0623 13.8496i 1.01892 0.740291i
\(351\) 6.23607 0.332857
\(352\) −9.50000 + 5.96361i −0.506352 + 0.317861i
\(353\) −1.52786 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(354\) 6.97214 5.06555i 0.370565 0.269231i
\(355\) −1.71885 5.29007i −0.0912269 0.280768i
\(356\) 1.80902 5.56758i 0.0958777 0.295081i
\(357\) 1.50000 + 1.08981i 0.0793884 + 0.0576791i
\(358\) −2.92705 2.12663i −0.154699 0.112396i
\(359\) −5.32624 + 16.3925i −0.281108 + 0.865162i 0.706430 + 0.707783i \(0.250304\pi\)
−0.987538 + 0.157379i \(0.949696\pi\)
\(360\) 0.263932 + 0.812299i 0.0139104 + 0.0428119i
\(361\) 14.7812 10.7391i 0.777955 0.565218i
\(362\) −13.7984 −0.725226
\(363\) 10.8992 + 1.48584i 0.572059 + 0.0779864i
\(364\) 11.5623 0.606029
\(365\) 0.381966 0.277515i 0.0199930 0.0145258i
\(366\) 0.572949 + 1.76336i 0.0299485 + 0.0921721i
\(367\) −4.50000 + 13.8496i −0.234898 + 0.722942i 0.762237 + 0.647298i \(0.224101\pi\)
−0.997135 + 0.0756437i \(0.975899\pi\)
\(368\) −21.4894 15.6129i −1.12021 0.813880i
\(369\) −4.80902 3.49396i −0.250347 0.181888i
\(370\) 0.809017 2.48990i 0.0420588 0.129444i
\(371\) −6.84346 21.0620i −0.355295 1.09348i
\(372\) 1.92705 1.40008i 0.0999129 0.0725910i
\(373\) 22.4164 1.16068 0.580339 0.814375i \(-0.302920\pi\)
0.580339 + 0.814375i \(0.302920\pi\)
\(374\) −2.80902 + 1.76336i −0.145251 + 0.0911810i
\(375\) 3.76393 0.194369
\(376\) −1.11803 + 0.812299i −0.0576582 + 0.0418911i
\(377\) −8.61803 26.5236i −0.443851 1.36603i
\(378\) 1.50000 4.61653i 0.0771517 0.237448i
\(379\) −22.9894 16.7027i −1.18088 0.857962i −0.188613 0.982052i \(-0.560399\pi\)
−0.992271 + 0.124089i \(0.960399\pi\)
\(380\) −0.163119 0.118513i −0.00836783 0.00607958i
\(381\) 3.00000 9.23305i 0.153695 0.473024i
\(382\) 0.736068 + 2.26538i 0.0376605 + 0.115907i
\(383\) 7.19098 5.22455i 0.367442 0.266962i −0.388707 0.921361i \(-0.627078\pi\)
0.756149 + 0.654399i \(0.227078\pi\)
\(384\) 13.6180 0.694942
\(385\) 1.41641 3.52671i 0.0721868 0.179738i
\(386\) 2.52786 0.128665
\(387\) −1.42705 + 1.03681i −0.0725411 + 0.0527042i
\(388\) 2.87132 + 8.83702i 0.145769 + 0.448632i
\(389\) −2.86475 + 8.81678i −0.145248 + 0.447028i −0.997043 0.0768476i \(-0.975515\pi\)
0.851795 + 0.523876i \(0.175515\pi\)
\(390\) 3.11803 + 2.26538i 0.157888 + 0.114712i
\(391\) −2.73607 1.98787i −0.138369 0.100531i
\(392\) −1.38197 + 4.25325i −0.0697998 + 0.214822i
\(393\) −4.28115 13.1760i −0.215956 0.664643i
\(394\) −34.8435 + 25.3153i −1.75539 + 1.27536i
\(395\) −0.201626 −0.0101449
\(396\) 1.57295 + 1.31433i 0.0790437 + 0.0660475i
\(397\) −25.2918 −1.26936 −0.634679 0.772776i \(-0.718868\pi\)
−0.634679 + 0.772776i \(0.718868\pi\)
\(398\) 4.30902 3.13068i 0.215992 0.156927i
\(399\) −0.791796 2.43690i −0.0396394 0.121997i
\(400\) 7.28115 22.4091i 0.364058 1.12045i
\(401\) 12.0623 + 8.76378i 0.602363 + 0.437642i 0.846717 0.532044i \(-0.178576\pi\)
−0.244354 + 0.969686i \(0.578576\pi\)
\(402\) −13.8262 10.0453i −0.689590 0.501017i
\(403\) −7.42705 + 22.8581i −0.369968 + 1.13864i
\(404\) −0.572949 1.76336i −0.0285053 0.0877302i
\(405\) 0.309017 0.224514i 0.0153552 0.0111562i
\(406\) −21.7082 −1.07736
\(407\) 3.42705 + 13.6251i 0.169873 + 0.675369i
\(408\) 1.38197 0.0684175
\(409\) 23.4164 17.0130i 1.15787 0.841240i 0.168360 0.985726i \(-0.446153\pi\)
0.989507 + 0.144486i \(0.0461529\pi\)
\(410\) −1.13525 3.49396i −0.0560662 0.172554i
\(411\) −0.454915 + 1.40008i −0.0224393 + 0.0690611i
\(412\) 3.00000 + 2.17963i 0.147799 + 0.107383i
\(413\) 12.9271 + 9.39205i 0.636099 + 0.462153i
\(414\) −2.73607 + 8.42075i −0.134470 + 0.413857i
\(415\) 1.50000 + 4.61653i 0.0736321 + 0.226616i
\(416\) 17.0623 12.3965i 0.836548 0.607788i
\(417\) 5.85410 0.286677
\(418\) 4.57295 + 0.310271i 0.223670 + 0.0151758i
\(419\) −21.5066 −1.05067 −0.525333 0.850897i \(-0.676059\pi\)
−0.525333 + 0.850897i \(0.676059\pi\)
\(420\) 0.572949 0.416272i 0.0279570 0.0203120i
\(421\) −1.15248 3.54696i −0.0561682 0.172868i 0.919037 0.394172i \(-0.128969\pi\)
−0.975205 + 0.221304i \(0.928969\pi\)
\(422\) 5.63525 17.3435i 0.274320 0.844270i
\(423\) 0.500000 + 0.363271i 0.0243108 + 0.0176629i
\(424\) −13.3541 9.70232i −0.648533 0.471186i
\(425\) 0.927051 2.85317i 0.0449686 0.138399i
\(426\) 7.28115 + 22.4091i 0.352773 + 1.08572i
\(427\) −2.78115 + 2.02063i −0.134589 + 0.0977849i
\(428\) 0.145898 0.00705225
\(429\) −20.6353 1.40008i −0.996279 0.0675967i
\(430\) −1.09017 −0.0525727
\(431\) 1.20820 0.877812i 0.0581971 0.0422827i −0.558306 0.829635i \(-0.688549\pi\)
0.616503 + 0.787352i \(0.288549\pi\)
\(432\) −1.50000 4.61653i −0.0721688 0.222113i
\(433\) −1.85410 + 5.70634i −0.0891025 + 0.274229i −0.985672 0.168674i \(-0.946051\pi\)
0.896569 + 0.442903i \(0.146051\pi\)
\(434\) 15.1353 + 10.9964i 0.726515 + 0.527844i
