Properties

Label 825.2.bx.b.499.1
Level $825$
Weight $2$
Character 825.499
Analytic conductor $6.588$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(49,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.bx (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 499.1
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 825.499
Dual form 825.2.bx.b.124.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.951057 + 1.30902i) q^{2} +(0.951057 + 0.309017i) q^{3} +(-0.190983 - 0.587785i) q^{4} +(-1.30902 + 0.951057i) q^{6} +(2.85317 - 0.927051i) q^{7} +(-2.12663 - 0.690983i) q^{8} +(0.809017 + 0.587785i) q^{9} +(2.80902 + 1.76336i) q^{11} -0.618034i q^{12} +(3.66547 - 5.04508i) q^{13} +(-1.50000 + 4.61653i) q^{14} +(3.92705 - 2.85317i) q^{16} +(-0.363271 - 0.500000i) q^{17} +(-1.53884 + 0.500000i) q^{18} +(0.263932 - 0.812299i) q^{19} +3.00000 q^{21} +(-4.97980 + 2.00000i) q^{22} -5.47214i q^{23} +(-1.80902 - 1.31433i) q^{24} +(3.11803 + 9.59632i) q^{26} +(0.587785 + 0.809017i) q^{27} +(-1.08981 - 1.50000i) q^{28} +(1.38197 + 4.25325i) q^{29} +(3.11803 + 2.26538i) q^{31} +3.38197i q^{32} +(2.12663 + 2.54508i) q^{33} +1.00000 q^{34} +(0.190983 - 0.587785i) q^{36} +(-4.02874 + 1.30902i) q^{37} +(0.812299 + 1.11803i) q^{38} +(5.04508 - 3.66547i) q^{39} +(1.83688 - 5.65334i) q^{41} +(-2.85317 + 3.92705i) q^{42} +1.76393i q^{43} +(0.500000 - 1.98787i) q^{44} +(7.16312 + 5.20431i) q^{46} +(0.587785 + 0.190983i) q^{47} +(4.61653 - 1.50000i) q^{48} +(1.61803 - 1.17557i) q^{49} +(-0.190983 - 0.587785i) q^{51} +(-3.66547 - 1.19098i) q^{52} +(-4.33901 + 5.97214i) q^{53} -1.61803 q^{54} -6.70820 q^{56} +(0.502029 - 0.690983i) q^{57} +(-6.88191 - 2.23607i) q^{58} +(1.64590 + 5.06555i) q^{59} +(-0.927051 + 0.673542i) q^{61} +(-5.93085 + 1.92705i) q^{62} +(2.85317 + 0.927051i) q^{63} +(3.42705 + 2.48990i) q^{64} +(-5.35410 + 0.363271i) q^{66} -10.5623i q^{67} +(-0.224514 + 0.309017i) q^{68} +(1.69098 - 5.20431i) q^{69} +(-11.7812 + 8.55951i) q^{71} +(-1.31433 - 1.80902i) q^{72} +(-1.17557 + 0.381966i) q^{73} +(2.11803 - 6.51864i) q^{74} -0.527864 q^{76} +(9.64932 + 2.42705i) q^{77} +10.0902i q^{78} +(0.427051 + 0.310271i) q^{79} +(0.309017 + 0.951057i) q^{81} +(5.65334 + 7.78115i) q^{82} +(7.46969 + 10.2812i) q^{83} +(-0.572949 - 1.76336i) q^{84} +(-2.30902 - 1.67760i) q^{86} +4.47214i q^{87} +(-4.75528 - 5.69098i) q^{88} -9.47214 q^{89} +(5.78115 - 17.7926i) q^{91} +(-3.21644 + 1.04508i) q^{92} +(2.26538 + 3.11803i) q^{93} +(-0.809017 + 0.587785i) q^{94} +(-1.04508 + 3.21644i) q^{96} +(-8.83702 + 12.1631i) q^{97} +3.23607i q^{98} +(1.23607 + 3.07768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{4} - 6 q^{6} + 2 q^{9} + 18 q^{11} - 12 q^{14} + 18 q^{16} + 20 q^{19} + 24 q^{21} - 10 q^{24} + 16 q^{26} + 20 q^{29} + 16 q^{31} + 8 q^{34} + 6 q^{36} + 18 q^{39} + 46 q^{41} + 4 q^{44} + 26 q^{46}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 1.30902i −0.672499 + 0.925615i −0.999814 0.0193004i \(-0.993856\pi\)
0.327315 + 0.944915i \(0.393856\pi\)
\(3\) 0.951057 + 0.309017i 0.549093 + 0.178411i
\(4\) −0.190983 0.587785i −0.0954915 0.293893i
\(5\) 0 0
\(6\) −1.30902 + 0.951057i −0.534404 + 0.388267i
\(7\) 2.85317 0.927051i 1.07840 0.350392i 0.284644 0.958633i \(-0.408125\pi\)
0.793752 + 0.608241i \(0.208125\pi\)
\(8\) −2.12663 0.690983i −0.751876 0.244299i
\(9\) 0.809017 + 0.587785i 0.269672 + 0.195928i
\(10\) 0 0
\(11\) 2.80902 + 1.76336i 0.846950 + 0.531672i
\(12\) 0.618034i 0.178411i
\(13\) 3.66547 5.04508i 1.01662 1.39925i 0.102070 0.994777i \(-0.467453\pi\)
0.914548 0.404478i \(-0.132547\pi\)
\(14\) −1.50000 + 4.61653i −0.400892 + 1.23382i
\(15\) 0 0
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) −0.363271 0.500000i −0.0881062 0.121268i 0.762688 0.646766i \(-0.223879\pi\)
−0.850795 + 0.525498i \(0.823879\pi\)
\(18\) −1.53884 + 0.500000i −0.362708 + 0.117851i
\(19\) 0.263932 0.812299i 0.0605502 0.186354i −0.916206 0.400707i \(-0.868764\pi\)
0.976756 + 0.214353i \(0.0687644\pi\)
\(20\) 0 0
\(21\) 3.00000 0.654654
\(22\) −4.97980 + 2.00000i −1.06170 + 0.426401i
\(23\) 5.47214i 1.14102i −0.821291 0.570510i \(-0.806746\pi\)
0.821291 0.570510i \(-0.193254\pi\)
\(24\) −1.80902 1.31433i −0.369264 0.268286i
\(25\) 0 0
\(26\) 3.11803 + 9.59632i 0.611497 + 1.88199i
\(27\) 0.587785 + 0.809017i 0.113119 + 0.155695i
\(28\) −1.08981 1.50000i −0.205955 0.283473i
\(29\) 1.38197 + 4.25325i 0.256625 + 0.789809i 0.993505 + 0.113787i \(0.0362980\pi\)
−0.736881 + 0.676023i \(0.763702\pi\)
\(30\) 0 0
\(31\) 3.11803 + 2.26538i 0.560015 + 0.406875i 0.831465 0.555578i \(-0.187503\pi\)
−0.271449 + 0.962453i \(0.587503\pi\)
\(32\) 3.38197i 0.597853i
\(33\) 2.12663 + 2.54508i 0.370198 + 0.443042i
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 0.190983 0.587785i 0.0318305 0.0979642i
\(37\) −4.02874 + 1.30902i −0.662321 + 0.215201i −0.620839 0.783938i \(-0.713208\pi\)
−0.0414819 + 0.999139i \(0.513208\pi\)
\(38\) 0.812299 + 1.11803i 0.131772 + 0.181369i
\(39\) 5.04508 3.66547i 0.807860 0.586945i
\(40\) 0 0
\(41\) 1.83688 5.65334i 0.286873 0.882903i −0.698958 0.715162i \(-0.746353\pi\)
0.985831 0.167741i \(-0.0536472\pi\)
\(42\) −2.85317 + 3.92705i −0.440254 + 0.605957i
\(43\) 1.76393i 0.268997i 0.990914 + 0.134499i \(0.0429424\pi\)
−0.990914 + 0.134499i \(0.957058\pi\)
\(44\) 0.500000 1.98787i 0.0753778 0.299683i
\(45\) 0 0
\(46\) 7.16312 + 5.20431i 1.05614 + 0.767334i
\(47\) 0.587785 + 0.190983i 0.0857373 + 0.0278577i 0.351572 0.936161i \(-0.385647\pi\)
−0.265834 + 0.964019i \(0.585647\pi\)
\(48\) 4.61653 1.50000i 0.666338 0.216506i
\(49\) 1.61803 1.17557i 0.231148 0.167939i
\(50\) 0 0
\(51\) −0.190983 0.587785i −0.0267430 0.0823064i
\(52\) −3.66547 1.19098i −0.508309 0.165160i
\(53\) −4.33901 + 5.97214i −0.596009 + 0.820336i −0.995336 0.0964728i \(-0.969244\pi\)
0.399327 + 0.916809i \(0.369244\pi\)
\(54\) −1.61803 −0.220187
\(55\) 0 0
\(56\) −6.70820 −0.896421
\(57\) 0.502029 0.690983i 0.0664953 0.0915229i
\(58\) −6.88191 2.23607i −0.903639 0.293610i
\(59\) 1.64590 + 5.06555i 0.214278 + 0.659479i 0.999204 + 0.0398899i \(0.0127007\pi\)
−0.784926 + 0.619589i \(0.787299\pi\)
\(60\) 0 0
\(61\) −0.927051 + 0.673542i −0.118697 + 0.0862382i −0.645550 0.763718i \(-0.723372\pi\)
0.526853 + 0.849956i \(0.323372\pi\)
\(62\) −5.93085 + 1.92705i −0.753219 + 0.244736i
\(63\) 2.85317 + 0.927051i 0.359466 + 0.116797i
\(64\) 3.42705 + 2.48990i 0.428381 + 0.311237i
\(65\) 0 0
\(66\) −5.35410 + 0.363271i −0.659044 + 0.0447156i
\(67\) 10.5623i 1.29039i −0.764017 0.645196i \(-0.776776\pi\)
0.764017 0.645196i \(-0.223224\pi\)
\(68\) −0.224514 + 0.309017i −0.0272263 + 0.0374738i
\(69\) 1.69098 5.20431i 0.203570 0.626525i
\(70\) 0 0
\(71\) −11.7812 + 8.55951i −1.39817 + 1.01583i −0.403253 + 0.915089i \(0.632120\pi\)
−0.994913 + 0.100738i \(0.967880\pi\)
\(72\) −1.31433 1.80902i −0.154895 0.213195i
