Properties

Label 3328.2.a.bh.1.3
Level $3328$
Weight $2$
Character 3328.1
Self dual yes
Analytic conductor $26.574$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.470683\) of defining polynomial
Character \(\chi\) \(=\) 3328.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.24914 q^{3} +1.00000 q^{5} -3.24914 q^{7} +7.55691 q^{9} +1.05863 q^{11} +1.00000 q^{13} +3.24914 q^{15} +1.00000 q^{17} +4.00000 q^{19} -10.5569 q^{21} +2.94137 q^{23} -4.00000 q^{25} +14.8061 q^{27} -7.43965 q^{29} +5.05863 q^{31} +3.43965 q^{33} -3.24914 q^{35} +6.55691 q^{37} +3.24914 q^{39} +9.43965 q^{41} -0.307774 q^{43} +7.55691 q^{45} +6.80605 q^{47} +3.55691 q^{49} +3.24914 q^{51} -1.55691 q^{53} +1.05863 q^{55} +12.9966 q^{57} -5.67418 q^{59} -9.67418 q^{61} -24.5535 q^{63} +1.00000 q^{65} +1.50172 q^{67} +9.55691 q^{69} +5.36641 q^{71} -3.55691 q^{73} -12.9966 q^{75} -3.43965 q^{77} -6.73281 q^{79} +25.4362 q^{81} -2.49828 q^{83} +1.00000 q^{85} -24.1725 q^{87} -2.11727 q^{89} -3.24914 q^{91} +16.4362 q^{93} +4.00000 q^{95} +7.67418 q^{97} +8.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 3 q^{5} - q^{7} + 6 q^{9} + 4 q^{11} + 3 q^{13} + q^{15} + 3 q^{17} + 12 q^{19} - 15 q^{21} + 8 q^{23} - 12 q^{25} + 19 q^{27} - 4 q^{29} + 16 q^{31} - 8 q^{33} - q^{35} + 3 q^{37} + q^{39}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.24914 1.87589 0.937946 0.346781i \(-0.112725\pi\)
0.937946 + 0.346781i \(0.112725\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) −3.24914 −1.22806 −0.614030 0.789283i \(-0.710453\pi\)
−0.614030 + 0.789283i \(0.710453\pi\)
\(8\) 0 0
\(9\) 7.55691 2.51897
\(10\) 0 0
\(11\) 1.05863 0.319190 0.159595 0.987183i \(-0.448981\pi\)
0.159595 + 0.987183i \(0.448981\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 3.24914 0.838924
\(16\) 0 0
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −10.5569 −2.30371
\(22\) 0 0
\(23\) 2.94137 0.613317 0.306659 0.951820i \(-0.400789\pi\)
0.306659 + 0.951820i \(0.400789\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 14.8061 2.84943
\(28\) 0 0
\(29\) −7.43965 −1.38151 −0.690754 0.723090i \(-0.742721\pi\)
−0.690754 + 0.723090i \(0.742721\pi\)
\(30\) 0 0
\(31\) 5.05863 0.908557 0.454279 0.890860i \(-0.349897\pi\)
0.454279 + 0.890860i \(0.349897\pi\)
\(32\) 0 0
\(33\) 3.43965 0.598766
\(34\) 0 0
\(35\) −3.24914 −0.549205
\(36\) 0 0
\(37\) 6.55691 1.07795 0.538975 0.842322i \(-0.318812\pi\)
