Properties

Label 3328.1.h.a
Level $3328$
Weight $1$
Character orbit 3328.h
Analytic conductor $1.661$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -4, -52, 13
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,1,Mod(1663,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1663");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3328.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 208)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(i, \sqrt{13})\)
Artin image: $D_4:C_2$
Artin field: Galois closure of 8.0.2835349504.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{9} - i q^{13} - 2 q^{17} - q^{25} - 2 i q^{29} - q^{49} - 2 i q^{53} + 2 i q^{61} + q^{81} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 4 q^{17} - 2 q^{25} - 2 q^{49} + 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1663.1
1.00000i
1.00000i
0 0 0 0 0 0 0 −1.00000 0
1663.2 0 0 0 0 0 0 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
13.b even 2 1 RM by \(\Q(\sqrt{13}) \)
52.b odd 2 1 CM by \(\Q(\sqrt{-13}) \)
8.b even 2 1 inner
8.d odd 2 1 inner
104.e even 2 1 inner
104.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.1.h.a 2
4.b odd 2 1 CM 3328.1.h.a 2
8.b even 2 1 inner 3328.1.h.a 2
8.d odd 2 1 inner 3328.1.h.a 2
13.b even 2 1 RM 3328.1.h.a 2
16.e even 4 1 208.1.c.a 1
16.e even 4 1 832.1.c.a 1
16.f odd 4 1 208.1.c.a 1
16.f odd 4 1 832.1.c.a 1
48.i odd 4 1 1872.1.i.b 1
48.k even 4 1 1872.1.i.b 1
52.b odd 2 1 CM 3328.1.h.a 2
104.e even 2 1 inner 3328.1.h.a 2
104.h odd 2 1 inner 3328.1.h.a 2
208.l even 4 1 2704.1.d.a 1
208.m odd 4 1 2704.1.d.a 1
208.o odd 4 1 208.1.c.a 1
208.o odd 4 1 832.1.c.a 1
208.p even 4 1 208.1.c.a 1
208.p even 4 1 832.1.c.a 1
208.r odd 4 1 2704.1.d.a 1
208.s even 4 1 2704.1.d.a 1
208.be odd 12 2 2704.1.bb.a 2
208.bf even 12 2 2704.1.bb.a 2
208.bg odd 12 2 2704.1.y.b 2
208.bh even 12 2 2704.1.y.b 2
208.bi odd 12 2 2704.1.y.b 2
208.bj even 12 2 2704.1.y.b 2
208.bk even 12 2 2704.1.bb.a 2
208.bl odd 12 2 2704.1.bb.a 2
624.v even 4 1 1872.1.i.b 1
624.bi odd 4 1 1872.1.i.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
208.1.c.a 1 16.e even 4 1
208.1.c.a 1 16.f odd 4 1
208.1.c.a 1 208.o odd 4 1
208.1.c.a 1 208.p even 4 1
832.1.c.a 1 16.e even 4 1
832.1.c.a 1 16.f odd 4 1
832.1.c.a 1 208.o odd 4 1
832.1.c.a 1 208.p even 4 1
1872.1.i.b 1 48.i odd 4 1
1872.1.i.b 1 48.k even 4 1
1872.1.i.b 1 624.v even 4 1
1872.1.i.b 1 624.bi odd 4 1
2704.1.d.a 1 208.l even 4 1
2704.1.d.a 1 208.m odd 4 1
2704.1.d.a 1 208.r odd 4 1
2704.1.d.a 1 208.s even 4 1
2704.1.y.b 2 208.bg odd 12 2
2704.1.y.b 2 208.bh even 12 2
2704.1.y.b 2 208.bi odd 12 2
2704.1.y.b 2 208.bj even 12 2
2704.1.bb.a 2 208.be odd 12 2
2704.1.bb.a 2 208.bf even 12 2
2704.1.bb.a 2 208.bk even 12 2
2704.1.bb.a 2 208.bl odd 12 2
3328.1.h.a 2 1.a even 1 1 trivial
3328.1.h.a 2 4.b odd 2 1 CM
3328.1.h.a 2 8.b even 2 1 inner
3328.1.h.a 2 8.d odd 2 1 inner
3328.1.h.a 2 13.b even 2 1 RM
3328.1.h.a 2 52.b odd 2 1 CM
3328.1.h.a 2 104.e even 2 1 inner
3328.1.h.a 2 104.h odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3328, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1 \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less