\(73\) −1.17557 + 0.381966i −0.137590 + 0.0447057i −0.377003 0.926212i \(-0.623045\pi\)
0.239412 + 0.970918i \(0.423045\pi\)
\(74\) 2.11803 6.51864i 0.246216 0.757776i
\(75\) 0 0
\(76\) −0.527864 −0.0605502
\(77\) 9.64932 + 2.42705i 1.09964 + 0.276588i
\(78\) 10.0902i 1.14249i
\(79\) 0.427051 + 0.310271i 0.0480470 + 0.0349082i 0.611550 0.791206i \(-0.290547\pi\)
−0.563503 + 0.826114i \(0.690547\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 5.65334 + 7.78115i 0.624307 + 0.859285i
\(83\) 7.46969 + 10.2812i 0.819906 + 1.12850i 0.989719 + 0.143027i \(0.0456835\pi\)
−0.169813 + 0.985476i \(0.554316\pi\)
\(84\) −0.572949 1.76336i −0.0625139 0.192398i
\(85\) 0 0
\(86\) −2.30902 1.67760i −0.248988 0.180900i
\(87\) 4.47214i 0.479463i
\(88\) −4.75528 5.69098i −0.506915 0.606661i
\(89\) −9.47214 −1.00404 −0.502022 0.864855i \(-0.667410\pi\)
−0.502022 + 0.864855i \(0.667410\pi\)
\(90\) 0 0
\(91\) 5.78115 17.7926i 0.606029 1.86517i
\(92\) −3.21644 + 1.04508i −0.335337 + 0.108958i
\(93\) 2.26538 + 3.11803i 0.234909 + 0.323325i
\(94\) −0.809017 + 0.587785i −0.0834437 + 0.0606254i
\(95\) 0 0
\(96\) −1.04508 + 3.21644i −0.106664 + 0.328277i
\(97\) −8.83702 + 12.1631i −0.897264 + 1.23498i 0.0740689 + 0.997253i \(0.476402\pi\)
−0.971333 + 0.237724i \(0.923598\pi\)
\(98\) 3.23607i 0.326892i
\(99\) 1.23607 + 3.07768i 0.124230 + 0.309319i
\(100\) 0 0
\(101\) 2.42705 + 1.76336i 0.241501 + 0.175460i 0.701952 0.712225i \(-0.252312\pi\)
−0.460451 + 0.887685i \(0.652312\pi\)
\(102\) 0.951057 + 0.309017i 0.0941686 + 0.0305972i
\(103\) 5.70634 1.85410i 0.562262 0.182690i −0.0140765 0.999901i \(-0.504481\pi\)
0.576339 + 0.817211i \(0.304481\pi\)
\(104\) −11.2812 + 8.19624i −1.10621 + 0.803707i
\(105\) 0 0
\(106\) −3.69098 11.3597i −0.358500 1.10335i
\(107\) −0.224514 0.0729490i −0.0217046 0.00705225i 0.298145 0.954521i \(-0.403632\pi\)
−0.319849 + 0.947468i \(0.603632\pi\)
\(108\) 0.363271 0.500000i 0.0349558 0.0481125i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −4.23607 −0.402070
\(112\) 8.55951 11.7812i 0.808798 1.11321i
\(113\) −12.0862 3.92705i −1.13698 0.369426i −0.320753 0.947163i \(-0.603936\pi\)
−0.816223 + 0.577737i \(0.803936\pi\)
\(114\) 0.427051 + 1.31433i 0.0399970 + 0.123098i
\(115\) 0 0
\(116\) 2.23607 1.62460i 0.207614 0.150840i
\(117\) 5.93085 1.92705i 0.548308 0.178156i
\(118\) −8.19624 2.66312i −0.754525 0.245160i
\(119\) −1.50000 1.08981i −0.137505 0.0999031i
\(120\) 0 0
\(121\) 4.78115 + 9.90659i 0.434650 + 0.900599i
\(122\) 1.85410i 0.167863i
\(123\) 3.49396 4.80902i 0.315039 0.433614i
\(124\) 0.736068 2.26538i 0.0661009 0.203438i
\(125\) 0 0
\(126\) −3.92705 + 2.85317i −0.349850 + 0.254181i
\(127\) 5.70634 + 7.85410i 0.506356 + 0.696939i 0.983299 0.181995i \(-0.0582555\pi\)
−0.476944 + 0.878934i \(0.658255\pi\)
\(128\) −12.9515 + 4.20820i −1.14476 + 0.371956i
\(129\) −0.545085 + 1.67760i −0.0479921 + 0.147704i
\(130\) 0 0
\(131\) −13.8541 −1.21044 −0.605219 0.796059i \(-0.706915\pi\)
−0.605219 + 0.796059i \(0.706915\pi\)
\(132\) 1.08981 1.73607i 0.0948561 0.151105i
\(133\) 2.56231i 0.222180i
\(134\) 13.8262 + 10.0453i 1.19441 + 0.867786i
\(135\) 0 0
\(136\) 0.427051 + 1.31433i 0.0366193 + 0.112703i
\(137\) −0.865300 1.19098i −0.0739276 0.101753i 0.770452 0.637498i \(-0.220031\pi\)
−0.844379 + 0.535746i \(0.820031\pi\)
\(138\) 5.20431 + 7.16312i 0.443020 + 0.609765i
\(139\) −1.80902 5.56758i −0.153439 0.472236i 0.844561 0.535460i \(-0.179862\pi\)
−0.997999 + 0.0632239i \(0.979862\pi\)
\(140\) 0 0
\(141\) 0.500000 + 0.363271i 0.0421076 + 0.0305930i
\(142\) 23.5623i 1.97730i
\(143\) 19.1926 7.70820i 1.60497 0.644592i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) 0.618034 1.90211i 0.0511489 0.157420i
\(147\) 1.90211 0.618034i 0.156884 0.0509746i
\(148\) 1.53884 + 2.11803i 0.126492 + 0.174101i
\(149\) 12.1353 8.81678i 0.994159 0.722299i 0.0333309 0.999444i \(-0.489388\pi\)
0.960828 + 0.277146i \(0.0893885\pi\)
\(150\) 0 0
\(151\) 0.618034 1.90211i 0.0502949 0.154792i −0.922755 0.385388i \(-0.874068\pi\)
0.973050 + 0.230596i \(0.0740676\pi\)
\(152\) −1.12257 + 1.54508i −0.0910524 + 0.125323i
\(153\) 0.618034i 0.0499651i
\(154\) −12.3541 + 10.3229i −0.995522 + 0.831840i
\(155\) 0 0
\(156\) −3.11803 2.26538i −0.249643 0.181376i
\(157\) −9.23305 3.00000i −0.736878 0.239426i −0.0835524 0.996503i \(-0.526627\pi\)
−0.653325 + 0.757077i \(0.726627\pi\)
\(158\) −0.812299 + 0.263932i −0.0646231 + 0.0209973i
\(159\) −5.97214 + 4.33901i −0.473621 + 0.344106i
\(160\) 0 0
\(161\) −5.07295 15.6129i −0.399804 1.23047i
\(162\) −1.53884 0.500000i −0.120903 0.0392837i
\(163\) −8.97578 + 12.3541i −0.703037 + 0.967648i 0.296882 + 0.954914i \(0.404053\pi\)
−0.999919 + 0.0127336i \(0.995947\pi\)
\(164\) −3.67376 −0.286873
\(165\) 0 0
\(166\) −20.5623 −1.59594
\(167\) 11.1882 15.3992i 0.865766 1.19162i −0.114398 0.993435i \(-0.536494\pi\)
0.980164 0.198190i \(-0.0635062\pi\)
\(168\) −6.37988 2.07295i −0.492219 0.159931i
\(169\) −8.00000 24.6215i −0.615385 1.89396i
\(170\) 0 0
\(171\) 0.690983 0.502029i 0.0528408 0.0383911i
\(172\) 1.03681 0.336881i 0.0790563 0.0256869i
\(173\) 16.7557 + 5.44427i 1.27392 + 0.413920i 0.866433 0.499293i \(-0.166407\pi\)
0.407482 + 0.913213i \(0.366407\pi\)
\(174\) −5.85410 4.25325i −0.443798 0.322438i
\(175\) 0 0
\(176\) 16.0623 1.08981i 1.21074 0.0821478i
\(177\) 5.32624i 0.400345i
\(178\) 9.00854 12.3992i 0.675218 0.929358i
\(179\) −0.690983 + 2.12663i −0.0516465 + 0.158952i −0.973553 0.228460i \(-0.926631\pi\)
0.921907 + 0.387412i \(0.126631\pi\)
\(180\) 0 0
\(181\) 6.89919 5.01255i 0.512813 0.372580i −0.301077 0.953600i \(-0.597346\pi\)
0.813889 + 0.581020i \(0.197346\pi\)
\(182\) 17.7926 + 24.4894i 1.31887 + 1.81527i
\(183\) −1.08981 + 0.354102i −0.0805614 + 0.0261760i
\(184\) −3.78115 + 11.6372i −0.278750 + 0.857905i
\(185\) 0 0
\(186\) −6.23607 −0.457251
\(187\) −0.138757 2.04508i −0.0101469 0.149551i
\(188\) 0.381966i 0.0278577i
\(189\) 2.42705 + 1.76336i 0.176542 + 0.128265i
\(190\) 0 0
\(191\) 0.454915 + 1.40008i 0.0329165 + 0.101307i 0.966165 0.257925i \(-0.0830388\pi\)
−0.933248 + 0.359232i \(0.883039\pi\)
\(192\) 2.48990 + 3.42705i 0.179693 + 0.247326i
\(193\) −0.918300 1.26393i −0.0661007 0.0909798i 0.774687 0.632345i \(-0.217908\pi\)
−0.840787 + 0.541365i \(0.817908\pi\)
\(194\) −7.51722 23.1356i −0.539705 1.66104i
\(195\) 0 0
\(196\) −1.00000 0.726543i −0.0714286 0.0518959i
\(197\) 26.6180i 1.89646i −0.317590 0.948228i \(-0.602873\pi\)
0.317590 0.948228i \(-0.397127\pi\)
\(198\) −5.20431 1.30902i −0.369854 0.0930278i
\(199\) 3.29180 0.233349 0.116675 0.993170i \(-0.462777\pi\)
0.116675 + 0.993170i \(0.462777\pi\)
\(200\) 0 0
\(201\) 3.26393 10.0453i 0.230220 0.708544i
\(202\) −4.61653 + 1.50000i −0.324818 + 0.105540i
\(203\) 7.88597 + 10.8541i 0.553486 + 0.761809i
\(204\) −0.309017 + 0.224514i −0.0216355 + 0.0157191i
\(205\) 0 0