0.538975 + 0.842322i \(0.318812\pi\)
\(38\) 0 0
\(39\) 3.24914 0.520279
\(40\) 0 0
\(41\) 9.43965 1.47423 0.737113 0.675770i \(-0.236189\pi\)
0.737113 + 0.675770i \(0.236189\pi\)
\(42\) 0 0
\(43\) −0.307774 −0.0469350 −0.0234675 0.999725i \(-0.507471\pi\)
−0.0234675 + 0.999725i \(0.507471\pi\)
\(44\) 0 0
\(45\) 7.55691 1.12652
\(46\) 0 0
\(47\) 6.80605 0.992765 0.496383 0.868104i \(-0.334661\pi\)
0.496383 + 0.868104i \(0.334661\pi\)
\(48\) 0 0
\(49\) 3.55691 0.508131
\(50\) 0 0
\(51\) 3.24914 0.454971
\(52\) 0 0
\(53\) −1.55691 −0.213859 −0.106929 0.994267i \(-0.534102\pi\)
−0.106929 + 0.994267i \(0.534102\pi\)
\(54\) 0 0
\(55\) 1.05863 0.142746
\(56\) 0 0
\(57\) 12.9966 1.72144
\(58\) 0 0
\(59\) −5.67418 −0.738715 −0.369358 0.929287i \(-0.620422\pi\)
−0.369358 + 0.929287i \(0.620422\pi\)
\(60\) 0 0
\(61\) −9.67418 −1.23865 −0.619326 0.785134i \(-0.712594\pi\)
−0.619326 + 0.785134i \(0.712594\pi\)
\(62\) 0 0
\(63\) −24.5535 −3.09345
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 1.50172 0.183464 0.0917321 0.995784i \(-0.470760\pi\)
0.0917321 + 0.995784i \(0.470760\pi\)
\(68\) 0 0
\(69\) 9.55691 1.15052
\(70\) 0 0
\(71\) 5.36641 0.636875 0.318438 0.947944i \(-0.396842\pi\)
0.318438 + 0.947944i \(0.396842\pi\)
\(72\) 0 0
\(73\) −3.55691 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(74\) 0 0
\(75\) −12.9966 −1.50071
\(76\) 0 0
\(77\) −3.43965 −0.391984
\(78\) 0 0
\(79\) −6.73281 −0.757501 −0.378750 0.925499i \(-0.623646\pi\)
−0.378750 + 0.925499i \(0.623646\pi\)
\(80\) 0 0
\(81\) 25.4362 2.82625
\(82\) 0 0
\(83\) −2.49828 −0.274222 −0.137111 0.990556i \(-0.543782\pi\)
−0.137111 + 0.990556i \(0.543782\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −24.1725 −2.59156
\(88\) 0 0
\(89\) −2.11727 −0.224430 −0.112215 0.993684i \(-0.535795\pi\)
−0.112215 + 0.993684i \(0.535795\pi\)
\(90\) 0 0
\(91\) −3.24914 −0.340602
\(92\) 0 0
\(93\) 16.4362 1.70436
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 7.67418 0.779195 0.389597 0.920985i \(-0.372614\pi\)
0.389597 + 0.920985i \(0.372614\pi\)
\(98\) 0 0
\(99\) 8.00000 0.804030
\(100\) 0 0
\(101\) 3.11383 0.309838 0.154919 0.987927i \(-0.450488\pi\)
0.154919 + 0.987927i \(0.450488\pi\)
\(102\) 0 0
\(103\) 17.6121 1.73537 0.867686 0.497112i \(-0.165606\pi\)
0.867686 + 0.497112i \(0.165606\pi\)
\(104\) 0 0
\(105\) −10.5569 −1.03025
\(106\) 0 0
\(107\) 10.9414 1.05774 0.528871 0.848702i \(-0.322616\pi\)