\(435\) −1.38197 1.00406i −0.0662602 0.0481409i
\(436\) 0 0
\(437\) 1.44427 + 4.44501i 0.0690889 + 0.212634i
\(438\) −1.61803 + 1.17557i −0.0773127 + 0.0561709i
\(439\) 16.7082 0.797439 0.398720 0.917073i \(-0.369455\pi\)
0.398720 + 0.917073i \(0.369455\pi\)
\(440\) −0.690983 2.74717i −0.0329413 0.130966i
\(441\) 2.00000 0.0952381
\(442\) 5.04508 3.66547i 0.239970 0.174349i
\(443\) −0.270510 0.832544i −0.0128523 0.0395553i 0.944425 0.328728i \(-0.106620\pi\)
−0.957277 + 0.289172i \(0.906620\pi\)
\(444\) −0.809017 + 2.48990i −0.0383942 + 0.118165i
\(445\) 2.92705 + 2.12663i 0.138756 + 0.100812i
\(446\) 16.6353 + 12.0862i 0.787702 + 0.572299i
\(447\) 4.63525 14.2658i 0.219240 0.674751i
\(448\) 3.92705 + 12.0862i 0.185536 + 0.571020i
\(449\) 12.5623 9.12705i 0.592852 0.430732i −0.250483 0.968121i \(-0.580589\pi\)
0.843334 + 0.537389i \(0.180589\pi\)
\(450\) −7.85410 −0.370246
\(451\) 15.1287 + 12.6412i 0.712382 + 0.595253i
\(452\) −7.85410 −0.369426
\(453\) −1.61803 + 1.17557i −0.0760219 + 0.0552331i
\(454\) 5.44427 + 16.7557i 0.255512 + 0.786386i
\(455\) −2.20820 + 6.79615i −0.103522 + 0.318609i
\(456\) −1.54508 1.12257i −0.0723552 0.0525692i
\(457\) −26.5344 19.2784i −1.24123 0.901806i −0.243549 0.969889i \(-0.578312\pi\)
−0.997680 + 0.0680830i \(0.978312\pi\)
\(458\) 5.00000 15.3884i 0.233635 0.719054i
\(459\) −0.190983 0.587785i −0.00891432 0.0274355i
\(460\) −1.04508 + 0.759299i −0.0487273 + 0.0354025i
\(461\) −9.90983 −0.461547 −0.230773 0.973008i \(-0.574126\pi\)
−0.230773 + 0.973008i \(0.574126\pi\)
\(462\) −6.00000 + 14.9394i −0.279145 + 0.695043i
\(463\) 8.79837 0.408895 0.204448 0.978878i \(-0.434460\pi\)
0.204448 + 0.978878i \(0.434460\pi\)
\(464\) −17.5623 + 12.7598i −0.815310 + 0.592357i
\(465\) 0.454915 + 1.40008i 0.0210962 + 0.0649274i
\(466\) 4.33688 13.3475i 0.200902 0.618313i
\(467\) 11.5172 + 8.36775i 0.532953 + 0.387213i 0.821461 0.570264i \(-0.193159\pi\)
−0.288508 + 0.957478i \(0.593159\pi\)
\(468\) −3.11803 2.26538i −0.144131 0.104717i
\(469\) 9.79180 30.1360i 0.452143 1.39155i
\(470\) 0.118034 + 0.363271i 0.00544450 + 0.0167565i
\(471\) −7.85410 + 5.70634i −0.361898 + 0.262934i
\(472\) 11.9098 0.548194
\(473\) 4.95492 3.11044i 0.227827 0.143018i
\(474\) 0.854102 0.0392302
\(475\) −3.35410 + 2.43690i −0.153897 + 0.111813i
\(476\) −0.354102 1.08981i −0.0162302 0.0499515i
\(477\) −2.28115 + 7.02067i −0.104447 + 0.321454i
\(478\) 22.9894 + 16.7027i 1.05151 + 0.763966i
\(479\) 13.6803 + 9.93935i 0.625071 + 0.454140i 0.854689 0.519140i \(-0.173748\pi\)
−0.229618 + 0.973281i \(0.573748\pi\)
\(480\) 0.399187 1.22857i 0.0182203 0.0560763i
\(481\) −8.16312 25.1235i −0.372206 1.14553i
\(482\) −22.4164 + 16.2865i −1.02104 + 0.741829i
\(483\) −16.4164 −0.746972
\(484\) −4.90983 4.70228i −0.223174 0.213740i
\(485\) −5.74265 −0.260760
\(486\) −1.30902 + 0.951057i −0.0593782 + 0.0431408i
\(487\) 12.1074 + 37.2627i 0.548638 + 1.68853i 0.712179 + 0.701998i \(0.247709\pi\)
−0.163540 + 0.986537i \(0.552291\pi\)
\(488\) −0.791796 + 2.43690i −0.0358429 + 0.110313i
\(489\) 12.3541 + 8.97578i 0.558672 + 0.405899i
\(490\) 1.00000 + 0.726543i 0.0451754 + 0.0328218i
\(491\) −8.10081 + 24.9317i −0.365585 + 1.12515i 0.584030 + 0.811732i \(0.301475\pi\)
−0.949614 + 0.313421i \(0.898525\pi\)
\(492\) 1.13525 + 3.49396i 0.0511812 + 0.157520i
\(493\) −2.23607 + 1.62460i −0.100707 + 0.0731682i
\(494\) −8.61803 −0.387744
\(495\) −1.07295 + 0.673542i −0.0482255 + 0.0302735i
\(496\) 18.7082 0.840023
\(497\) −35.3435 + 25.6785i −1.58537 + 1.15184i
\(498\) −6.35410 19.5559i −0.284734 0.876322i
\(499\) 0.791796 2.43690i 0.0354457 0.109091i −0.931768 0.363054i \(-0.881734\pi\)
0.967214 + 0.253963i \(0.0817342\pi\)
\(500\) −1.88197 1.36733i −0.0841641 0.0611488i
\(501\) 15.3992 + 11.1882i 0.687985 + 0.499850i
\(502\) 8.39919 25.8500i 0.374874 1.15374i
\(503\) −9.29180 28.5972i −0.414301 1.27509i −0.912875 0.408239i \(-0.866143\pi\)
0.498574 0.866847i \(-0.333857\pi\)
\(504\) 5.42705 3.94298i 0.241740 0.175634i
\(505\) 1.14590 0.0509918
\(506\) 10.9443 27.2501i 0.486532 1.21142i
\(507\) 25.8885 1.14975
\(508\) −4.85410 + 3.52671i −0.215366 + 0.156473i
\(509\) 6.60739 + 20.3355i 0.292867 + 0.901353i 0.983929 + 0.178558i \(0.0571432\pi\)
−0.691062 + 0.722796i \(0.742857\pi\)
\(510\) 0.118034 0.363271i 0.00522663 0.0160859i
\(511\) −3.00000 2.17963i −0.132712 0.0964210i
\(512\) 4.28115 + 3.11044i 0.189202 + 0.137463i
\(513\) −0.263932 + 0.812299i −0.0116529 + 0.0358639i
\(514\) −13.6631 42.0508i −0.602654 1.85478i
\(515\) −1.85410 + 1.34708i −0.0817015 + 0.0593596i
\(516\) 1.09017 0.0479921
\(517\) −1.57295 1.31433i −0.0691782 0.0578041i
\(518\) −20.5623 −0.903456
\(519\) −14.2533 + 10.3556i −0.625650 + 0.454561i
\(520\) 1.64590 + 5.06555i 0.0721774 + 0.222139i