\(206\) −3.00000 + 9.23305i −0.209020 + 0.643297i
\(207\) 3.21644 4.42705i 0.223558 0.307701i
\(208\) 30.2705i 2.09888i
\(209\) 2.17376 1.81636i 0.150362 0.125640i
\(210\) 0 0
\(211\) −9.11803 6.62464i −0.627711 0.456059i 0.227895 0.973686i \(-0.426816\pi\)
−0.855607 + 0.517627i \(0.826816\pi\)
\(212\) 4.33901 + 1.40983i 0.298004 + 0.0968275i
\(213\) −13.8496 + 4.50000i −0.948957 + 0.308335i
\(214\) 0.309017 0.224514i 0.0211240 0.0153475i
\(215\) 0 0
\(216\) −0.690983 2.12663i −0.0470154 0.144699i
\(217\) 10.9964 + 3.57295i 0.746485 + 0.242548i
\(218\) 0 0
\(219\) −1.23607 −0.0835257
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) 4.02874 5.54508i 0.270391 0.372162i
\(223\) −12.0862 3.92705i −0.809353 0.262975i −0.125029 0.992153i \(-0.539903\pi\)
−0.684324 + 0.729178i \(0.739903\pi\)
\(224\) 3.13525 + 9.64932i 0.209483 + 0.644722i
\(225\) 0 0
\(226\) 16.6353 12.0862i 1.10656 0.803963i
\(227\) 10.3556 3.36475i 0.687327 0.223326i 0.0555264 0.998457i \(-0.482316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(228\) −0.502029 0.163119i −0.0332477 0.0108028i
\(229\) 8.09017 + 5.87785i 0.534613 + 0.388419i 0.822081 0.569371i \(-0.192813\pi\)
−0.287467 + 0.957790i \(0.592813\pi\)
\(230\) 0 0
\(231\) 8.42705 + 5.29007i 0.554459 + 0.348061i
\(232\) 10.0000i 0.656532i
\(233\) 5.09831 7.01722i 0.334001 0.459713i −0.608676 0.793419i \(-0.708299\pi\)
0.942677 + 0.333705i \(0.108299\pi\)
\(234\) −3.11803 + 9.59632i −0.203832 + 0.627331i
\(235\) 0 0
\(236\) 2.66312 1.93487i 0.173354 0.125949i
\(237\) 0.310271 + 0.427051i 0.0201542 + 0.0277399i
\(238\) 2.85317 0.927051i 0.184944 0.0600918i
\(239\) 5.42705 16.7027i 0.351047 1.08041i −0.607220 0.794534i \(-0.707715\pi\)
0.958266 0.285877i \(-0.0922848\pi\)
\(240\) 0 0
\(241\) 17.1246 1.10309 0.551547 0.834144i \(-0.314038\pi\)
0.551547 + 0.834144i \(0.314038\pi\)
\(242\) −17.5150 3.16312i −1.12591 0.203333i
\(243\) 1.00000i 0.0641500i
\(244\) 0.572949 + 0.416272i 0.0366793 + 0.0266491i
\(245\) 0 0
\(246\) 2.97214 + 9.14729i 0.189496 + 0.583210i
\(247\) −3.13068 4.30902i −0.199201 0.274176i
\(248\) −5.06555 6.97214i −0.321663 0.442731i
\(249\) 3.92705 + 12.0862i 0.248867 + 0.765933i
\(250\) 0 0
\(251\) −13.5902 9.87384i −0.857804 0.623231i 0.0694827 0.997583i \(-0.477865\pi\)
−0.927287 + 0.374352i \(0.877865\pi\)
\(252\) 1.85410i 0.116797i
\(253\) 9.64932 15.3713i 0.606648 0.966387i
\(254\) −15.7082 −0.985620
\(255\) 0 0
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) −25.9888 + 8.44427i −1.62114 + 0.526739i −0.972210 0.234112i \(-0.924782\pi\)
−0.648927 + 0.760851i \(0.724782\pi\)
\(258\) −1.67760 2.30902i −0.104443 0.143753i
\(259\) −10.2812 + 7.46969i −0.638840 + 0.464144i
\(260\) 0 0
\(261\) −1.38197 + 4.25325i −0.0855415 + 0.263270i
\(262\) 13.1760 18.1353i 0.814018 1.12040i
\(263\) 0.673762i 0.0415459i −0.999784 0.0207730i \(-0.993387\pi\)
0.999784 0.0207730i \(-0.00661272\pi\)
\(264\) −2.76393 6.88191i −0.170108 0.423552i
\(265\) 0 0
\(266\) 3.35410 + 2.43690i 0.205653 + 0.149416i
\(267\) −9.00854 2.92705i −0.551313 0.179133i
\(268\) −6.20837 + 2.01722i −0.379236 + 0.123221i
\(269\) 19.7984 14.3844i 1.20713 0.877030i 0.212161 0.977235i \(-0.431950\pi\)
0.994967 + 0.100205i \(0.0319498\pi\)
\(270\) 0 0
\(271\) 1.93769 + 5.96361i 0.117707 + 0.362263i 0.992502 0.122229i \(-0.0390043\pi\)
−0.874795 + 0.484493i \(0.839004\pi\)
\(272\) −2.85317 0.927051i −0.172999 0.0562107i
\(273\) 10.9964 15.1353i 0.665533 0.916027i
\(274\) 2.38197 0.143900
\(275\) 0 0
\(276\) −3.38197 −0.203570
\(277\) −6.13512 + 8.44427i −0.368624 + 0.507367i −0.952526 0.304457i \(-0.901525\pi\)
0.583902 + 0.811824i \(0.301525\pi\)
\(278\) 9.00854 + 2.92705i 0.540296 + 0.175553i
\(279\) 1.19098 + 3.66547i 0.0713023 + 0.219446i
\(280\) 0 0
\(281\) 4.23607 3.07768i 0.252703 0.183599i −0.454221 0.890889i \(-0.650082\pi\)
0.706924 + 0.707290i \(0.250082\pi\)
\(282\) −0.951057 + 0.309017i −0.0566346 + 0.0184017i
\(283\) −21.0948 6.85410i −1.25395 0.407434i −0.394617 0.918846i \(-0.629123\pi\)
−0.859336 + 0.511412i \(0.829123\pi\)
\(284\) 7.28115 + 5.29007i 0.432057 + 0.313908i
\(285\) 0 0
\(286\) −8.16312 + 32.4544i −0.482695 + 1.91907i
\(287\) 17.8328i 1.05264i
\(288\) −1.98787 + 2.73607i −0.117136 + 0.161224i
\(289\) 5.13525 15.8047i 0.302074 0.929688i
\(290\) 0 0
\(291\) −12.1631 + 8.83702i −0.713015 + 0.518035i
\(292\) 0.449028 + 0.618034i 0.0262774 + 0.0361677i
\(293\) −17.0660 + 5.54508i −0.997007 + 0.323947i −0.761669 0.647966i \(-0.775620\pi\)
−0.235338 + 0.971914i \(0.575620\pi\)
\(294\) −1.00000 + 3.07768i −0.0583212 + 0.179494i
\(295\) 0 0
\(296\) 9.47214 0.550557
\(297\) 0.224514 + 3.30902i 0.0130276 + 0.192009i
\(298\) 24.2705i 1.40595i
\(299\) −27.6074 20.0579i −1.59658 1.15998i
\(300\) 0 0
\(301\) 1.63525 + 5.03280i 0.0942545 + 0.290086i
\(302\) 1.90211 + 2.61803i 0.109454 + 0.150651i
\(303\) 1.76336 + 2.42705i 0.101302 + 0.139430i
\(304\) −1.28115 3.94298i −0.0734792 0.226146i
\(305\) 0 0
\(306\) 0.809017 + 0.587785i 0.0462484 + 0.0336014i
\(307\) 19.5623i 1.11648i 0.829680 + 0.558240i \(0.188523\pi\)
−0.829680 + 0.558240i \(0.811477\pi\)
\(308\) −0.416272 6.13525i −0.0237193 0.349589i
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 3.54508 10.9106i 0.201023 0.618686i −0.798830 0.601557i \(-0.794547\pi\)
0.999853 0.0171293i \(-0.00545269\pi\)
\(312\) −13.2618 + 4.30902i −0.750801 + 0.243950i
\(313\) 16.3597 + 22.5172i 0.924706 + 1.27275i 0.961889 + 0.273440i \(0.0881615\pi\)
−0.0371831 + 0.999308i \(0.511838\pi\)
\(314\) 12.7082 9.23305i 0.717165 0.521051i
\(315\) 0 0
\(316\) 0.100813 0.310271i 0.00567118 0.0174541i
\(317\) −14.9066 + 20.5172i −0.837240 + 1.15236i 0.149292 + 0.988793i \(0.452301\pi\)
−0.986532 + 0.163569i \(0.947699\pi\)
\(318\) 11.9443i 0.669802i
\(319\) −3.61803 + 14.3844i −0.202571 + 0.805370i
\(320\) 0 0
\(321\) −0.190983 0.138757i −0.0106596 0.00774468i
\(322\) 25.2623 + 8.20820i 1.40781 + 0.457425i
\(323\) −0.502029 + 0.163119i −0.0279336 + 0.00907618i
\(324\) 0.500000 0.363271i 0.0277778 0.0201817i
\(325\) 0 0
\(326\) −7.63525 23.4989i −0.422878 1.30148i
\(327\) 0 0
\(328\) −7.81272 + 10.7533i −0.431385 + 0.593751i
\(329\) 1.85410 0.102220
\(330\) 0 0
\(331\) −22.5967 −1.24203 −0.621015 0.783799i \(-0.713279\pi\)
−0.621015 + 0.783799i \(0.713279\pi\)
\(332\) 4.61653 6.35410i 0.253365 0.348727i
\(333\) −4.02874 1.30902i −0.220774 0.0717337i
\(334\) 9.51722 + 29.2910i 0.520759 + 1.60273i
\(335\) 0 0
\(336\) 11.7812 8.55951i 0.642715 0.466959i
\(337\) −13.0373 + 4.23607i −0.710186 + 0.230753i −0.641763 0.766903i \(-0.721797\pi\)
−0.0684228 + 0.997656i \(0.521797\pi\)
\(338\) 39.8384 + 12.9443i 2.16692 + 0.704076i
\(339\) −10.2812 7.46969i −0.558396 0.405698i
\(340\) 0 0
\(341\) 4.76393 + 11.8617i 0.257981 + 0.642347i
\(342\) 1.38197i 0.0747282i
\(343\) −8.81678 + 12.1353i −0.476061 + 0.655242i
\(344\) 1.21885 3.75123i 0.0657158 0.202253i