0.528871 + 0.848702i \(0.322616\pi\)
\(108\) 0 0
\(109\) 10.3224 0.988705 0.494352 0.869262i \(-0.335405\pi\)
0.494352 + 0.869262i \(0.335405\pi\)
\(110\) 0 0
\(111\) 21.3043 2.02212
\(112\) 0 0
\(113\) −17.1138 −1.60993 −0.804967 0.593320i \(-0.797817\pi\)
−0.804967 + 0.593320i \(0.797817\pi\)
\(114\) 0 0
\(115\) 2.94137 0.274284
\(116\) 0 0
\(117\) 7.55691 0.698637
\(118\) 0 0
\(119\) −3.24914 −0.297848
\(120\) 0 0
\(121\) −9.87930 −0.898118
\(122\) 0 0
\(123\) 30.6707 2.76549
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −15.9379 −1.41426 −0.707131 0.707082i \(-0.750011\pi\)
−0.707131 + 0.707082i \(0.750011\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 7.69223 0.672073 0.336036 0.941849i \(-0.390913\pi\)
0.336036 + 0.941849i \(0.390913\pi\)
\(132\) 0 0
\(133\) −12.9966 −1.12694
\(134\) 0 0
\(135\) 14.8061 1.27430
\(136\) 0 0
\(137\) −5.32238 −0.454722 −0.227361 0.973811i \(-0.573010\pi\)
−0.227361 + 0.973811i \(0.573010\pi\)
\(138\) 0 0
\(139\) −12.4802 −1.05856 −0.529280 0.848447i \(-0.677538\pi\)
−0.529280 + 0.848447i \(0.677538\pi\)
\(140\) 0 0
\(141\) 22.1138 1.86232
\(142\) 0 0
\(143\) 1.05863 0.0885274
\(144\) 0 0
\(145\) −7.43965 −0.617829
\(146\) 0 0
\(147\) 11.5569 0.953198
\(148\) 0 0
\(149\) −9.11383 −0.746634 −0.373317 0.927704i \(-0.621780\pi\)
−0.373317 + 0.927704i \(0.621780\pi\)
\(150\) 0 0
\(151\) 15.4216 1.25499 0.627496 0.778620i \(-0.284080\pi\)
0.627496 + 0.778620i \(0.284080\pi\)
\(152\) 0 0
\(153\) 7.55691 0.610940
\(154\) 0 0
\(155\) 5.05863 0.406319
\(156\) 0 0
\(157\) 3.79145 0.302590 0.151295 0.988489i \(-0.451656\pi\)
0.151295 + 0.988489i \(0.451656\pi\)
\(158\) 0 0
\(159\) −5.05863 −0.401176
\(160\) 0 0
\(161\) −9.55691 −0.753190
\(162\) 0 0
\(163\) 4.17246 0.326812 0.163406 0.986559i \(-0.447752\pi\)
0.163406 + 0.986559i \(0.447752\pi\)
\(164\) 0 0
\(165\) 3.43965 0.267776
\(166\) 0 0
\(167\) −14.2897 −1.10577 −0.552886 0.833257i \(-0.686474\pi\)
−0.552886 + 0.833257i \(0.686474\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 30.2277 2.31157
\(172\) 0 0
\(173\) −6.99656 −0.531939 −0.265969 0.963981i \(-0.585692\pi\)
−0.265969 + 0.963981i \(0.585692\pi\)
\(174\) 0 0
\(175\) 12.9966 0.982448
\(176\) 0 0
\(177\) −18.4362 −1.38575
\(178\) 0 0
\(179\) 17.7474 1.32650 0.663252 0.748396i \(-0.269176\pi\)
0.663252 + 0.748396i \(0.269176\pi\)
\(180\) 0 0
\(181\) 8.11727 0.603352 0.301676 0.953411i \(-0.402454\pi\)