\(521\) 12.0000 36.9322i 0.525730 1.61803i −0.237139 0.971476i \(-0.576210\pi\)
0.762869 0.646553i \(-0.223790\pi\)
\(522\) 5.85410 + 4.25325i 0.256227 + 0.186160i
\(523\) −28.2984 20.5600i −1.23740 0.899025i −0.239979 0.970778i \(-0.577141\pi\)
−0.997422 + 0.0717533i \(0.977141\pi\)
\(524\) −2.64590 + 8.14324i −0.115587 + 0.355739i
\(525\) −4.50000 13.8496i −0.196396 0.604445i
\(526\) 0.881966 0.640786i 0.0384555 0.0279396i
\(527\) 2.38197 0.103760
\(528\) 3.92705 + 15.6129i 0.170903 + 0.679466i
\(529\) 6.94427 0.301925
\(530\) −3.69098 + 2.68166i −0.160326 + 0.116484i
\(531\) −1.64590 5.06555i −0.0714259 0.219826i
\(532\) −0.489357 + 1.50609i −0.0212163 + 0.0652971i
\(533\) −29.9894 21.7885i −1.29898 0.943767i
\(534\) −12.3992 9.00854i −0.536565 0.389838i
\(535\) −0.0278640 + 0.0857567i −0.00120467 + 0.00370759i
\(536\) −7.29837 22.4621i −0.315242 0.970214i
\(537\) −1.80902 + 1.31433i −0.0780648 + 0.0567174i
\(538\) 39.5967 1.70714
\(539\) −6.61803 0.449028i −0.285059 0.0193410i
\(540\) −0.236068 −0.0101587
\(541\) 0.454915 0.330515i 0.0195583 0.0142100i −0.577963 0.816063i \(-0.696152\pi\)
0.597521 + 0.801853i \(0.296152\pi\)
\(542\) 3.13525 + 9.64932i 0.134671 + 0.414474i
\(543\) −2.63525 + 8.11048i −0.113090 + 0.348054i
\(544\) −1.69098 1.22857i −0.0725003 0.0526745i
\(545\) 0 0
\(546\) 9.35410 28.7890i 0.400319 1.23205i
\(547\) 5.98936 + 18.4333i 0.256086 + 0.788153i 0.993614 + 0.112836i \(0.0359933\pi\)
−0.737527 + 0.675317i \(0.764007\pi\)
\(548\) 0.736068 0.534785i 0.0314433 0.0228449i
\(549\) 1.14590 0.0489057
\(550\) 25.9894 + 1.76336i 1.10819 + 0.0751897i
\(551\) 3.81966 0.162723
\(552\) −9.89919 + 7.19218i −0.421337 + 0.306120i
\(553\) 0.489357 + 1.50609i 0.0208096 + 0.0640453i
\(554\) 5.21885 16.0620i 0.221728 0.682407i
\(555\) −1.30902 0.951057i −0.0555647 0.0403701i
\(556\) −2.92705 2.12663i −0.124135 0.0901891i
\(557\) 8.06231 24.8132i 0.341611 1.05137i −0.621762 0.783206i \(-0.713583\pi\)
0.963373 0.268164i \(-0.0864170\pi\)
\(558\) −1.92705 5.93085i −0.0815786 0.251073i
\(559\) −8.89919 + 6.46564i −0.376396 + 0.273467i
\(560\) 5.56231 0.235050
\(561\) 0.500000 + 1.98787i 0.0211100 + 0.0839279i
\(562\) −8.47214 −0.357375
\(563\) −21.7533 + 15.8047i −0.916792 + 0.666088i −0.942723 0.333575i \(-0.891745\pi\)
0.0259316 + 0.999664i \(0.491745\pi\)
\(564\) −0.118034 0.363271i −0.00497013 0.0152965i
\(565\) 1.50000 4.61653i 0.0631055 0.194219i
\(566\) 29.0344 + 21.0948i 1.22041 + 0.886679i
\(567\) −2.42705 1.76336i −0.101927 0.0740540i
\(568\) −10.0623 + 30.9686i −0.422205 + 1.29941i
\(569\) 10.5279 + 32.4014i 0.441351 + 1.35834i 0.886436 + 0.462851i \(0.153173\pi\)
−0.445085 + 0.895488i \(0.646827\pi\)
\(570\) −0.427051 + 0.310271i −0.0178872 + 0.0129958i
\(571\) −25.6869 −1.07496 −0.537482 0.843275i \(-0.680624\pi\)
−0.537482 + 0.843275i \(0.680624\pi\)
\(572\) 9.80902 + 8.19624i 0.410136 + 0.342702i
\(573\) 1.47214 0.0614994
\(574\) −23.3435 + 16.9600i −0.974337 + 0.707897i
\(575\) 8.20820 + 25.2623i 0.342306 + 1.05351i
\(576\) 1.30902 4.02874i 0.0545424 0.167864i
\(577\) −12.3262 8.95554i −0.513148 0.372824i 0.300868 0.953666i \(-0.402723\pi\)
−0.814016 + 0.580842i \(0.802723\pi\)
\(578\) 21.7533 + 15.8047i 0.904818 + 0.657388i
\(579\) 0.482779 1.48584i 0.0200636 0.0617495i
\(580\) 0.326238 + 1.00406i 0.0135463 + 0.0416912i
\(581\) 30.8435 22.4091i 1.27960 0.929685i
\(582\) 24.3262 1.00836
\(583\) 9.12461 22.7194i 0.377903 0.940940i
\(584\) −2.76393 −0.114372
\(585\) 1.92705 1.40008i 0.0796738 0.0578864i
\(586\) 8.97214 + 27.6134i 0.370636 + 1.14070i
\(587\) 7.51064 23.1154i 0.309997 0.954074i −0.667767 0.744370i \(-0.732750\pi\)
0.977765 0.209704i \(-0.0672500\pi\)
\(588\) −1.00000 0.726543i −0.0412393 0.0299621i
\(589\) −2.66312 1.93487i −0.109732 0.0797249i
\(590\) 1.01722 3.13068i 0.0418783 0.128888i
\(591\) 8.22542 + 25.3153i 0.338349 + 1.04133i
\(592\) −16.6353 + 12.0862i −0.683705 + 0.496741i
\(593\) −29.2148 −1.19971 −0.599854 0.800110i \(-0.704775\pi\)
−0.599854 + 0.800110i \(0.704775\pi\)
\(594\) 4.54508 2.85317i 0.186487 0.117067i
\(595\) 0.708204 0.0290335
\(596\) −7.50000 + 5.44907i −0.307212 + 0.223203i
\(597\) −1.01722 3.13068i −0.0416321 0.128130i
\(598\) −17.0623 + 52.5124i −0.697730 + 2.14739i
\(599\) 17.5623 + 12.7598i 0.717576 + 0.521350i 0.885609 0.464432i \(-0.153741\pi\)
−0.168033 + 0.985781i \(0.553741\pi\)
\(600\) −8.78115 6.37988i −0.358489 0.260458i
\(601\) −6.12868 + 18.8621i −0.249994 + 0.769402i 0.744781 + 0.667309i \(0.232554\pi\)
−0.994775 + 0.102093i \(0.967446\pi\)
\(602\) 2.64590 + 8.14324i 0.107839 + 0.331894i
\(603\) −8.54508 + 6.20837i −0.347983 + 0.252824i
\(604\) 1.23607 0.0502949
\(605\) 3.70163 1.98787i 0.150493 0.0808184i
\(606\) −4.85410 −0.197184