\(345\) 0 0
\(346\) −23.0623 + 16.7557i −1.23984 + 0.900794i
\(347\) −1.79611 2.47214i −0.0964203 0.132711i 0.758081 0.652160i \(-0.226137\pi\)
−0.854501 + 0.519449i \(0.826137\pi\)
\(348\) 2.62866 0.854102i 0.140911 0.0457847i
\(349\) −9.30902 + 28.6502i −0.498300 + 1.53361i 0.313449 + 0.949605i \(0.398515\pi\)
−0.811750 + 0.584006i \(0.801485\pi\)
\(350\) 0 0
\(351\) 6.23607 0.332857
\(352\) −5.96361 + 9.50000i −0.317861 + 0.506352i
\(353\) 1.52786i 0.0813200i −0.999173 0.0406600i \(-0.987054\pi\)
0.999173 0.0406600i \(-0.0129460\pi\)
\(354\) −6.97214 5.06555i −0.370565 0.269231i
\(355\) 0 0
\(356\) 1.80902 + 5.56758i 0.0958777 + 0.295081i
\(357\) −1.08981 1.50000i −0.0576791 0.0793884i
\(358\) −2.12663 2.92705i −0.112396 0.154699i
\(359\) 5.32624 + 16.3925i 0.281108 + 0.865162i 0.987538 + 0.157379i \(0.0503044\pi\)
−0.706430 + 0.707783i \(0.749696\pi\)
\(360\) 0 0
\(361\) 14.7812 + 10.7391i 0.777955 + 0.565218i
\(362\) 13.7984i 0.725226i
\(363\) 1.48584 + 10.8992i 0.0779864 + 0.572059i
\(364\) −11.5623 −0.606029
\(365\) 0 0
\(366\) 0.572949 1.76336i 0.0299485 0.0921721i
\(367\) −13.8496 + 4.50000i −0.722942 + 0.234898i −0.647298 0.762237i \(-0.724101\pi\)
−0.0756437 + 0.997135i \(0.524101\pi\)
\(368\) −15.6129 21.4894i −0.813880 1.12021i
\(369\) 4.80902 3.49396i 0.250347 0.181888i
\(370\) 0 0
\(371\) −6.84346 + 21.0620i −0.355295 + 1.09348i
\(372\) 1.40008 1.92705i 0.0725910 0.0999129i
\(373\) 22.4164i 1.16068i 0.814375 + 0.580339i \(0.197080\pi\)
−0.814375 + 0.580339i \(0.802920\pi\)
\(374\) 2.80902 + 1.76336i 0.145251 + 0.0911810i
\(375\) 0 0
\(376\) −1.11803 0.812299i −0.0576582 0.0418911i
\(377\) 26.5236 + 8.61803i 1.36603 + 0.443851i
\(378\) −4.61653 + 1.50000i −0.237448 + 0.0771517i
\(379\) 22.9894 16.7027i 1.18088 0.857962i 0.188613 0.982052i \(-0.439601\pi\)
0.992271 + 0.124089i \(0.0396009\pi\)
\(380\) 0 0
\(381\) 3.00000 + 9.23305i 0.153695 + 0.473024i
\(382\) −2.26538 0.736068i −0.115907 0.0376605i
\(383\) −5.22455 + 7.19098i −0.266962 + 0.367442i −0.921361 0.388707i \(-0.872922\pi\)
0.654399 + 0.756149i \(0.272922\pi\)
\(384\) −13.6180 −0.694942
\(385\) 0 0
\(386\) 2.52786 0.128665
\(387\) −1.03681 + 1.42705i −0.0527042 + 0.0725411i
\(388\) 8.83702 + 2.87132i 0.448632 + 0.145769i
\(389\) 2.86475 + 8.81678i 0.145248 + 0.447028i 0.997043 0.0768476i \(-0.0244855\pi\)
−0.851795 + 0.523876i \(0.824485\pi\)
\(390\) 0 0
\(391\) −2.73607 + 1.98787i −0.138369 + 0.100531i
\(392\) −4.25325 + 1.38197i −0.214822 + 0.0697998i
\(393\) −13.1760 4.28115i −0.664643 0.215956i
\(394\) 34.8435 + 25.3153i 1.75539 + 1.27536i
\(395\) 0 0
\(396\) 1.57295 1.31433i 0.0790437 0.0660475i
\(397\) 25.2918i 1.26936i 0.772776 + 0.634679i \(0.218868\pi\)
−0.772776 + 0.634679i \(0.781132\pi\)
\(398\) −3.13068 + 4.30902i −0.156927 + 0.215992i
\(399\) 0.791796 2.43690i 0.0396394 0.121997i
\(400\) 0 0
\(401\) 12.0623 8.76378i 0.602363 0.437642i −0.244354 0.969686i \(-0.578576\pi\)
0.846717 + 0.532044i \(0.178576\pi\)
\(402\) 10.0453 + 13.8262i 0.501017 + 0.689590i
\(403\) 22.8581 7.42705i 1.13864 0.369968i
\(404\) 0.572949 1.76336i 0.0285053 0.0877302i
\(405\) 0 0
\(406\) −21.7082 −1.07736
\(407\) −13.6251 3.42705i −0.675369 0.169873i
\(408\) 1.38197i 0.0684175i
\(409\) −23.4164 17.0130i −1.15787 0.841240i −0.168360 0.985726i \(-0.553847\pi\)
−0.989507 + 0.144486i \(0.953847\pi\)
\(410\) 0 0
\(411\) −0.454915 1.40008i −0.0224393 0.0690611i
\(412\) −2.17963 3.00000i −0.107383 0.147799i
\(413\) 9.39205 + 12.9271i 0.462153 + 0.636099i
\(414\) 2.73607 + 8.42075i 0.134470 + 0.413857i
\(415\) 0 0
\(416\) 17.0623 + 12.3965i 0.836548 + 0.607788i
\(417\) 5.85410i 0.286677i
\(418\) 0.310271 + 4.57295i 0.0151758 + 0.223670i
\(419\) 21.5066 1.05067 0.525333 0.850897i \(-0.323941\pi\)
0.525333 + 0.850897i \(0.323941\pi\)
\(420\) 0 0
\(421\) −1.15248 + 3.54696i −0.0561682 + 0.172868i −0.975205 0.221304i \(-0.928969\pi\)
0.919037 + 0.394172i \(0.128969\pi\)
\(422\) 17.3435 5.63525i 0.844270 0.274320i
\(423\) 0.363271 + 0.500000i 0.0176629 + 0.0243108i
\(424\) 13.3541 9.70232i 0.648533 0.471186i
\(425\) 0 0
\(426\) 7.28115 22.4091i 0.352773 1.08572i
\(427\) −2.02063 + 2.78115i −0.0977849 + 0.134589i
\(428\) 0.145898i 0.00705225i
\(429\) 20.6353 1.40008i 0.996279 0.0675967i
\(430\) 0 0
\(431\) 1.20820 + 0.877812i 0.0581971 + 0.0422827i 0.616503 0.787352i \(-0.288549\pi\)
−0.558306 + 0.829635i \(0.688549\pi\)
\(432\) 4.61653 + 1.50000i 0.222113 + 0.0721688i
\(433\) 5.70634 1.85410i 0.274229 0.0891025i −0.168674 0.985672i \(-0.553949\pi\)
0.442903 + 0.896569i \(0.353949\pi\)
\(434\) −15.1353 + 10.9964i −0.726515 + 0.527844i
\(435\) 0 0
\(436\) 0 0
\(437\) −4.44501 1.44427i −0.212634 0.0690889i
\(438\) 1.17557 1.61803i 0.0561709 0.0773127i
\(439\) −16.7082 −0.797439 −0.398720 0.917073i \(-0.630545\pi\)
−0.398720 + 0.917073i \(0.630545\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 3.66547 5.04508i 0.174349 0.239970i
\(443\) −0.832544 0.270510i −0.0395553 0.0128523i 0.289172 0.957277i \(-0.406620\pi\)
−0.328728 + 0.944425i \(0.606620\pi\)
\(444\) 0.809017 + 2.48990i 0.0383942 + 0.118165i
\(445\) 0 0
\(446\) 16.6353 12.0862i 0.787702 0.572299i
\(447\) 14.2658 4.63525i 0.674751 0.219240i
\(448\) 12.0862 + 3.92705i 0.571020 + 0.185536i
\(449\) −12.5623 9.12705i −0.592852 0.430732i 0.250483 0.968121i \(-0.419411\pi\)
−0.843334 + 0.537389i \(0.819411\pi\)
\(450\) 0 0
\(451\) 15.1287 12.6412i 0.712382 0.595253i
\(452\) 7.85410i 0.369426i
\(453\) 1.17557 1.61803i 0.0552331 0.0760219i
\(454\) −5.44427 + 16.7557i −0.255512 + 0.786386i
\(455\) 0 0
\(456\) −1.54508 + 1.12257i −0.0723552 + 0.0525692i
\(457\) 19.2784 + 26.5344i 0.901806 + 1.24123i 0.969889 + 0.243549i \(0.0783117\pi\)
−0.0680830 + 0.997680i \(0.521688\pi\)
\(458\) −15.3884 + 5.00000i −0.719054 + 0.233635i
\(459\) 0.190983 0.587785i 0.00891432 0.0274355i
\(460\) 0 0
\(461\) −9.90983 −0.461547 −0.230773 0.973008i \(-0.574126\pi\)
−0.230773 + 0.973008i \(0.574126\pi\)
\(462\) −14.9394 + 6.00000i −0.695043 + 0.279145i
\(463\) 8.79837i 0.408895i 0.978878 + 0.204448i \(0.0655398\pi\)
−0.978878 + 0.204448i \(0.934460\pi\)
\(464\) 17.5623 + 12.7598i 0.815310 + 0.592357i
\(465\) 0 0
\(466\) 4.33688 + 13.3475i 0.200902 + 0.618313i
\(467\) −8.36775 11.5172i −0.387213 0.532953i 0.570264 0.821461i \(-0.306841\pi\)
−0.957478 + 0.288508i \(0.906841\pi\)
\(468\) −2.26538 3.11803i −0.104717 0.144131i
\(469\) −9.79180 30.1360i −0.452143 1.39155i
\(470\) 0 0
\(471\) −7.85410 5.70634i −0.361898 0.262934i
\(472\) 11.9098i 0.548194i
\(473\) −3.11044 + 4.95492i −0.143018 + 0.227827i
\(474\) −0.854102 −0.0392302
\(475\) 0 0
\(476\) −0.354102 + 1.08981i −0.0162302 + 0.0499515i
\(477\) −7.02067 + 2.28115i −0.321454 + 0.104447i
\(478\) 16.7027 + 22.9894i 0.763966 + 1.05151i
\(479\) −13.6803 + 9.93935i −0.625071 + 0.454140i −0.854689 0.519140i \(-0.826252\pi\)