0.301676 + 0.953411i \(0.402454\pi\)
\(182\) 0 0
\(183\) −31.4328 −2.32358
\(184\) 0 0
\(185\) 6.55691 0.482074
\(186\) 0 0
\(187\) 1.05863 0.0774149
\(188\) 0 0
\(189\) −48.1070 −3.49927
\(190\) 0 0
\(191\) −19.9379 −1.44266 −0.721329 0.692593i \(-0.756468\pi\)
−0.721329 + 0.692593i \(0.756468\pi\)
\(192\) 0 0
\(193\) 4.11727 0.296367 0.148184 0.988960i \(-0.452657\pi\)
0.148184 + 0.988960i \(0.452657\pi\)
\(194\) 0 0
\(195\) 3.24914 0.232676
\(196\) 0 0
\(197\) −10.7914 −0.768859 −0.384429 0.923154i \(-0.625602\pi\)
−0.384429 + 0.923154i \(0.625602\pi\)
\(198\) 0 0
\(199\) −0.615547 −0.0436350 −0.0218175 0.999762i \(-0.506945\pi\)
−0.0218175 + 0.999762i \(0.506945\pi\)
\(200\) 0 0
\(201\) 4.87930 0.344159
\(202\) 0 0
\(203\) 24.1725 1.69657
\(204\) 0 0
\(205\) 9.43965 0.659294
\(206\) 0 0
\(207\) 22.2277 1.54493
\(208\) 0 0
\(209\) 4.23453 0.292909
\(210\) 0 0
\(211\) 1.80949 0.124571 0.0622853 0.998058i \(-0.480161\pi\)
0.0622853 + 0.998058i \(0.480161\pi\)
\(212\) 0 0
\(213\) 17.4362 1.19471
\(214\) 0 0
\(215\) −0.307774 −0.0209900
\(216\) 0 0
\(217\) −16.4362 −1.11576
\(218\) 0 0
\(219\) −11.5569 −0.780944
\(220\) 0 0
\(221\) 1.00000 0.0672673
\(222\) 0 0
\(223\) −6.80605 −0.455767 −0.227884 0.973688i \(-0.573181\pi\)
−0.227884 + 0.973688i \(0.573181\pi\)
\(224\) 0 0
\(225\) −30.2277 −2.01518
\(226\) 0 0
\(227\) −6.67074 −0.442753 −0.221376 0.975188i \(-0.571055\pi\)
−0.221376 + 0.975188i \(0.571055\pi\)
\(228\) 0 0
\(229\) 18.1138 1.19700 0.598498 0.801124i \(-0.295765\pi\)
0.598498 + 0.801124i \(0.295765\pi\)
\(230\) 0 0
\(231\) −11.1759 −0.735320
\(232\) 0 0
\(233\) −11.4362 −0.749211 −0.374606 0.927184i \(-0.622222\pi\)
−0.374606 + 0.927184i \(0.622222\pi\)
\(234\) 0 0
\(235\) 6.80605 0.443978
\(236\) 0 0
\(237\) −21.8759 −1.42099
\(238\) 0 0
\(239\) 16.8613 1.09066 0.545332 0.838220i \(-0.316404\pi\)
0.545332 + 0.838220i \(0.316404\pi\)
\(240\) 0 0
\(241\) −5.23109 −0.336964 −0.168482 0.985705i \(-0.553887\pi\)
−0.168482 + 0.985705i \(0.553887\pi\)
\(242\) 0 0
\(243\) 38.2277 2.45231
\(244\) 0 0
\(245\) 3.55691 0.227243
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) −8.11727 −0.514411
\(250\) 0 0
\(251\) −2.05520 −0.129723 −0.0648614 0.997894i \(-0.520661\pi\)
−0.0648614 + 0.997894i \(0.520661\pi\)
\(252\) 0 0
\(253\) 3.11383 0.195765
\(254\) 0 0
\(255\) 3.24914 0.203469
\(256\) 0 0
\(257\) −21.2277 −1.32414 −0.662072 0.749440i \(-0.730323\pi\)