\(607\) 1.88197 1.36733i 0.0763866 0.0554981i −0.548937 0.835864i \(-0.684967\pi\)
0.625323 + 0.780366i \(0.284967\pi\)
\(608\) 0.892609 + 2.74717i 0.0362001 + 0.111412i
\(609\) −4.14590 + 12.7598i −0.168000 + 0.517052i
\(610\) 0.572949 + 0.416272i 0.0231980 + 0.0168544i
\(611\) 3.11803 + 2.26538i 0.126142 + 0.0916476i
\(612\) −0.118034 + 0.363271i −0.00477124 + 0.0146844i
\(613\) 1.03444 + 3.18368i 0.0417807 + 0.128588i 0.969771 0.244016i \(-0.0784650\pi\)
−0.927990 + 0.372604i \(0.878465\pi\)
\(614\) 25.6074 18.6049i 1.03343 0.750831i
\(615\) −2.27051 −0.0915558
\(616\) −18.8435 + 11.8290i −0.759225 + 0.476602i
\(617\) 46.4164 1.86865 0.934327 0.356417i \(-0.116002\pi\)
0.934327 + 0.356417i \(0.116002\pi\)
\(618\) 7.85410 5.70634i 0.315938 0.229543i
\(619\) −9.63525 29.6543i −0.387274 1.19191i −0.934817 0.355129i \(-0.884437\pi\)
0.547544 0.836777i \(-0.315563\pi\)
\(620\) 0.281153 0.865300i 0.0112914 0.0347513i
\(621\) 4.42705 + 3.21644i 0.177651 + 0.129071i
\(622\) −15.0172 10.9106i −0.602136 0.437477i
\(623\) 8.78115 27.0256i 0.351809 1.08276i
\(624\) −9.35410 28.7890i −0.374464 1.15248i
\(625\) −18.4721 + 13.4208i −0.738885 + 0.536832i
\(626\) −45.0344 −1.79994
\(627\) 1.05573 2.62866i 0.0421617 0.104978i
\(628\) 6.00000 0.239426
\(629\) −2.11803 + 1.53884i −0.0844515 + 0.0613576i
\(630\) −0.572949 1.76336i −0.0228268 0.0702538i
\(631\) 3.93363 12.1065i 0.156595 0.481951i −0.841724 0.539908i \(-0.818459\pi\)
0.998319 + 0.0579577i \(0.0184589\pi\)
\(632\) 0.954915 + 0.693786i 0.0379845 + 0.0275973i
\(633\) −9.11803 6.62464i −0.362409 0.263306i
\(634\) 12.6803 39.0261i 0.503601 1.54992i
\(635\) −1.14590 3.52671i −0.0454736 0.139953i
\(636\) 3.69098 2.68166i 0.146357 0.106335i
\(637\) 12.4721 0.494164
\(638\) −18.4164 15.3884i −0.729113 0.609233i
\(639\) 14.5623 0.576076
\(640\) 4.20820 3.05744i 0.166344 0.120856i
\(641\) −2.08359 6.41264i −0.0822969 0.253284i 0.901439 0.432907i \(-0.142512\pi\)
−0.983736 + 0.179623i \(0.942512\pi\)
\(642\) 0.118034 0.363271i 0.00465843 0.0143372i
\(643\) 14.9164 + 10.8374i 0.588246 + 0.427386i 0.841687 0.539965i \(-0.181563\pi\)
−0.253442 + 0.967351i \(0.581563\pi\)
\(644\) 8.20820 + 5.96361i 0.323449 + 0.234999i
\(645\) −0.208204 + 0.640786i −0.00819802 + 0.0252309i
\(646\) 0.263932 + 0.812299i 0.0103843 + 0.0319595i
\(647\) −2.59017 + 1.88187i −0.101830 + 0.0739839i −0.637535 0.770421i \(-0.720046\pi\)
0.535705 + 0.844405i \(0.320046\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 4.30902 + 17.1315i 0.169144 + 0.672471i
\(650\) −48.9787 −1.92110
\(651\) 9.35410 6.79615i 0.366616 0.266362i
\(652\) −2.91641 8.97578i −0.114215 0.351519i
\(653\) 6.78773 20.8905i 0.265624 0.817508i −0.725924 0.687774i \(-0.758588\pi\)
0.991549 0.129734i \(-0.0414122\pi\)
\(654\) 0 0
\(655\) −4.28115 3.11044i −0.167278 0.121535i
\(656\) −8.91641 + 27.4419i −0.348127 + 1.07143i
\(657\) 0.381966 + 1.17557i 0.0149019 + 0.0458634i
\(658\) 2.42705 1.76336i 0.0946163 0.0687428i
\(659\) 20.6525 0.804506 0.402253 0.915528i \(-0.368227\pi\)
0.402253 + 0.915528i \(0.368227\pi\)
\(660\) 0.781153 + 0.0530006i 0.0304063 + 0.00206304i
\(661\) −21.0902 −0.820313 −0.410156 0.912015i \(-0.634526\pi\)
−0.410156 + 0.912015i \(0.634526\pi\)
\(662\) 29.5795 21.4908i 1.14964 0.835263i
\(663\) −1.19098 3.66547i −0.0462539 0.142355i
\(664\) 8.78115 27.0256i 0.340775 1.04880i
\(665\) −0.791796 0.575274i −0.0307045 0.0223082i
\(666\) 5.54508 + 4.02874i 0.214868 + 0.156111i
\(667\) 7.56231 23.2744i 0.292814 0.901188i
\(668\) −3.63525 11.1882i −0.140652 0.432883i
\(669\) 10.2812 7.46969i 0.397492 0.288795i
\(670\) −6.52786 −0.252193
\(671\) −3.79180 0.257270i −0.146381 0.00993180i
\(672\) −10.1459 −0.391387
\(673\) 11.6631 8.47375i 0.449580 0.326639i −0.339850 0.940480i \(-0.610376\pi\)
0.789430 + 0.613841i \(0.210376\pi\)
\(674\) −6.85410 21.0948i −0.264010 0.812540i
\(675\) −1.50000 + 4.61653i −0.0577350 + 0.177690i
\(676\) −12.9443 9.40456i −0.497857 0.361714i
\(677\) −18.1803 13.2088i −0.698727 0.507655i 0.180790 0.983522i \(-0.442134\pi\)
−0.879517 + 0.475867i \(0.842134\pi\)
\(678\) −6.35410 + 19.5559i −0.244028 + 0.751040i
\(679\) 13.9377 + 42.8958i 0.534880 + 1.64619i
\(680\) 0.427051 0.310271i 0.0163767 0.0118983i
\(681\) 10.8885 0.417250
\(682\) 5.04508 + 20.0579i 0.193186 + 0.768058i
\(683\) −38.8885 −1.48803 −0.744014 0.668164i \(-0.767081\pi\)
−0.744014 + 0.668164i \(0.767081\pi\)
\(684\) 0.427051 0.310271i 0.0163287 0.0118635i
\(685\) 0.173762 + 0.534785i 0.00663911 + 0.0204331i
\(686\) −7.50000 + 23.0826i −0.286351 + 0.881299i
\(687\) −8.09017 5.87785i −0.308659 0.224254i
\(688\) 6.92705 + 5.03280i 0.264091 + 0.191874i
\(689\) −14.2254 + 43.7814i −0.541946 + 1.66794i
\(690\) 1.04508 + 3.21644i 0.0397857 + 0.122448i