0.229618 + 0.973281i \(0.426252\pi\)
\(480\) 0 0
\(481\) −8.16312 + 25.1235i −0.372206 + 1.14553i
\(482\) −16.2865 + 22.4164i −0.741829 + 1.02104i
\(483\) 16.4164i 0.746972i
\(484\) 4.90983 4.70228i 0.223174 0.213740i
\(485\) 0 0
\(486\) −1.30902 0.951057i −0.0593782 0.0431408i
\(487\) −37.2627 12.1074i −1.68853 0.548638i −0.701998 0.712179i \(-0.747709\pi\)
−0.986537 + 0.163540i \(0.947709\pi\)
\(488\) 2.43690 0.791796i 0.110313 0.0358429i
\(489\) −12.3541 + 8.97578i −0.558672 + 0.405899i
\(490\) 0 0
\(491\) −8.10081 24.9317i −0.365585 1.12515i −0.949614 0.313421i \(-0.898525\pi\)
0.584030 0.811732i \(-0.301475\pi\)
\(492\) −3.49396 1.13525i −0.157520 0.0511812i
\(493\) 1.62460 2.23607i 0.0731682 0.100707i
\(494\) 8.61803 0.387744
\(495\) 0 0
\(496\) 18.7082 0.840023
\(497\) −25.6785 + 35.3435i −1.15184 + 1.58537i
\(498\) −19.5559 6.35410i −0.876322 0.284734i
\(499\) −0.791796 2.43690i −0.0354457 0.109091i 0.931768 0.363054i \(-0.118266\pi\)
−0.967214 + 0.253963i \(0.918266\pi\)
\(500\) 0 0
\(501\) 15.3992 11.1882i 0.687985 0.499850i
\(502\) 25.8500 8.39919i 1.15374 0.374874i
\(503\) −28.5972 9.29180i −1.27509 0.414301i −0.408239 0.912875i \(-0.633857\pi\)
−0.866847 + 0.498574i \(0.833857\pi\)
\(504\) −5.42705 3.94298i −0.241740 0.175634i
\(505\) 0 0
\(506\) 10.9443 + 27.2501i 0.486532 + 1.21142i
\(507\) 25.8885i 1.14975i
\(508\) 3.52671 4.85410i 0.156473 0.215366i
\(509\) −6.60739 + 20.3355i −0.292867 + 0.901353i 0.691062 + 0.722796i \(0.257143\pi\)
−0.983929 + 0.178558i \(0.942857\pi\)
\(510\) 0 0
\(511\) −3.00000 + 2.17963i −0.132712 + 0.0964210i
\(512\) −3.11044 4.28115i −0.137463 0.189202i
\(513\) 0.812299 0.263932i 0.0358639 0.0116529i
\(514\) 13.6631 42.0508i 0.602654 1.85478i
\(515\) 0 0
\(516\) 1.09017 0.0479921
\(517\) 1.31433 + 1.57295i 0.0578041 + 0.0691782i
\(518\) 20.5623i 0.903456i
\(519\) 14.2533 + 10.3556i 0.625650 + 0.454561i
\(520\) 0 0
\(521\) 12.0000 + 36.9322i 0.525730 + 1.61803i 0.762869 + 0.646553i \(0.223790\pi\)
−0.237139 + 0.971476i \(0.576210\pi\)
\(522\) −4.25325 5.85410i −0.186160 0.256227i
\(523\) −20.5600 28.2984i −0.899025 1.23740i −0.970778 0.239979i \(-0.922859\pi\)
0.0717533 0.997422i \(-0.477141\pi\)
\(524\) 2.64590 + 8.14324i 0.115587 + 0.355739i
\(525\) 0 0
\(526\) 0.881966 + 0.640786i 0.0384555 + 0.0279396i
\(527\) 2.38197i 0.103760i
\(528\) 15.6129 + 3.92705i 0.679466 + 0.170903i
\(529\) −6.94427 −0.301925
\(530\) 0 0
\(531\) −1.64590 + 5.06555i −0.0714259 + 0.219826i
\(532\) −1.50609 + 0.489357i −0.0652971 + 0.0212163i
\(533\) −21.7885 29.9894i −0.943767 1.29898i
\(534\) 12.3992 9.00854i 0.536565 0.389838i
\(535\) 0 0
\(536\) −7.29837 + 22.4621i −0.315242 + 0.970214i
\(537\) −1.31433 + 1.80902i −0.0567174 + 0.0780648i
\(538\) 39.5967i 1.70714i
\(539\) 6.61803 0.449028i 0.285059 0.0193410i
\(540\) 0 0
\(541\) 0.454915 + 0.330515i 0.0195583 + 0.0142100i 0.597521 0.801853i \(-0.296152\pi\)
−0.577963 + 0.816063i \(0.696152\pi\)
\(542\) −9.64932 3.13525i −0.414474 0.134671i
\(543\) 8.11048 2.63525i 0.348054 0.113090i
\(544\) 1.69098 1.22857i 0.0725003 0.0526745i
\(545\) 0 0
\(546\) 9.35410 + 28.7890i 0.400319 + 1.23205i
\(547\) −18.4333 5.98936i −0.788153 0.256086i −0.112836 0.993614i \(-0.535993\pi\)
−0.675317 + 0.737527i \(0.735993\pi\)
\(548\) −0.534785 + 0.736068i −0.0228449 + 0.0314433i
\(549\) −1.14590 −0.0489057
\(550\) 0 0
\(551\) 3.81966 0.162723
\(552\) −7.19218 + 9.89919i −0.306120 + 0.421337i
\(553\) 1.50609 + 0.489357i 0.0640453 + 0.0208096i
\(554\) −5.21885 16.0620i −0.221728 0.682407i
\(555\) 0 0
\(556\) −2.92705 + 2.12663i −0.124135 + 0.0901891i
\(557\) 24.8132 8.06231i 1.05137 0.341611i 0.268164 0.963373i \(-0.413583\pi\)
0.783206 + 0.621762i \(0.213583\pi\)
\(558\) −5.93085 1.92705i −0.251073 0.0815786i
\(559\) 8.89919 + 6.46564i 0.376396 + 0.273467i
\(560\) 0 0
\(561\) 0.500000 1.98787i 0.0211100 0.0839279i
\(562\) 8.47214i 0.357375i
\(563\) 15.8047 21.7533i 0.666088 0.916792i −0.333575 0.942723i \(-0.608255\pi\)
0.999664 + 0.0259316i \(0.00825520\pi\)
\(564\) 0.118034 0.363271i 0.00497013 0.0152965i
\(565\) 0 0
\(566\) 29.0344 21.0948i 1.22041 0.886679i
\(567\) 1.76336 + 2.42705i 0.0740540 + 0.101927i
\(568\) 30.9686 10.0623i 1.29941 0.422205i
\(569\) −10.5279 + 32.4014i −0.441351 + 1.35834i 0.445085 + 0.895488i \(0.353173\pi\)
−0.886436 + 0.462851i \(0.846827\pi\)
\(570\) 0 0
\(571\) −25.6869 −1.07496 −0.537482 0.843275i \(-0.680624\pi\)
−0.537482 + 0.843275i \(0.680624\pi\)
\(572\) −8.19624 9.80902i −0.342702 0.410136i
\(573\) 1.47214i 0.0614994i
\(574\) 23.3435 + 16.9600i 0.974337 + 0.707897i
\(575\) 0 0
\(576\) 1.30902 + 4.02874i 0.0545424 + 0.167864i
\(577\) 8.95554 + 12.3262i 0.372824 + 0.513148i 0.953666 0.300868i \(-0.0972765\pi\)
−0.580842 + 0.814016i \(0.697277\pi\)
\(578\) 15.8047 + 21.7533i 0.657388 + 0.904818i
\(579\) −0.482779 1.48584i −0.0200636 0.0617495i
\(580\) 0 0
\(581\) 30.8435 + 22.4091i 1.27960 + 0.929685i
\(582\) 24.3262i 1.00836i
\(583\) −22.7194 + 9.12461i −0.940940 + 0.377903i
\(584\) 2.76393 0.114372
\(585\) 0 0
\(586\) 8.97214 27.6134i 0.370636 1.14070i
\(587\) 23.1154 7.51064i 0.954074 0.309997i 0.209704 0.977765i \(-0.432750\pi\)
0.744370 + 0.667767i \(0.232750\pi\)
\(588\) −0.726543 1.00000i −0.0299621 0.0412393i
\(589\) 2.66312 1.93487i 0.109732 0.0797249i
\(590\) 0 0
\(591\) 8.22542 25.3153i 0.338349 1.04133i
\(592\) −12.0862 + 16.6353i −0.496741 + 0.683705i
\(593\) 29.2148i 1.19971i −0.800110 0.599854i \(-0.795225\pi\)
0.800110 0.599854i \(-0.204775\pi\)
\(594\) −4.54508 2.85317i −0.186487 0.117067i
\(595\) 0 0
\(596\) −7.50000 5.44907i −0.307212 0.223203i
\(597\) 3.13068 + 1.01722i 0.128130 + 0.0416321i
\(598\) 52.5124 17.0623i 2.14739 0.697730i
\(599\) −17.5623 + 12.7598i −0.717576 + 0.521350i −0.885609 0.464432i \(-0.846259\pi\)
0.168033 + 0.985781i \(0.446259\pi\)
\(600\) 0 0
\(601\) −6.12868 18.8621i −0.249994 0.769402i −0.994775 0.102093i \(-0.967446\pi\)
0.744781 0.667309i \(-0.232554\pi\)
\(602\) −8.14324 2.64590i −0.331894 0.107839i
\(603\) 6.20837 8.54508i 0.252824 0.347983i
\(604\) −1.23607 −0.0502949
\(605\) 0 0
\(606\) −4.85410 −0.197184
\(607\) 1.36733 1.88197i 0.0554981 0.0763866i −0.780366 0.625323i \(-0.784967\pi\)
0.835864 + 0.548937i \(0.184967\pi\)
\(608\) 2.74717 + 0.892609i 0.111412 + 0.0362001i
\(609\) 4.14590 + 12.7598i 0.168000 + 0.517052i
\(610\) 0 0
\(611\) 3.11803 2.26538i 0.126142 0.0916476i
\(612\) −0.363271 + 0.118034i −0.0146844 + 0.00477124i
\(613\) 3.18368 + 1.03444i 0.128588 + 0.0417807i 0.372604 0.927990i \(-0.378465\pi\)
−0.244016 + 0.969771i \(0.578465\pi\)
\(614\) −25.6074 18.6049i −1.03343 0.750831i
\(615\) 0 0
\(616\) −18.8435 11.8290i −0.759225 0.476602i
\(617\) 46.4164i 1.86865i −0.356417 0.934327i \(-0.616002\pi\)
0.356417 0.934327i \(-0.383998\pi\)
\(618\) −5.70634 + 7.85410i −0.229543 + 0.315938i
\(619\) 9.63525 29.6543i 0.387274 1.19191i −0.547544 0.836777i \(-0.684437\pi\)