−0.662072 + 0.749440i \(0.730323\pi\)
\(258\) 0 0
\(259\) −21.3043 −1.32379
\(260\) 0 0
\(261\) −56.2208 −3.47998
\(262\) 0 0
\(263\) −23.5569 −1.45258 −0.726291 0.687388i \(-0.758757\pi\)
−0.726291 + 0.687388i \(0.758757\pi\)
\(264\) 0 0
\(265\) −1.55691 −0.0956405
\(266\) 0 0
\(267\) −6.87930 −0.421006
\(268\) 0 0
\(269\) 6.32582 0.385692 0.192846 0.981229i \(-0.438228\pi\)
0.192846 + 0.981229i \(0.438228\pi\)
\(270\) 0 0
\(271\) 3.45769 0.210040 0.105020 0.994470i \(-0.466509\pi\)
0.105020 + 0.994470i \(0.466509\pi\)
\(272\) 0 0
\(273\) −10.5569 −0.638934
\(274\) 0 0
\(275\) −4.23453 −0.255352
\(276\) 0 0
\(277\) −28.5535 −1.71561 −0.857806 0.513974i \(-0.828173\pi\)
−0.857806 + 0.513974i \(0.828173\pi\)
\(278\) 0 0
\(279\) 38.2277 2.28863
\(280\) 0 0
\(281\) −24.9966 −1.49117 −0.745585 0.666411i \(-0.767830\pi\)
−0.745585 + 0.666411i \(0.767830\pi\)
\(282\) 0 0
\(283\) 21.8207 1.29710 0.648552 0.761170i \(-0.275375\pi\)
0.648552 + 0.761170i \(0.275375\pi\)
\(284\) 0 0
\(285\) 12.9966 0.769850
\(286\) 0 0
\(287\) −30.6707 −1.81044
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 24.9345 1.46169
\(292\) 0 0
\(293\) −27.4362 −1.60284 −0.801420 0.598102i \(-0.795922\pi\)
−0.801420 + 0.598102i \(0.795922\pi\)
\(294\) 0 0
\(295\) −5.67418 −0.330364
\(296\) 0 0
\(297\) 15.6742 0.909508
\(298\) 0 0
\(299\) 2.94137 0.170104
\(300\) 0 0
\(301\) 1.00000 0.0576390
\(302\) 0 0
\(303\) 10.1173 0.581222
\(304\) 0 0
\(305\) −9.67418 −0.553942
\(306\) 0 0
\(307\) −26.6707 −1.52218 −0.761090 0.648646i \(-0.775335\pi\)
−0.761090 + 0.648646i \(0.775335\pi\)
\(308\) 0 0
\(309\) 57.2242 3.25537
\(310\) 0 0
\(311\) −6.87930 −0.390089 −0.195045 0.980794i \(-0.562485\pi\)
−0.195045 + 0.980794i \(0.562485\pi\)
\(312\) 0 0
\(313\) −17.6707 −0.998809 −0.499405 0.866369i \(-0.666448\pi\)
−0.499405 + 0.866369i \(0.666448\pi\)
\(314\) 0 0
\(315\) −24.5535 −1.38343
\(316\) 0 0
\(317\) 1.11383 0.0625588 0.0312794 0.999511i \(-0.490042\pi\)
0.0312794 + 0.999511i \(0.490042\pi\)
\(318\) 0 0
\(319\) −7.87586 −0.440963
\(320\) 0 0
\(321\) 35.5500 1.98421
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 33.5389 1.85470
\(328\) 0 0
\(329\) −22.1138 −1.21917
\(330\) 0 0
\(331\) −18.4983 −1.01676 −0.508379 0.861134i \(-0.669755\pi\)
−0.508379 + 0.861134i \(0.669755\pi\)
\(332\) 0 0
\(333\) 49.5500 2.71533
\(334\) 0 0
\(335\) 1.50172 0.0820477
\(336\) 0 0
\(337\) −17.4362 −0.949811 −0.474905 0.880037i \(-0.657518\pi\)
