Properties

Label 3300.2.c.i
Level 33003300
Weight 22
Character orbit 3300.c
Analytic conductor 26.35126.351
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3300,2,Mod(1849,3300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3300.1849");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3300=2235211 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3300.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.350632667026.3506326670
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 660)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qiq3+2iq7q9+q112iq132q19+2q21+iq27+8q31iq33+2iq372q392iq43+3q496iq53+2iq57+12q59+2q61+q99+O(q100) q - i q^{3} + 2 i q^{7} - q^{9} + q^{11} - 2 i q^{13} - 2 q^{19} + 2 q^{21} + i q^{27} + 8 q^{31} - i q^{33} + 2 i q^{37} - 2 q^{39} - 2 i q^{43} + 3 q^{49} - 6 i q^{53} + 2 i q^{57} + 12 q^{59} + 2 q^{61} + \cdots - q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q9+2q114q19+4q21+16q314q39+6q49+24q59+4q61+20q79+2q81+12q89+8q912q99+O(q100) 2 q - 2 q^{9} + 2 q^{11} - 4 q^{19} + 4 q^{21} + 16 q^{31} - 4 q^{39} + 6 q^{49} + 24 q^{59} + 4 q^{61} + 20 q^{79} + 2 q^{81} + 12 q^{89} + 8 q^{91} - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3300Z)×\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times.

nn 12011201 16511651 22012201 23772377
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1849.1
1.00000i
1.00000i
0 1.00000i 0 0 0 2.00000i 0 −1.00000 0
1849.2 0 1.00000i 0 0 0 2.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3300.2.c.i 2
3.b odd 2 1 9900.2.c.d 2
5.b even 2 1 inner 3300.2.c.i 2
5.c odd 4 1 660.2.a.d 1
5.c odd 4 1 3300.2.a.b 1
15.d odd 2 1 9900.2.c.d 2
15.e even 4 1 1980.2.a.f 1
15.e even 4 1 9900.2.a.e 1
20.e even 4 1 2640.2.a.b 1
55.e even 4 1 7260.2.a.l 1
60.l odd 4 1 7920.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
660.2.a.d 1 5.c odd 4 1
1980.2.a.f 1 15.e even 4 1
2640.2.a.b 1 20.e even 4 1
3300.2.a.b 1 5.c odd 4 1
3300.2.c.i 2 1.a even 1 1 trivial
3300.2.c.i 2 5.b even 2 1 inner
7260.2.a.l 1 55.e even 4 1
7920.2.a.y 1 60.l odd 4 1
9900.2.a.e 1 15.e even 4 1
9900.2.c.d 2 3.b odd 2 1
9900.2.c.d 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3300,[χ])S_{2}^{\mathrm{new}}(3300, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T132+4 T_{13}^{2} + 4 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+4 T^{2} + 4 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T12)2 (T - 12)^{2} Copy content Toggle raw display
6161 (T2)2 (T - 2)^{2} Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+4 T^{2} + 4 Copy content Toggle raw display
7979 (T10)2 (T - 10)^{2} Copy content Toggle raw display
8383 T2+144 T^{2} + 144 Copy content Toggle raw display
8989 (T6)2 (T - 6)^{2} Copy content Toggle raw display
9797 T2+196 T^{2} + 196 Copy content Toggle raw display
show more
show less