0.934817 0.355129i \(-0.115563\pi\)
\(620\) 0 0
\(621\) 4.42705 3.21644i 0.177651 0.129071i
\(622\) 10.9106 + 15.0172i 0.437477 + 0.602136i
\(623\) −27.0256 + 8.78115i −1.08276 + 0.351809i
\(624\) 9.35410 28.7890i 0.374464 1.15248i
\(625\) 0 0
\(626\) −45.0344 −1.79994
\(627\) 2.62866 1.05573i 0.104978 0.0421617i
\(628\) 6.00000i 0.239426i
\(629\) 2.11803 + 1.53884i 0.0844515 + 0.0613576i
\(630\) 0 0
\(631\) 3.93363 + 12.1065i 0.156595 + 0.481951i 0.998319 0.0579577i \(-0.0184589\pi\)
−0.841724 + 0.539908i \(0.818459\pi\)
\(632\) −0.693786 0.954915i −0.0275973 0.0379845i
\(633\) −6.62464 9.11803i −0.263306 0.362409i
\(634\) −12.6803 39.0261i −0.503601 1.54992i
\(635\) 0 0
\(636\) 3.69098 + 2.68166i 0.146357 + 0.106335i
\(637\) 12.4721i 0.494164i
\(638\) −15.3884 18.4164i −0.609233 0.729113i
\(639\) −14.5623 −0.576076
\(640\) 0 0
\(641\) −2.08359 + 6.41264i −0.0822969 + 0.253284i −0.983736 0.179623i \(-0.942512\pi\)
0.901439 + 0.432907i \(0.142512\pi\)
\(642\) 0.363271 0.118034i 0.0143372 0.00465843i
\(643\) 10.8374 + 14.9164i 0.427386 + 0.588246i 0.967351 0.253442i \(-0.0815626\pi\)
−0.539965 + 0.841687i \(0.681563\pi\)
\(644\) −8.20820 + 5.96361i −0.323449 + 0.234999i
\(645\) 0 0
\(646\) 0.263932 0.812299i 0.0103843 0.0319595i
\(647\) −1.88187 + 2.59017i −0.0739839 + 0.101830i −0.844405 0.535705i \(-0.820046\pi\)
0.770421 + 0.637535i \(0.220046\pi\)
\(648\) 2.23607i 0.0878410i
\(649\) −4.30902 + 17.1315i −0.169144 + 0.672471i
\(650\) 0 0
\(651\) 9.35410 + 6.79615i 0.366616 + 0.266362i
\(652\) 8.97578 + 2.91641i 0.351519 + 0.114215i
\(653\) −20.8905 + 6.78773i −0.817508 + 0.265624i −0.687774 0.725924i \(-0.741412\pi\)
−0.129734 + 0.991549i \(0.541412\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −8.91641 27.4419i −0.348127 1.07143i
\(657\) −1.17557 0.381966i −0.0458634 0.0149019i
\(658\) −1.76336 + 2.42705i −0.0687428 + 0.0946163i
\(659\) −20.6525 −0.804506 −0.402253 0.915528i \(-0.631773\pi\)
−0.402253 + 0.915528i \(0.631773\pi\)
\(660\) 0 0
\(661\) −21.0902 −0.820313 −0.410156 0.912015i \(-0.634526\pi\)
−0.410156 + 0.912015i \(0.634526\pi\)
\(662\) 21.4908 29.5795i 0.835263 1.14964i
\(663\) −3.66547 1.19098i −0.142355 0.0462539i
\(664\) −8.78115 27.0256i −0.340775 1.04880i
\(665\) 0 0
\(666\) 5.54508 4.02874i 0.214868 0.156111i
\(667\) 23.2744 7.56231i 0.901188 0.292814i
\(668\) −11.1882 3.63525i −0.432883 0.140652i
\(669\) −10.2812 7.46969i −0.397492 0.288795i
\(670\) 0 0
\(671\) −3.79180 + 0.257270i −0.146381 + 0.00993180i
\(672\) 10.1459i 0.391387i
\(673\) −8.47375 + 11.6631i −0.326639 + 0.449580i −0.940480 0.339850i \(-0.889624\pi\)
0.613841 + 0.789430i \(0.289624\pi\)
\(674\) 6.85410 21.0948i 0.264010 0.812540i
\(675\) 0 0
\(676\) −12.9443 + 9.40456i −0.497857 + 0.361714i
\(677\) 13.2088 + 18.1803i 0.507655 + 0.698727i 0.983522 0.180790i \(-0.0578655\pi\)
−0.475867 + 0.879517i \(0.657866\pi\)
\(678\) 19.5559 6.35410i 0.751040 0.244028i
\(679\) −13.9377 + 42.8958i −0.534880 + 1.64619i
\(680\) 0 0
\(681\) 10.8885 0.417250
\(682\) −20.0579 5.04508i −0.768058 0.193186i
\(683\) 38.8885i 1.48803i −0.668164 0.744014i \(-0.732919\pi\)
0.668164 0.744014i \(-0.267081\pi\)
\(684\) −0.427051 0.310271i −0.0163287 0.0118635i
\(685\) 0 0
\(686\) −7.50000 23.0826i −0.286351 0.881299i
\(687\) 5.87785 + 8.09017i 0.224254 + 0.308659i
\(688\) 5.03280 + 6.92705i 0.191874 + 0.264091i
\(689\) 14.2254 + 43.7814i 0.541946 + 1.66794i
\(690\) 0 0
\(691\) 32.1246 + 23.3399i 1.22208 + 0.887892i 0.996271 0.0862806i \(-0.0274981\pi\)
0.225807 + 0.974172i \(0.427498\pi\)
\(692\) 10.8885i 0.413920i
\(693\) 6.37988 + 7.63525i 0.242352 + 0.290039i
\(694\) 4.94427 0.187682
\(695\) 0 0
\(696\) 3.09017 9.51057i 0.117133 0.360497i
\(697\) −3.49396 + 1.13525i −0.132343 + 0.0430008i
\(698\) −28.6502 39.4336i −1.08443 1.49258i
\(699\) 7.01722 5.09831i 0.265416 0.192836i
\(700\) 0 0
\(701\) 15.3541 47.2551i 0.579916 1.78480i −0.0388752 0.999244i \(-0.512377\pi\)
0.618792 0.785555i \(-0.287623\pi\)
\(702\) −5.93085 + 8.16312i −0.223846 + 0.308097i
\(703\) 3.61803i 0.136457i
\(704\) 5.23607 + 13.0373i 0.197342 + 0.491361i
\(705\) 0 0
\(706\) 2.00000 + 1.45309i 0.0752710 + 0.0546876i
\(707\) 8.55951 + 2.78115i 0.321913 + 0.104596i
\(708\) 3.13068 1.01722i 0.117658 0.0382295i
\(709\) 5.06231 3.67798i 0.190119 0.138129i −0.488654 0.872478i \(-0.662512\pi\)
0.678773 + 0.734348i \(0.262512\pi\)
\(710\) 0 0
\(711\) 0.163119 + 0.502029i 0.00611744 + 0.0188275i
\(712\) 20.1437 + 6.54508i 0.754917 + 0.245287i
\(713\) 12.3965 17.0623i 0.464252 0.638988i
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 1.38197 0.0516465
\(717\) 10.3229 14.2082i 0.385514 0.530615i
\(718\) −26.5236 8.61803i −0.989851 0.321622i
\(719\) 8.78115 + 27.0256i 0.327482 + 1.00789i 0.970308 + 0.241873i \(0.0777618\pi\)
−0.642826 + 0.766012i \(0.722238\pi\)
\(720\) 0 0
\(721\) 14.5623 10.5801i 0.542329 0.394025i
\(722\) −28.1154 + 9.13525i −1.04635 + 0.339979i
\(723\) 16.2865 + 5.29180i 0.605700 + 0.196804i
\(724\) −4.26393 3.09793i −0.158468 0.115134i
\(725\) 0 0
\(726\) −15.6803 8.42075i −0.581952 0.312523i
\(727\) 32.1459i 1.19223i −0.802901 0.596113i \(-0.796711\pi\)
0.802901 0.596113i \(-0.203289\pi\)
\(728\) −24.5887 + 33.8435i −0.911318 + 1.25432i
\(729\) −0.309017 + 0.951057i −0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) 0.881966 0.640786i 0.0326207 0.0237003i
\(732\) 0.416272 + 0.572949i 0.0153858 + 0.0211768i
\(733\) 23.1029 7.50658i 0.853324 0.277262i 0.150486 0.988612i \(-0.451916\pi\)
0.702838 + 0.711350i \(0.251916\pi\)
\(734\) 7.28115 22.4091i 0.268752 0.827134i
\(735\) 0 0
\(736\) 18.5066 0.682162
\(737\) 18.6251 29.6697i 0.686064 1.09290i
\(738\) 9.61803i 0.354045i
\(739\) −20.2254 14.6946i −0.744004 0.540551i 0.149958 0.988692i \(-0.452086\pi\)
−0.893963 + 0.448142i \(0.852086\pi\)
\(740\) 0 0
\(741\) −1.64590 5.06555i −0.0604636 0.186088i
\(742\) −21.0620 28.9894i −0.773210 1.06423i
\(743\) −7.53521 10.3713i −0.276440 0.380487i 0.648111 0.761546i \(-0.275559\pi\)
−0.924551 + 0.381059i \(0.875559\pi\)
\(744\) −2.66312 8.19624i −0.0976347 0.300489i
\(745\) 0 0
\(746\) −29.3435 21.3193i −1.07434 0.780554i
\(747\) 12.7082i 0.464969i
\(748\) −1.17557 + 0.472136i −0.0429831 + 0.0172630i
\(749\) −0.708204 −0.0258772
\(750\) 0 0
\(751\) −16.3541 + 50.3328i −0.596770 + 1.83667i −0.0510571 + 0.998696i \(0.516259\pi\)
−0.545713 + 0.837972i \(0.683741\pi\)
\(752\) 2.85317 0.927051i 0.104044 0.0338061i
\(753\) −9.87384 13.5902i −0.359823 0.495253i
\(754\) −36.5066 + 26.5236i −1.32949 + 0.965932i
\(755\) 0 0
\(756\) 0.572949 1.76336i 0.0208380 0.0641326i
\(757\) 9.37181 12.8992i 0.340624 0.468829i −0.603999 0.796985i \(-0.706427\pi\)
0.944624 + 0.328156i \(0.106427\pi\)
\(758\) 45.9787i 1.67002i
\(759\) 13.9271 11.6372i 0.505520 0.422403i
\(760\) 0 0
\(761\) −3.95492 2.87341i −0.143366 0.104161i 0.513791 0.857916i \(-0.328241\pi\)