−0.474905 + 0.880037i \(0.657518\pi\)
\(338\) 0 0
\(339\) −55.6052 −3.02006
\(340\) 0 0
\(341\) 5.35524 0.290002
\(342\) 0 0
\(343\) 11.1871 0.604045
\(344\) 0 0
\(345\) 9.55691 0.514527
\(346\) 0 0
\(347\) 8.98539 0.482361 0.241181 0.970480i \(-0.422465\pi\)
0.241181 + 0.970480i \(0.422465\pi\)
\(348\) 0 0
\(349\) 10.9931 0.588448 0.294224 0.955736i \(-0.404939\pi\)
0.294224 + 0.955736i \(0.404939\pi\)
\(350\) 0 0
\(351\) 14.8061 0.790289
\(352\) 0 0
\(353\) 23.2311 1.23647 0.618233 0.785995i \(-0.287849\pi\)
0.618233 + 0.785995i \(0.287849\pi\)
\(354\) 0 0
\(355\) 5.36641 0.284819
\(356\) 0 0
\(357\) −10.5569 −0.558731
\(358\) 0 0
\(359\) 11.2863 0.595668 0.297834 0.954618i \(-0.403736\pi\)
0.297834 + 0.954618i \(0.403736\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −32.0992 −1.68477
\(364\) 0 0
\(365\) −3.55691 −0.186177
\(366\) 0 0
\(367\) 13.6121 0.710546 0.355273 0.934763i \(-0.384388\pi\)
0.355273 + 0.934763i \(0.384388\pi\)
\(368\) 0 0
\(369\) 71.3346 3.71353
\(370\) 0 0
\(371\) 5.05863 0.262631
\(372\) 0 0
\(373\) 33.1070 1.71421 0.857107 0.515139i \(-0.172260\pi\)
0.857107 + 0.515139i \(0.172260\pi\)
\(374\) 0 0
\(375\) −29.2423 −1.51006
\(376\) 0 0
\(377\) −7.43965 −0.383161
\(378\) 0 0
\(379\) −33.1690 −1.70378 −0.851889 0.523722i \(-0.824543\pi\)
−0.851889 + 0.523722i \(0.824543\pi\)
\(380\) 0 0
\(381\) −51.7846 −2.65300
\(382\) 0 0
\(383\) 33.0698 1.68979 0.844894 0.534934i \(-0.179663\pi\)
0.844894 + 0.534934i \(0.179663\pi\)
\(384\) 0 0
\(385\) −3.43965 −0.175301
\(386\) 0 0
\(387\) −2.32582 −0.118228
\(388\) 0 0
\(389\) −19.5569 −0.991575 −0.495787 0.868444i \(-0.665120\pi\)
−0.495787 + 0.868444i \(0.665120\pi\)
\(390\) 0 0
\(391\) 2.94137 0.148751
\(392\) 0 0
\(393\) 24.9931 1.26074
\(394\) 0 0
\(395\) −6.73281 −0.338765
\(396\) 0 0
\(397\) −34.2208 −1.71749 −0.858746 0.512402i \(-0.828756\pi\)
−0.858746 + 0.512402i \(0.828756\pi\)
\(398\) 0 0
\(399\) −42.2277 −2.11403
\(400\) 0 0
\(401\) −32.6707 −1.63150 −0.815750 0.578405i \(-0.803675\pi\)
−0.815750 + 0.578405i \(0.803675\pi\)
\(402\) 0 0
\(403\) 5.05863 0.251988
\(404\) 0 0
\(405\) 25.4362 1.26394
\(406\) 0 0
\(407\) 6.94137 0.344071
\(408\) 0 0
\(409\) 6.20855 0.306993 0.153497 0.988149i \(-0.450947\pi\)
0.153497 + 0.988149i \(0.450947\pi\)
\(410\) 0 0
\(411\) −17.2932 −0.853009
\(412\) 0 0
\(413\) 18.4362 0.907187
\(414\) 0 0
\(415\) −2.49828 −0.122636
\(416\) 0 0