\(691\) 32.1246 23.3399i 1.22208 0.887892i 0.225807 0.974172i \(-0.427498\pi\)
0.996271 + 0.0862806i \(0.0274981\pi\)
\(692\) 10.8885 0.413920
\(693\) 7.63525 + 6.37988i 0.290039 + 0.242352i
\(694\) −4.94427 −0.187682
\(695\) 1.80902 1.31433i 0.0686199 0.0498553i
\(696\) 3.09017 + 9.51057i 0.117133 + 0.360497i
\(697\) −1.13525 + 3.49396i −0.0430008 + 0.132343i
\(698\) −39.4336 28.6502i −1.49258 1.08443i
\(699\) −7.01722 5.09831i −0.265416 0.192836i
\(700\) −2.78115 + 8.55951i −0.105118 + 0.323519i
\(701\) 15.3541 + 47.2551i 0.579916 + 1.78480i 0.618792 + 0.785555i \(0.287623\pi\)
−0.0388752 + 0.999244i \(0.512377\pi\)
\(702\) −8.16312 + 5.93085i −0.308097 + 0.223846i
\(703\) 3.61803 0.136457
\(704\) −5.23607 + 13.0373i −0.197342 + 0.491361i
\(705\) 0.236068 0.00889083
\(706\) 2.00000 1.45309i 0.0752710 0.0546876i
\(707\) −2.78115 8.55951i −0.104596 0.321913i
\(708\) −1.01722 + 3.13068i −0.0382295 + 0.117658i
\(709\) −5.06231 3.67798i −0.190119 0.138129i 0.488654 0.872478i \(-0.337488\pi\)
−0.678773 + 0.734348i \(0.737488\pi\)
\(710\) 7.28115 + 5.29007i 0.273257 + 0.198533i
\(711\) 0.163119 0.502029i 0.00611744 0.0188275i
\(712\) −6.54508 20.1437i −0.245287 0.754917i
\(713\) −17.0623 + 12.3965i −0.638988 + 0.464252i
\(714\) −3.00000 −0.112272
\(715\) −6.69098 + 4.20025i −0.250229 + 0.157081i
\(716\) 1.38197 0.0516465
\(717\) 14.2082 10.3229i 0.530615 0.385514i
\(718\) −8.61803 26.5236i −0.321622 0.989851i
\(719\) −8.78115 + 27.0256i −0.327482 + 1.00789i 0.642826 + 0.766012i \(0.277762\pi\)
−0.970308 + 0.241873i \(0.922238\pi\)
\(720\) −1.50000 1.08981i −0.0559017 0.0406150i
\(721\) 14.5623 + 10.5801i 0.542329 + 0.394025i
\(722\) −9.13525 + 28.1154i −0.339979 + 1.04635i
\(723\) 5.29180 + 16.2865i 0.196804 + 0.605700i
\(724\) 4.26393 3.09793i 0.158468 0.115134i
\(725\) 21.7082 0.806222
\(726\) −15.6803 + 8.42075i −0.581952 + 0.312523i
\(727\) 32.1459 1.19223 0.596113 0.802901i \(-0.296711\pi\)
0.596113 + 0.802901i \(0.296711\pi\)
\(728\) 33.8435 24.5887i 1.25432 0.911318i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) −0.236068 + 0.726543i −0.00873727 + 0.0268905i
\(731\) 0.881966 + 0.640786i 0.0326207 + 0.0237003i
\(732\) −0.572949 0.416272i −0.0211768 0.0153858i
\(733\) −7.50658 + 23.1029i −0.277262 + 0.853324i 0.711350 + 0.702838i \(0.248084\pi\)
−0.988612 + 0.150486i \(0.951916\pi\)
\(734\) −7.28115 22.4091i −0.268752 0.827134i
\(735\) 0.618034 0.449028i 0.0227965 0.0165626i
\(736\) 18.5066 0.682162
\(737\) 29.6697 18.6251i 1.09290 0.686064i
\(738\) 9.61803 0.354045
\(739\) 20.2254 14.6946i 0.744004 0.540551i −0.149958 0.988692i \(-0.547914\pi\)
0.893963 + 0.448142i \(0.147914\pi\)
\(740\) 0.309017 + 0.951057i 0.0113597 + 0.0349615i
\(741\) −1.64590 + 5.06555i −0.0604636 + 0.186088i
\(742\) 28.9894 + 21.0620i 1.06423 + 0.773210i
\(743\) −10.3713 7.53521i −0.380487 0.276440i 0.381059 0.924551i \(-0.375559\pi\)
−0.761546 + 0.648111i \(0.775559\pi\)
\(744\) 2.66312 8.19624i 0.0976347 0.300489i
\(745\) −1.77051 5.44907i −0.0648665 0.199638i
\(746\) −29.3435 + 21.3193i −1.07434 + 0.780554i
\(747\) −12.7082 −0.464969
\(748\) 0.472136 1.17557i 0.0172630 0.0429831i
\(749\) 0.708204 0.0258772
\(750\) −4.92705 + 3.57971i −0.179910 + 0.130713i
\(751\) −16.3541 50.3328i −0.596770 1.83667i −0.545713 0.837972i \(-0.683741\pi\)
−0.0510571 0.998696i \(-0.516259\pi\)
\(752\) 0.927051 2.85317i 0.0338061 0.104044i
\(753\) −13.5902 9.87384i −0.495253 0.359823i
\(754\) 36.5066 + 26.5236i 1.32949 + 0.965932i
\(755\) −0.236068 + 0.726543i −0.00859139 + 0.0264416i
\(756\) 0.572949 + 1.76336i 0.0208380 + 0.0641326i
\(757\) 12.8992 9.37181i 0.468829 0.340624i −0.328156 0.944624i \(-0.606427\pi\)
0.796985 + 0.603999i \(0.206427\pi\)
\(758\) 45.9787 1.67002
\(759\) −13.9271 11.6372i −0.505520 0.422403i
\(760\) −0.729490 −0.0264614
\(761\) −3.95492 + 2.87341i −0.143366 + 0.104161i −0.657156 0.753754i \(-0.728241\pi\)
0.513791 + 0.857916i \(0.328241\pi\)
\(762\) 4.85410 + 14.9394i 0.175846 + 0.541197i
\(763\) 0 0
\(764\) −0.736068 0.534785i −0.0266300 0.0193478i
\(765\) −0.190983 0.138757i −0.00690501 0.00501678i
\(766\) −4.44427 + 13.6781i −0.160578 + 0.494208i
\(767\) −10.2639 31.5891i −0.370609 1.14062i
\(768\) −10.9721 + 7.97172i −0.395923 + 0.287655i
\(769\) −47.6869 −1.71963 −0.859817 0.510602i \(-0.829423\pi\)
−0.859817 + 0.510602i \(0.829423\pi\)
\(770\) 1.50000 + 5.96361i 0.0540562 + 0.214914i
\(771\) −27.3262 −0.984130
\(772\) −0.781153 + 0.567541i −0.0281143 + 0.0204262i
\(773\) 15.2188 + 46.8388i 0.547384 + 1.68467i 0.715253 + 0.698865i \(0.246311\pi\)
−0.167870 + 0.985809i \(0.553689\pi\)
\(774\) 0.881966 2.71441i 0.0317016 0.0975675i
\(775\) −15.1353 10.9964i −0.543674 0.395003i
\(776\) 27.1976 + 19.7602i 0.976336 + 0.709349i