−0.657156 + 0.753754i \(0.728241\pi\)
\(762\) −14.9394 4.85410i −0.541197 0.175846i
\(763\) 0 0
\(764\) 0.736068 0.534785i 0.0266300 0.0193478i
\(765\) 0 0
\(766\) −4.44427 13.6781i −0.160578 0.494208i
\(767\) 31.5891 + 10.2639i 1.14062 + 0.370609i
\(768\) 7.97172 10.9721i 0.287655 0.395923i
\(769\) 47.6869 1.71963 0.859817 0.510602i \(-0.170577\pi\)
0.859817 + 0.510602i \(0.170577\pi\)
\(770\) 0 0
\(771\) −27.3262 −0.984130
\(772\) −0.567541 + 0.781153i −0.0204262 + 0.0281143i
\(773\) 46.8388 + 15.2188i 1.68467 + 0.547384i 0.985809 0.167870i \(-0.0536887\pi\)
0.698865 + 0.715253i \(0.253689\pi\)
\(774\) −0.881966 2.71441i −0.0317016 0.0975675i
\(775\) 0 0
\(776\) 27.1976 19.7602i 0.976336 0.709349i
\(777\) −12.0862 + 3.92705i −0.433591 + 0.140882i
\(778\) −14.2658 4.63525i −0.511455 0.166182i
\(779\) −4.10739 2.98419i −0.147163 0.106920i
\(780\) 0 0
\(781\) −48.1869 + 3.26944i −1.72426 + 0.116990i
\(782\) 5.47214i 0.195683i
\(783\) −2.62866 + 3.61803i −0.0939405 + 0.129298i
\(784\) 3.00000 9.23305i 0.107143 0.329752i
\(785\) 0 0
\(786\) 18.1353 13.1760i 0.646863 0.469974i
\(787\) −13.9353 19.1803i −0.496741 0.683705i 0.484873 0.874585i \(-0.338866\pi\)
−0.981613 + 0.190880i \(0.938866\pi\)
\(788\) −15.6457 + 5.08359i −0.557355 + 0.181095i
\(789\) 0.208204 0.640786i 0.00741226 0.0228126i
\(790\) 0 0
\(791\) −38.1246 −1.35556
\(792\) −0.502029 7.39919i −0.0178388 0.262919i
\(793\) 7.14590i 0.253758i
\(794\) −33.1074 24.0539i −1.17494 0.853642i
\(795\) 0 0
\(796\) −0.628677 1.93487i −0.0222829 0.0685796i
\(797\) 8.95554 + 12.3262i 0.317221 + 0.436618i 0.937616 0.347672i \(-0.113028\pi\)
−0.620395 + 0.784290i \(0.713028\pi\)
\(798\) 2.43690 + 3.35410i 0.0862652 + 0.118734i
\(799\) −0.118034 0.363271i −0.00417574 0.0128516i
\(800\) 0 0
\(801\) −7.66312 5.56758i −0.270763 0.196721i
\(802\) 24.1246i 0.851870i
\(803\) −3.97574 1.00000i −0.140301 0.0352892i
\(804\) −6.52786 −0.230220
\(805\) 0 0
\(806\) −12.0172 + 36.9852i −0.423289 + 1.30275i
\(807\) 23.2744 7.56231i 0.819297 0.266206i
\(808\) −3.94298 5.42705i −0.138714 0.190923i
\(809\) 20.4894 14.8864i 0.720367 0.523378i −0.166134 0.986103i \(-0.553128\pi\)
0.886502 + 0.462726i \(0.153128\pi\)
\(810\) 0 0
\(811\) 14.1353 43.5038i 0.496356 1.52763i −0.318477 0.947931i \(-0.603171\pi\)
0.814833 0.579696i \(-0.196829\pi\)
\(812\) 4.87380 6.70820i 0.171037 0.235412i
\(813\) 6.27051i 0.219916i
\(814\) 17.4443 14.5761i 0.611421 0.510893i
\(815\) 0 0
\(816\) −2.42705 1.76336i −0.0849638 0.0617298i
\(817\) 1.43284 + 0.465558i 0.0501287 + 0.0162878i
\(818\) 44.5407 14.4721i 1.55733 0.506006i
\(819\) 15.1353 10.9964i 0.528869 0.384246i
\(820\) 0 0
\(821\) 4.19756 + 12.9188i 0.146496 + 0.450868i 0.997200 0.0747763i \(-0.0238243\pi\)
−0.850704 + 0.525644i \(0.823824\pi\)
\(822\) 2.26538 + 0.736068i 0.0790144 + 0.0256733i
\(823\) −15.5927 + 21.4615i −0.543527 + 0.748101i −0.989116 0.147137i \(-0.952994\pi\)
0.445589 + 0.895238i \(0.352994\pi\)
\(824\) −13.4164 −0.467383
\(825\) 0 0
\(826\) −25.8541 −0.899579
\(827\) −7.56796 + 10.4164i −0.263164 + 0.362214i −0.920067 0.391761i \(-0.871866\pi\)
0.656903 + 0.753975i \(0.271866\pi\)
\(828\) −3.21644 1.04508i −0.111779 0.0363192i
\(829\) 13.1910 + 40.5977i 0.458142 + 1.41002i 0.867407 + 0.497600i \(0.165785\pi\)
−0.409265 + 0.912416i \(0.634215\pi\)
\(830\) 0 0
\(831\) −8.44427 + 6.13512i −0.292929 + 0.212825i
\(832\) 25.1235 8.16312i 0.871001 0.283005i
\(833\) −1.17557 0.381966i −0.0407311 0.0132343i
\(834\) 7.66312 + 5.56758i 0.265352 + 0.192790i
\(835\) 0 0
\(836\) −1.48278 0.930812i −0.0512830 0.0321928i
\(837\) 3.85410i 0.133217i
\(838\) −20.4540 + 28.1525i −0.706571 + 0.972511i
\(839\) 7.19756 22.1518i 0.248487 0.764766i −0.746556 0.665323i \(-0.768294\pi\)
0.995043 0.0994428i \(-0.0317060\pi\)
\(840\) 0 0
\(841\) 7.28115 5.29007i 0.251074 0.182416i
\(842\) −3.54696 4.88197i −0.122236 0.168244i
\(843\) 4.97980 1.61803i 0.171513 0.0557281i
\(844\) −2.15248 + 6.62464i −0.0740913 + 0.228029i
\(845\) 0 0
\(846\) −1.00000 −0.0343807
\(847\) 22.8254 + 23.8328i 0.784289 + 0.818905i
\(848\) 35.8328i 1.23050i
\(849\) −17.9443 13.0373i −0.615846 0.447438i
\(850\) 0 0
\(851\) 7.16312 + 22.0458i 0.245549 + 0.755721i
\(852\) 5.29007 + 7.28115i 0.181235 + 0.249448i
\(853\) −4.66953 6.42705i −0.159882 0.220058i 0.721559 0.692353i \(-0.243426\pi\)
−0.881441 + 0.472295i \(0.843426\pi\)
\(854\) −1.71885 5.29007i −0.0588177 0.181022i
\(855\) 0 0
\(856\) 0.427051 + 0.310271i 0.0145963 + 0.0106048i
\(857\) 41.7214i 1.42517i 0.701584 + 0.712587i \(0.252477\pi\)
−0.701584 + 0.712587i \(0.747523\pi\)
\(858\) −17.7926 + 28.3435i −0.607428 + 0.967630i
\(859\) −42.8885 −1.46334 −0.731669 0.681660i \(-0.761258\pi\)
−0.731669 + 0.681660i \(0.761258\pi\)
\(860\) 0 0
\(861\) 5.51064 16.9600i 0.187802 0.577996i
\(862\) −2.29814 + 0.746711i −0.0782750 + 0.0254331i
\(863\) 14.0413 + 19.3262i 0.477973 + 0.657873i 0.978114 0.208071i \(-0.0667185\pi\)
−0.500141 + 0.865944i \(0.666719\pi\)
\(864\) −2.73607 + 1.98787i −0.0930829 + 0.0676287i
\(865\) 0 0
\(866\) −3.00000 + 9.23305i −0.101944 + 0.313752i
\(867\) 9.76784 13.4443i 0.331733 0.456591i
\(868\) 7.14590i 0.242548i
\(869\) 0.652476 + 1.62460i 0.0221337 + 0.0551107i
\(870\) 0 0
\(871\) −53.2877 38.7158i −1.80559 1.31183i
\(872\) 0 0
\(873\) −14.2986 + 4.64590i −0.483934 + 0.157240i
\(874\) 6.11803 4.44501i 0.206946 0.150355i
\(875\) 0 0
\(876\) 0.236068 + 0.726543i 0.00797600 + 0.0245476i
\(877\) 19.4172 + 6.30902i 0.655671 + 0.213040i 0.617913 0.786247i \(-0.287978\pi\)
0.0377579 + 0.999287i \(0.487978\pi\)
\(878\) 15.8904 21.8713i 0.536277 0.738121i
\(879\) −17.9443 −0.605245
\(880\) 0 0
\(881\) 25.0902 0.845309 0.422655 0.906291i \(-0.361098\pi\)
0.422655 + 0.906291i \(0.361098\pi\)
\(882\) −1.90211 + 2.61803i −0.0640475 + 0.0881538i
\(883\) 35.5851 + 11.5623i 1.19753 + 0.389103i 0.838853 0.544358i \(-0.183226\pi\)
0.358681 + 0.933460i \(0.383226\pi\)
\(884\) 0.736068 + 2.26538i 0.0247566 + 0.0761931i
\(885\) 0 0
\(886\) 1.14590 0.832544i 0.0384972 0.0279699i
\(887\) 2.85317 0.927051i 0.0958001 0.0311273i −0.260725 0.965413i \(-0.583962\pi\)
0.356525 + 0.934286i \(0.383962\pi\)
\(888\) 9.00854 + 2.92705i 0.302307 + 0.0982254i
\(889\) 23.5623 + 17.1190i 0.790254 + 0.574153i
\(890\) 0 0
\(891\) −0.809017 + 3.21644i −0.0271031 + 0.107755i
\(892\) 7.85410i 0.262975i
\(893\) 0.310271 0.427051i 0.0103828 0.0142907i
\(894\) −7.50000 + 23.0826i −0.250838 + 0.771999i
\(895\) 0 0
\(896\) −33.0517 + 24.0134i −1.10418 + 0.802233i
\(897\) −20.0579 27.6074i −0.669715 0.921784i
\(898\) 23.8949 7.76393i 0.797384 0.259086i
\(899\) −5.32624 + 16.3925i −0.177640 + 0.546720i
\(900\) 0 0
\(901\) 4.56231 0.151992
\(902\) 2.15938 + 31.8262i 0.0718996 + 1.05970i
\(903\) 5.29180i 0.176100i
\(904\) 22.9894 + 16.7027i 0.764615 + 0.555525i
\(905\) 0 0