\(417\) −40.5500 −1.98574
\(418\) 0 0
\(419\) 0.369845 0.0180681 0.00903405 0.999959i \(-0.497124\pi\)
0.00903405 + 0.999959i \(0.497124\pi\)
\(420\) 0 0
\(421\) 3.87930 0.189065 0.0945327 0.995522i \(-0.469864\pi\)
0.0945327 + 0.995522i \(0.469864\pi\)
\(422\) 0 0
\(423\) 51.4328 2.50075
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 31.4328 1.52114
\(428\) 0 0
\(429\) 3.43965 0.166068
\(430\) 0 0
\(431\) 0.516327 0.0248706 0.0124353 0.999923i \(-0.496042\pi\)
0.0124353 + 0.999923i \(0.496042\pi\)
\(432\) 0 0
\(433\) 30.7846 1.47941 0.739706 0.672930i \(-0.234965\pi\)
0.739706 + 0.672930i \(0.234965\pi\)
\(434\) 0 0
\(435\) −24.1725 −1.15898
\(436\) 0 0
\(437\) 11.7655 0.562819
\(438\) 0 0
\(439\) −30.4362 −1.45264 −0.726321 0.687356i \(-0.758771\pi\)
−0.726321 + 0.687356i \(0.758771\pi\)
\(440\) 0 0
\(441\) 26.8793 1.27997
\(442\) 0 0
\(443\) −3.45769 −0.164280 −0.0821400 0.996621i \(-0.526175\pi\)
−0.0821400 + 0.996621i \(0.526175\pi\)
\(444\) 0 0
\(445\) −2.11727 −0.100368
\(446\) 0 0
\(447\) −29.6121 −1.40060
\(448\) 0 0
\(449\) 14.7880 0.697889 0.348945 0.937143i \(-0.386540\pi\)
0.348945 + 0.937143i \(0.386540\pi\)
\(450\) 0 0
\(451\) 9.99312 0.470558
\(452\) 0 0
\(453\) 50.1070 2.35423
\(454\) 0 0
\(455\) −3.24914 −0.152322
\(456\) 0 0
\(457\) −31.8759 −1.49109 −0.745545 0.666455i \(-0.767811\pi\)
−0.745545 + 0.666455i \(0.767811\pi\)
\(458\) 0 0
\(459\) 14.8061 0.691087
\(460\) 0 0
\(461\) 18.5569 0.864282 0.432141 0.901806i \(-0.357758\pi\)
0.432141 + 0.901806i \(0.357758\pi\)
\(462\) 0 0
\(463\) −24.8241 −1.15367 −0.576837 0.816859i \(-0.695713\pi\)
−0.576837 + 0.816859i \(0.695713\pi\)
\(464\) 0 0
\(465\) 16.4362 0.762211
\(466\) 0 0
\(467\) 40.2829 1.86407 0.932034 0.362371i \(-0.118033\pi\)
0.932034 + 0.362371i \(0.118033\pi\)
\(468\) 0 0
\(469\) −4.87930 −0.225305
\(470\) 0 0
\(471\) 12.3189 0.567627
\(472\) 0 0
\(473\) −0.325819 −0.0149812
\(474\) 0 0
\(475\) −16.0000 −0.734130
\(476\) 0 0
\(477\) −11.7655 −0.538704
\(478\) 0 0
\(479\) −4.07324 −0.186111 −0.0930556 0.995661i \(-0.529663\pi\)
−0.0930556 + 0.995661i \(0.529663\pi\)
\(480\) 0 0
\(481\) 6.55691 0.298970
\(482\) 0 0
\(483\) −31.0518 −1.41290
\(484\) 0 0
\(485\) 7.67418 0.348467
\(486\) 0 0
\(487\) −15.0518 −0.682060 −0.341030 0.940052i \(-0.610776\pi\)
−0.341030 + 0.940052i \(0.610776\pi\)
\(488\) 0 0
\(489\) 13.5569 0.613065
\(490\) 0 0
\(491\) 3.92676 0.177212 0.0886061 0.996067i \(-0.471759\pi\)