\(777\) −3.92705 + 12.0862i −0.140882 + 0.433591i
\(778\) −4.63525 14.2658i −0.166182 0.511455i
\(779\) 4.10739 2.98419i 0.147163 0.106920i
\(780\) −1.47214 −0.0527109
\(781\) −48.1869 3.26944i −1.72426 0.116990i
\(782\) 5.47214 0.195683
\(783\) 3.61803 2.62866i 0.129298 0.0939405i
\(784\) −3.00000 9.23305i −0.107143 0.329752i
\(785\) −1.14590 + 3.52671i −0.0408989 + 0.125874i
\(786\) 18.1353 + 13.1760i 0.646863 + 0.469974i
\(787\) 19.1803 + 13.9353i 0.683705 + 0.496741i 0.874585 0.484873i \(-0.161134\pi\)
−0.190880 + 0.981613i \(0.561134\pi\)
\(788\) 5.08359 15.6457i 0.181095 0.557355i
\(789\) −0.208204 0.640786i −0.00741226 0.0228126i
\(790\) 0.263932 0.191758i 0.00939028 0.00682244i
\(791\) −38.1246 −1.35556
\(792\) 7.39919 + 0.502029i 0.262919 + 0.0178388i
\(793\) 7.14590 0.253758
\(794\) 33.1074 24.0539i 1.17494 0.853642i
\(795\) 0.871323 + 2.68166i 0.0309026 + 0.0951085i
\(796\) −0.628677 + 1.93487i −0.0222829 + 0.0685796i
\(797\) −12.3262 8.95554i −0.436618 0.317221i 0.347672 0.937616i \(-0.386972\pi\)
−0.784290 + 0.620395i \(0.786972\pi\)
\(798\) 3.35410 + 2.43690i 0.118734 + 0.0862652i
\(799\) 0.118034 0.363271i 0.00417574 0.0128516i
\(800\) 5.07295 + 15.6129i 0.179356 + 0.552000i
\(801\) −7.66312 + 5.56758i −0.270763 + 0.196721i
\(802\) −24.1246 −0.851870
\(803\) −1.00000 3.97574i −0.0352892 0.140301i
\(804\) 6.52786 0.230220
\(805\) −5.07295 + 3.68571i −0.178798 + 0.129904i
\(806\) −12.0172 36.9852i −0.423289 1.30275i
\(807\) 7.56231 23.2744i 0.266206 0.819297i
\(808\) −5.42705 3.94298i −0.190923 0.138714i
\(809\) −20.4894 14.8864i −0.720367 0.523378i 0.166134 0.986103i \(-0.446872\pi\)
−0.886502 + 0.462726i \(0.846872\pi\)
\(810\) −0.190983 + 0.587785i −0.00671046 + 0.0206527i
\(811\) 14.1353 + 43.5038i 0.496356 + 1.52763i 0.814833 + 0.579696i \(0.196829\pi\)
−0.318477 + 0.947931i \(0.603171\pi\)
\(812\) 6.70820 4.87380i 0.235412 0.171037i
\(813\) 6.27051 0.219916
\(814\) −17.4443 14.5761i −0.611421 0.510893i
\(815\) 5.83282 0.204315
\(816\) −2.42705 + 1.76336i −0.0849638 + 0.0617298i
\(817\) −0.465558 1.43284i −0.0162878 0.0501287i
\(818\) −14.4721 + 44.5407i −0.506006 + 1.55733i
\(819\) −15.1353 10.9964i −0.528869 0.384246i
\(820\) 1.13525 + 0.824811i 0.0396448 + 0.0288036i
\(821\) 4.19756 12.9188i 0.146496 0.450868i −0.850704 0.525644i \(-0.823824\pi\)
0.997200 + 0.0747763i \(0.0238243\pi\)
\(822\) −0.736068 2.26538i −0.0256733 0.0790144i
\(823\) 21.4615 15.5927i 0.748101 0.543527i −0.147137 0.989116i \(-0.547006\pi\)
0.895238 + 0.445589i \(0.147006\pi\)
\(824\) 13.4164 0.467383
\(825\) 6.00000 14.9394i 0.208893 0.520123i
\(826\) −25.8541 −0.899579
\(827\) −10.4164 + 7.56796i −0.362214 + 0.263164i −0.753975 0.656903i \(-0.771866\pi\)
0.391761 + 0.920067i \(0.371866\pi\)
\(828\) −1.04508 3.21644i −0.0363192 0.111779i
\(829\) −13.1910 + 40.5977i −0.458142 + 1.41002i 0.409265 + 0.912416i \(0.365785\pi\)
−0.867407 + 0.497600i \(0.834215\pi\)
\(830\) −6.35410 4.61653i −0.220554 0.160242i
\(831\) −8.44427 6.13512i −0.292929 0.212825i
\(832\) 8.16312 25.1235i 0.283005 0.871001i
\(833\) −0.381966 1.17557i −0.0132343 0.0407311i
\(834\) −7.66312 + 5.56758i −0.265352 + 0.192790i
\(835\) 7.27051 0.251606
\(836\) −1.48278 + 0.930812i −0.0512830 + 0.0321928i
\(837\) −3.85410 −0.133217
\(838\) 28.1525 20.4540i 0.972511 0.706571i
\(839\) −7.19756 22.1518i −0.248487 0.764766i −0.995043 0.0994428i \(-0.968294\pi\)
0.746556 0.665323i \(-0.231706\pi\)
\(840\) 0.791796 2.43690i 0.0273196 0.0840810i
\(841\) 7.28115 + 5.29007i 0.251074 + 0.182416i
\(842\) 4.88197 + 3.54696i 0.168244 + 0.122236i
\(843\) −1.61803 + 4.97980i −0.0557281 + 0.171513i
\(844\) 2.15248 + 6.62464i 0.0740913 + 0.228029i
\(845\) 8.00000 5.81234i 0.275208 0.199951i
\(846\) −1.00000 −0.0343807
\(847\) −23.8328 22.8254i −0.818905 0.784289i
\(848\) 35.8328 1.23050
\(849\) 17.9443 13.0373i 0.615846 0.447438i
\(850\) 1.50000 + 4.61653i 0.0514496 + 0.158346i
\(851\) 7.16312 22.0458i 0.245549 0.755721i
\(852\) −7.28115 5.29007i −0.249448 0.181235i
\(853\) −6.42705 4.66953i −0.220058 0.159882i 0.472295 0.881441i \(-0.343426\pi\)
−0.692353 + 0.721559i \(0.743426\pi\)
\(854\) 1.71885 5.29007i 0.0588177 0.181022i
\(855\) 0.100813 + 0.310271i 0.00344773 + 0.0106110i
\(856\) 0.427051 0.310271i 0.0145963 0.0106048i
\(857\) −41.7214 −1.42517 −0.712587 0.701584i \(-0.752477\pi\)
−0.712587 + 0.701584i \(0.752477\pi\)
\(858\) 28.3435 17.7926i 0.967630 0.607428i
\(859\) 42.8885 1.46334 0.731669 0.681660i \(-0.238742\pi\)
0.731669 + 0.681660i \(0.238742\pi\)
\(860\) 0.336881 0.244758i 0.0114875 0.00834619i
\(861\) 5.51064 + 16.9600i 0.187802 + 0.577996i
\(862\) −0.746711 + 2.29814i −0.0254331 + 0.0782750i
\(863\) 19.3262 + 14.0413i 0.657873 + 0.477973i 0.865944 0.500141i \(-0.166719\pi\)