\(906\) 1.00000 + 3.07768i 0.0332228 + 0.102249i
\(907\) 2.33863 + 3.21885i 0.0776529 + 0.106880i 0.846077 0.533061i \(-0.178959\pi\)
−0.768424 + 0.639942i \(0.778959\pi\)
\(908\) −3.95550 5.44427i −0.131268 0.180675i
\(909\) 0.927051 + 2.85317i 0.0307483 + 0.0946337i
\(910\) 0 0
\(911\) −29.0795 21.1275i −0.963448 0.699986i −0.00949880 0.999955i \(-0.503024\pi\)
−0.953949 + 0.299969i \(0.903024\pi\)
\(912\) 4.14590i 0.137284i
\(913\) 2.85317 + 42.0517i 0.0944261 + 1.39171i
\(914\) −53.0689 −1.75536
\(915\) 0 0
\(916\) 1.90983 5.87785i 0.0631026 0.194210i
\(917\) −39.5281 + 12.8435i −1.30533 + 0.424128i
\(918\) 0.587785 + 0.809017i 0.0193998 + 0.0267015i
\(919\) −37.9894 + 27.6009i −1.25315 + 0.910469i −0.998400 0.0565371i \(-0.981994\pi\)
−0.254753 + 0.967006i \(0.581994\pi\)
\(920\) 0 0
\(921\) −6.04508 + 18.6049i −0.199192 + 0.613051i
\(922\) 9.42481 12.9721i 0.310390 0.427215i
\(923\) 90.8115i 2.98910i
\(924\) 1.50000 5.96361i 0.0493464 0.196188i
\(925\) 0 0
\(926\) −11.5172 8.36775i −0.378479 0.274981i
\(927\) 5.70634 + 1.85410i 0.187421 + 0.0608967i
\(928\) −14.3844 + 4.67376i −0.472190 + 0.153424i
\(929\) 2.33688 1.69784i 0.0766706 0.0557044i −0.548790 0.835960i \(-0.684911\pi\)
0.625460 + 0.780256i \(0.284911\pi\)
\(930\) 0 0
\(931\) −0.527864 1.62460i −0.0173000 0.0532441i
\(932\) −5.09831 1.65654i −0.167001 0.0542618i
\(933\) 6.74315 9.28115i 0.220761 0.303851i
\(934\) 23.0344 0.753710
\(935\) 0 0
\(936\) −13.9443 −0.455783
\(937\) −19.1599 + 26.3713i −0.625926 + 0.861514i −0.997768 0.0667827i \(-0.978727\pi\)
0.371841 + 0.928296i \(0.378727\pi\)
\(938\) 48.7612 + 15.8435i 1.59211 + 0.517307i
\(939\) 8.60081 + 26.4706i 0.280677 + 0.863835i
\(940\) 0 0
\(941\) −27.2082 + 19.7679i −0.886962 + 0.644416i −0.935084 0.354426i \(-0.884676\pi\)
0.0481221 + 0.998841i \(0.484676\pi\)
\(942\) 14.9394 4.85410i 0.486752 0.158155i
\(943\) −30.9358 10.0517i −1.00741 0.327327i
\(944\) 20.9164 + 15.1967i 0.680771 + 0.494609i
\(945\) 0 0
\(946\) −3.52786 8.78402i −0.114701 0.285593i
\(947\) 2.67376i 0.0868856i −0.999056 0.0434428i \(-0.986167\pi\)
0.999056 0.0434428i \(-0.0138326\pi\)
\(948\) 0.191758 0.263932i 0.00622801 0.00857211i
\(949\) −2.38197 + 7.33094i −0.0773219 + 0.237972i
\(950\) 0 0
\(951\) −20.5172 + 14.9066i −0.665316 + 0.483381i
\(952\) 2.43690 + 3.35410i 0.0789803 + 0.108707i
\(953\) −57.2349 + 18.5967i −1.85402 + 0.602408i −0.857961 + 0.513714i \(0.828269\pi\)
−0.996059 + 0.0886937i \(0.971731\pi\)
\(954\) 3.69098 11.3597i 0.119500 0.367783i
\(955\) 0 0
\(956\) −10.8541 −0.351047
\(957\) −7.88597 + 12.5623i −0.254917 + 0.406082i
\(958\) 27.3607i 0.883983i
\(959\) −3.57295 2.59590i −0.115377 0.0838260i
\(960\) 0 0
\(961\) −4.98936 15.3557i −0.160947 0.495344i
\(962\) −25.1235 34.5795i −0.810014 1.11489i
\(963\) −0.138757 0.190983i −0.00447139 0.00615434i
\(964\) −3.27051 10.0656i −0.105336 0.324191i
\(965\) 0 0
\(966\) 21.4894 + 15.6129i 0.691409 + 0.502338i
\(967\) 25.6869i 0.826036i −0.910723 0.413018i \(-0.864475\pi\)
0.910723 0.413018i \(-0.135525\pi\)
\(968\) −3.32244 24.3713i −0.106787 0.783324i
\(969\) −0.527864 −0.0169574
\(970\) 0 0
\(971\) −10.4377 + 32.1239i −0.334962 + 1.03091i 0.631779 + 0.775148i \(0.282325\pi\)
−0.966741 + 0.255757i \(0.917675\pi\)
\(972\) 0.587785 0.190983i 0.0188532 0.00612578i
\(973\) −10.3229 14.2082i −0.330936 0.455494i
\(974\) 51.2877 37.2627i 1.64336 1.19397i
\(975\) 0 0
\(976\) −1.71885 + 5.29007i −0.0550190 + 0.169331i
\(977\) 29.0135 39.9336i 0.928223 1.27759i −0.0323250 0.999477i \(-0.510291\pi\)
0.960548 0.278113i \(-0.0897088\pi\)
\(978\) 24.7082i 0.790081i
\(979\) −26.6074 16.7027i −0.850376 0.533822i
\(980\) 0 0
\(981\) 0 0
\(982\) 40.3404 + 13.1074i 1.28731 + 0.418274i
\(983\) −33.5770 + 10.9098i −1.07094 + 0.347970i −0.790854 0.612005i \(-0.790363\pi\)
−0.280086 + 0.959975i \(0.590363\pi\)
\(984\) −10.7533 + 7.81272i −0.342802 + 0.249060i
\(985\) 0 0
\(986\) 1.38197 + 4.25325i 0.0440108 + 0.135451i
\(987\) 1.76336 + 0.572949i 0.0561282 + 0.0182372i
\(988\) −1.93487 + 2.66312i −0.0615564 + 0.0847251i
\(989\) 9.65248 0.306931
\(990\) 0 0
\(991\) −12.2705 −0.389786 −0.194893 0.980825i \(-0.562436\pi\)
−0.194893 + 0.980825i \(0.562436\pi\)
\(992\) −7.66145 + 10.5451i −0.243251 + 0.334807i
\(993\) −21.4908 6.98278i −0.681989 0.221592i
\(994\) −21.8435 67.2273i −0.692832 2.13232i
\(995\) 0 0
\(996\) 6.35410 4.61653i 0.201337 0.146280i
\(997\) 32.3157 10.5000i 1.02345 0.332538i 0.251251 0.967922i \(-0.419158\pi\)
0.772197 + 0.635384i \(0.219158\pi\)
\(998\) 3.94298 + 1.28115i 0.124813 + 0.0405542i
\(999\) −3.42705 2.48990i −0.108427 0.0787769i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.bx.b.499.1 8
5.2 odd 4 33.2.e.a.4.1 4
5.3 odd 4 825.2.n.f.301.1 4
5.4 even 2 inner 825.2.bx.b.499.2 8
11.3 even 5 inner 825.2.bx.b.124.2 8
15.2 even 4 99.2.f.b.37.1 4
20.7 even 4 528.2.y.f.433.1 4
45.2 even 12 891.2.n.a.433.1 8
45.7 odd 12 891.2.n.d.433.1 8
45.22 odd 12 891.2.n.d.136.1 8
45.32 even 12 891.2.n.a.136.1 8
55.2 even 20 363.2.e.c.148.1 4
55.3 odd 20 825.2.n.f.751.1 4
55.7 even 20 363.2.e.c.130.1 4
55.14 even 10 inner 825.2.bx.b.124.1 8
55.17 even 20 363.2.a.e.1.1 2
55.27 odd 20 363.2.a.h.1.2 2
55.28 even 20 9075.2.a.bv.1.2 2
55.32 even 4 363.2.e.j.202.1 4
55.37 odd 20 363.2.e.h.130.1 4
55.38 odd 20 9075.2.a.x.1.1 2
55.42 odd 20 363.2.e.h.148.1 4
55.47 odd 20 33.2.e.a.25.1 yes 4
55.52 even 20 363.2.e.j.124.1 4
165.17 odd 20 1089.2.a.s.1.2 2
165.47 even 20 99.2.f.b.91.1 4
165.137 even 20 1089.2.a.m.1.1 2
220.27 even 20 5808.2.a.bl.1.2 2
220.47 even 20 528.2.y.f.289.1 4
220.127 odd 20 5808.2.a.bm.1.2 2
495.47 even 60 891.2.n.a.190.1 8
495.157 odd 60 891.2.n.d.784.1 8
495.212 even 60 891.2.n.a.784.1 8
495.322 odd 60 891.2.n.d.190.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.a.4.1 4 5.2 odd 4
33.2.e.a.25.1 yes 4 55.47 odd 20
99.2.f.b.37.1 4 15.2 even 4
99.2.f.b.91.1 4 165.47 even 20
363.2.a.e.1.1 2 55.17 even 20
363.2.a.h.1.2 2 55.27 odd 20
363.2.e.c.130.1 4 55.7 even 20
363.2.e.c.148.1 4 55.2 even 20
363.2.e.h.130.1 4 55.37 odd 20
363.2.e.h.148.1 4 55.42 odd 20
363.2.e.j.124.1 4 55.52 even 20
363.2.e.j.202.1 4 55.32 even 4
528.2.y.f.289.1 4 220.47 even 20
528.2.y.f.433.1 4 20.7 even 4
825.2.n.f.301.1 4 5.3 odd 4
825.2.n.f.751.1 4 55.3 odd 20
825.2.bx.b.124.1 8 55.14 even 10 inner
825.2.bx.b.124.2 8 11.3 even 5 inner
825.2.bx.b.499.1 8 1.1 even 1 trivial
825.2.bx.b.499.2 8 5.4 even 2 inner
891.2.n.a.136.1 8 45.32 even 12
891.2.n.a.190.1 8 495.47 even 60
891.2.n.a.433.1 8 45.2 even 12
891.2.n.a.784.1 8 495.212 even 60
891.2.n.d.136.1 8 45.22 odd 12
891.2.n.d.190.1 8 495.322 odd 60
891.2.n.d.433.1 8 45.7 odd 12
891.2.n.d.784.1 8 495.157 odd 60
1089.2.a.m.1.1 2 165.137 even 20
1089.2.a.s.1.2 2 165.17 odd 20
5808.2.a.bl.1.2 2 220.27 even 20
5808.2.a.bm.1.2 2 220.127 odd 20
9075.2.a.x.1.1 2 55.38 odd 20
9075.2.a.bv.1.2 2 55.28 even 20