−0.208071 + 0.978114i \(0.566719\pi\)
\(864\) 2.73607 + 1.98787i 0.0930829 + 0.0676287i
\(865\) −2.07953 + 6.40013i −0.0707060 + 0.217611i
\(866\) −3.00000 9.23305i −0.101944 0.313752i
\(867\) 13.4443 9.76784i 0.456591 0.331733i
\(868\) −7.14590 −0.242548
\(869\) −0.652476 + 1.62460i −0.0221337 + 0.0551107i
\(870\) 2.76393 0.0937061
\(871\) −53.2877 + 38.7158i −1.80559 + 1.31183i
\(872\) 0 0
\(873\) 4.64590 14.2986i 0.157240 0.483934i
\(874\) −6.11803 4.44501i −0.206946 0.150355i
\(875\) −9.13525 6.63715i −0.308828 0.224377i
\(876\) 0.236068 0.726543i 0.00797600 0.0245476i
\(877\) −6.30902 19.4172i −0.213040 0.655671i −0.999287 0.0377579i \(-0.987978\pi\)
0.786247 0.617913i \(-0.212022\pi\)
\(878\) −21.8713 + 15.8904i −0.738121 + 0.536277i
\(879\) 17.9443 0.605245
\(880\) 4.71885 + 3.94298i 0.159072 + 0.132918i
\(881\) 25.0902 0.845309 0.422655 0.906291i \(-0.361098\pi\)
0.422655 + 0.906291i \(0.361098\pi\)
\(882\) −2.61803 + 1.90211i −0.0881538 + 0.0640475i
\(883\) 11.5623 + 35.5851i 0.389103 + 1.19753i 0.933460 + 0.358681i \(0.116774\pi\)
−0.544358 + 0.838853i \(0.683226\pi\)
\(884\) −0.736068 + 2.26538i −0.0247566 + 0.0761931i
\(885\) −1.64590 1.19581i −0.0553263 0.0401969i
\(886\) 1.14590 + 0.832544i 0.0384972 + 0.0279699i
\(887\) 0.927051 2.85317i 0.0311273 0.0958001i −0.934286 0.356525i \(-0.883962\pi\)
0.965413 + 0.260725i \(0.0839615\pi\)
\(888\) 2.92705 + 9.00854i 0.0982254 + 0.302307i
\(889\) −23.5623 + 17.1190i −0.790254 + 0.574153i
\(890\) −5.85410 −0.196230
\(891\) −0.809017 3.21644i −0.0271031 0.107755i
\(892\) −7.85410 −0.262975
\(893\) −0.427051 + 0.310271i −0.0142907 + 0.0103828i
\(894\) 7.50000 + 23.0826i 0.250838 + 0.771999i
\(895\) −0.263932 + 0.812299i −0.00882227 + 0.0271522i
\(896\) −33.0517 24.0134i −1.10418 0.802233i
\(897\) 27.6074 + 20.0579i 0.921784 + 0.669715i
\(898\) −7.76393 + 23.8949i −0.259086 + 0.797384i
\(899\) 5.32624 + 16.3925i 0.177640 + 0.546720i
\(900\) 2.42705 1.76336i 0.0809017 0.0587785i
\(901\) 4.56231 0.151992
\(902\) −31.8262 2.15938i −1.05970 0.0718996i
\(903\) 5.29180 0.176100
\(904\) −22.9894 + 16.7027i −0.764615 + 0.555525i
\(905\) 1.00658 + 3.09793i 0.0334598 + 0.102979i
\(906\) 1.00000 3.07768i 0.0332228 0.102249i
\(907\) −3.21885 2.33863i −0.106880 0.0776529i 0.533061 0.846077i \(-0.321041\pi\)
−0.639942 + 0.768424i \(0.721041\pi\)
\(908\) −5.44427 3.95550i −0.180675 0.131268i
\(909\) −0.927051 + 2.85317i −0.0307483 + 0.0946337i
\(910\) −3.57295 10.9964i −0.118442 0.364527i
\(911\) −29.0795 + 21.1275i −0.963448 + 0.699986i −0.953949 0.299969i \(-0.903024\pi\)
−0.00949880 + 0.999955i \(0.503024\pi\)
\(912\) 4.14590 0.137284
\(913\) 42.0517 + 2.85317i 1.39171 + 0.0944261i
\(914\) 53.0689 1.75536
\(915\) 0.354102 0.257270i 0.0117062 0.00850509i
\(916\) 1.90983 + 5.87785i 0.0631026 + 0.194210i
\(917\) −12.8435 + 39.5281i −0.424128 + 1.30533i
\(918\) 0.809017 + 0.587785i 0.0267015 + 0.0193998i
\(919\) 37.9894 + 27.6009i 1.25315 + 0.910469i 0.998400 0.0565371i \(-0.0180059\pi\)
0.254753 + 0.967006i \(0.418006\pi\)
\(920\) −1.44427 + 4.44501i −0.0476162 + 0.146548i
\(921\) −6.04508 18.6049i −0.199192 0.613051i
\(922\) 12.9721 9.42481i 0.427215 0.310390i
\(923\) 90.8115 2.98910
\(924\) −1.50000 5.96361i −0.0493464 0.196188i
\(925\) 20.5623 0.676084
\(926\) −11.5172 + 8.36775i −0.378479 + 0.274981i
\(927\) −1.85410 5.70634i −0.0608967 0.187421i
\(928\) 4.67376 14.3844i 0.153424 0.472190i
\(929\) −2.33688 1.69784i −0.0766706 0.0557044i 0.548790 0.835960i \(-0.315089\pi\)
−0.625460 + 0.780256i \(0.715089\pi\)
\(930\) −1.92705 1.40008i −0.0631905 0.0459106i
\(931\) −0.527864 + 1.62460i −0.0173000 + 0.0532441i
\(932\) 1.65654 + 5.09831i 0.0542618 + 0.167001i
\(933\) −9.28115 + 6.74315i −0.303851 + 0.220761i
\(934\) −23.0344 −0.753710
\(935\) 0.600813 + 0.502029i 0.0196487 + 0.0164181i
\(936\) −13.9443 −0.455783
\(937\) −26.3713 + 19.1599i −0.861514 + 0.625926i −0.928296 0.371841i \(-0.878727\pi\)
0.0667827 + 0.997768i \(0.478727\pi\)
\(938\) 15.8435 + 48.7612i 0.517307 + 1.59211i
\(939\) −8.60081 + 26.4706i −0.280677 + 0.863835i
\(940\) −0.118034 0.0857567i −0.00384984 0.00279708i
\(941\) −27.2082 19.7679i −0.886962 0.644416i 0.0481221 0.998841i \(-0.484676\pi\)
−0.935084 + 0.354426i \(0.884676\pi\)
\(942\) 4.85410 14.9394i 0.158155 0.486752i
\(943\) −10.0517 30.9358i −0.327327 1.00741i
\(944\) −20.9164 + 15.1967i −0.680771 + 0.494609i
\(945\) −1.14590 −0.0372761
\(946\) −3.52786 + 8.78402i −0.114701 + 0.285593i
\(947\) 2.67376 0.0868856 0.0434428 0.999056i \(-0.486167\pi\)
0.0434428 + 0.999056i \(0.486167\pi\)
\(948\) −0.263932 + 0.191758i −0.00857211 + 0.00622801i
\(949\) 2.38197 + 7.33094i 0.0773219 + 0.237972i
\(950\) 2.07295 6.37988i 0.0672553 0.206991i
\(951\) −20.5172 14.9066i −0.665316 0.483381i
\(952\) −3.35410 2.43690i −0.108707 0.0789803i
\(953\) 18.5967 57.2349i 0.602408 1.85402i 0.0886937 0.996059i \(-0.471731\pi\)
0.513714 0.857961i \(-0.328269\pi\)
\(954\) −3.69098 11.3597i −0.119500 0.367783i
\(955\) 0.454915 0.330515i 0.0147207 0.0106952i
\(956\) −10.8541 −0.351047
\(957\) −12.5623 + 7.88597i −0.406082 + 0.254917i
\(958\) −27.3607 −0.883983
\(959\) 3.57295 2.59590i 0.115377 0.0838260i
\(960\) −0.500000 1.53884i −0.0161374 0.0496659i
\(961\) −4.98936 + 15.3557i −0.160947 + 0.495344i
\(962\) 34.5795 + 25.1235i 1.11489 + 0.810014i
\(963\) −0.190983 0.138757i −0.00615434 0.00447139i
\(964\) 3.27051 10.0656i 0.105336 0.324191i
\(965\) −0.184405 0.567541i −0.00593621 0.0182698i
\(966\) 21.4894 15.6129i 0.691409 0.502338i
\(967\) 25.6869 0.826036 0.413018 0.910723i \(-0.364475\pi\)
0.413018 + 0.910723i \(0.364475\pi\)
\(968\) −24.3713 3.32244i −0.783324 0.106787i
\(969\) 0.527864 0.0169574
\(970\) 7.51722 5.46158i 0.241363 0.175361i
\(971\) −10.4377 32.1239i −0.334962 1.03091i −0.966741 0.255757i \(-0.917675\pi\)
0.631779 0.775148i \(-0.282325\pi\)
\(972\) 0.190983 0.587785i 0.00612578 0.0188532i
\(973\) −14.2082 10.3229i −0.455494 0.330936i
\(974\) −51.2877 37.2627i −1.64336 1.19397i
\(975\) −9.35410 + 28.7890i −0.299571 + 0.921985i
\(976\) −1.71885 5.29007i −0.0550190 0.169331i
\(977\) 39.9336 29.0135i 1.27759 0.928223i 0.278113 0.960548i \(-0.410291\pi\)
0.999477 + 0.0323250i \(0.0102912\pi\)
\(978\) −24.7082 −0.790081
\(979\) 26.6074 16.7027i 0.850376 0.533822i
\(980\) −0.472136 −0.0150818
\(981\) 0 0
\(982\) −13.1074 40.3404i −0.418274 1.28731i
\(983\) 10.9098 33.5770i 0.347970 1.07094i −0.612005 0.790854i \(-0.709637\pi\)
0.959975 0.280086i \(-0.0903631\pi\)
\(984\) 10.7533 + 7.81272i 0.342802 + 0.249060i
\(985\) 8.22542 + 5.97612i 0.262084 + 0.190415i
\(986\) 1.38197 4.25325i 0.0440108 0.135451i
\(987\) −0.572949 1.76336i −0.0182372 0.0561282i
\(988\) 2.66312 1.93487i 0.0847251 0.0615564i
\(989\) −9.65248 −0.306931
\(990\) 0.763932 1.90211i 0.0242794 0.0604531i
\(991\) −12.2705 −0.389786 −0.194893 0.980825i \(-0.562436\pi\)
−0.194893 + 0.980825i \(0.562436\pi\)
\(992\) −10.5451 + 7.66145i −0.334807 + 0.243251i
\(993\) −6.98278 21.4908i −0.221592 0.681989i
\(994\) 21.8435 67.2273i 0.692832 2.13232i
\(995\) −1.01722 0.739054i −0.0322481 0.0234296i
\(996\) 6.35410 + 4.61653i 0.201337 + 0.146280i
\(997\) 10.5000 32.3157i 0.332538 1.02345i −0.635384 0.772197i \(-0.719158\pi\)
0.967922 0.251251i \(-0.0808420\pi\)
\(998\) 1.28115 + 3.94298i 0.0405542 + 0.124813i
\(999\) 3.42705 2.48990i 0.108427 0.0787769i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 33.2.e.a.25.1 yes 4
3.2 odd 2 99.2.f.b.91.1 4
4.3 odd 2 528.2.y.f.289.1 4
5.2 odd 4 825.2.bx.b.124.1 8
5.3 odd 4 825.2.bx.b.124.2 8
5.4 even 2 825.2.n.f.751.1 4
9.2 odd 6 891.2.n.a.190.1 8
9.4 even 3 891.2.n.d.784.1 8
9.5 odd 6 891.2.n.a.784.1 8
9.7 even 3 891.2.n.d.190.1 8
11.2 odd 10 363.2.a.e.1.1 2
11.3 even 5 363.2.e.h.148.1 4
11.4 even 5 inner 33.2.e.a.4.1 4
11.5 even 5 363.2.e.h.130.1 4
11.6 odd 10 363.2.e.c.130.1 4
11.7 odd 10 363.2.e.j.202.1 4
11.8 odd 10 363.2.e.c.148.1 4
11.9 even 5 363.2.a.h.1.2 2
11.10 odd 2 363.2.e.j.124.1 4
33.2 even 10 1089.2.a.s.1.2 2
33.20 odd 10 1089.2.a.m.1.1 2
33.26 odd 10 99.2.f.b.37.1 4
44.15 odd 10 528.2.y.f.433.1 4
44.31 odd 10 5808.2.a.bl.1.2 2
44.35 even 10 5808.2.a.bm.1.2 2
55.4 even 10 825.2.n.f.301.1 4
55.9 even 10 9075.2.a.x.1.1 2
55.24 odd 10 9075.2.a.bv.1.2 2
55.37 odd 20 825.2.bx.b.499.2 8
55.48 odd 20 825.2.bx.b.499.1 8
99.4 even 15 891.2.n.d.136.1 8
99.59 odd 30 891.2.n.a.136.1 8
99.70 even 15 891.2.n.d.433.1 8
99.92 odd 30 891.2.n.a.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.a.4.1 4 11.4 even 5 inner
33.2.e.a.25.1 yes 4 1.1 even 1 trivial
99.2.f.b.37.1 4 33.26 odd 10
99.2.f.b.91.1 4 3.2 odd 2
363.2.a.e.1.1 2 11.2 odd 10
363.2.a.h.1.2 2 11.9 even 5
363.2.e.c.130.1 4 11.6 odd 10
363.2.e.c.148.1 4 11.8 odd 10
363.2.e.h.130.1 4 11.5 even 5
363.2.e.h.148.1 4 11.3 even 5
363.2.e.j.124.1 4 11.10 odd 2
363.2.e.j.202.1 4 11.7 odd 10
528.2.y.f.289.1 4 4.3 odd 2
528.2.y.f.433.1 4 44.15 odd 10
825.2.n.f.301.1 4 55.4 even 10
825.2.n.f.751.1 4 5.4 even 2
825.2.bx.b.124.1 8 5.2 odd 4
825.2.bx.b.124.2 8 5.3 odd 4
825.2.bx.b.499.1 8 55.48 odd 20
825.2.bx.b.499.2 8 55.37 odd 20
891.2.n.a.136.1 8 99.59 odd 30
891.2.n.a.190.1 8 9.2 odd 6
891.2.n.a.433.1 8 99.92 odd 30
891.2.n.a.784.1 8 9.5 odd 6
891.2.n.d.136.1 8 99.4 even 15
891.2.n.d.190.1 8 9.7 even 3
891.2.n.d.433.1 8 99.70 even 15
891.2.n.d.784.1 8 9.4 even 3
1089.2.a.m.1.1 2 33.20 odd 10
1089.2.a.s.1.2 2 33.2 even 10
5808.2.a.bl.1.2 2 44.31 odd 10
5808.2.a.bm.1.2 2 44.35 even 10
9075.2.a.x.1.1 2 55.9 even 10
9075.2.a.bv.1.2 2 55.24 odd 10