0.0886061 + 0.996067i \(0.471759\pi\)
\(492\) 0 0
\(493\) −7.43965 −0.335065
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) −17.4362 −0.782121
\(498\) 0 0
\(499\) −32.3189 −1.44679 −0.723397 0.690432i \(-0.757420\pi\)
−0.723397 + 0.690432i \(0.757420\pi\)
\(500\) 0 0
\(501\) −46.4293 −2.07431
\(502\) 0 0
\(503\) 16.1104 0.718327 0.359163 0.933275i \(-0.383062\pi\)
0.359163 + 0.933275i \(0.383062\pi\)
\(504\) 0 0
\(505\) 3.11383 0.138564
\(506\) 0 0
\(507\) 3.24914 0.144299
\(508\) 0 0
\(509\) 16.2277 0.719278 0.359639 0.933091i \(-0.382900\pi\)
0.359639 + 0.933091i \(0.382900\pi\)
\(510\) 0 0
\(511\) 11.5569 0.511248
\(512\) 0 0
\(513\) 59.2242 2.61481
\(514\) 0 0
\(515\) 17.6121 0.776082
\(516\) 0 0
\(517\) 7.20512 0.316881
\(518\) 0 0
\(519\) −22.7328 −0.997860
\(520\) 0 0
\(521\) 8.32238 0.364610 0.182305 0.983242i \(-0.441644\pi\)
0.182305 + 0.983242i \(0.441644\pi\)
\(522\) 0 0
\(523\) 32.2829 1.41163 0.705815 0.708396i \(-0.250581\pi\)
0.705815 + 0.708396i \(0.250581\pi\)
\(524\) 0 0
\(525\) 42.2277 1.84297
\(526\) 0 0
\(527\) 5.05863 0.220358
\(528\) 0 0
\(529\) −14.3484 −0.623842
\(530\) 0 0
\(531\) −42.8793 −1.86080
\(532\) 0 0
\(533\) 9.43965 0.408877
\(534\) 0 0
\(535\) 10.9414 0.473037
\(536\) 0 0
\(537\) 57.6639 2.48838
\(538\) 0 0
\(539\) 3.76547 0.162190
\(540\) 0 0
\(541\) −2.32238 −0.0998470 −0.0499235 0.998753i \(-0.515898\pi\)
−0.0499235 + 0.998753i \(0.515898\pi\)
\(542\) 0 0
\(543\) 26.3741 1.13182
\(544\) 0 0
\(545\) 10.3224 0.442162
\(546\) 0 0
\(547\) 9.89390 0.423033 0.211516 0.977374i \(-0.432160\pi\)
0.211516 + 0.977374i \(0.432160\pi\)
\(548\) 0 0
\(549\) −73.1070 −3.12013
\(550\) 0 0
\(551\) −29.7586 −1.26776
\(552\) 0 0
\(553\) 21.8759 0.930256
\(554\) 0 0
\(555\) 21.3043 0.904319
\(556\) 0 0
\(557\) 30.3155 1.28451 0.642255 0.766491i \(-0.277999\pi\)
0.642255 + 0.766491i \(0.277999\pi\)
\(558\) 0 0
\(559\) −0.307774 −0.0130174
\(560\) 0 0
\(561\) 3.43965 0.145222
\(562\) 0 0
\(563\) 38.7440 1.63286 0.816432 0.577441i \(-0.195949\pi\)
0.816432 + 0.577441i \(0.195949\pi\)
\(564\) 0 0
\(565\) −17.1138 −0.719984
\(566\) 0 0
\(567\) −82.6458 −3.47080
\(568\) 0 0
\(569\) 19.2345 0.806354 0.403177 0.915122i \(-0.367906\pi\)
0.403177 + 0.915122i \(0.367906\pi\)
\(570\) 0 0
\(571\) 10.8320 0.453307 0.226653 0.973976i \(-0.427222\pi\)
0.226653 + 0.973976i \(0.427222\pi\)
\(572\) 0 0
\(573\) −64.7811 −2.70627
\(574\) 0 0
\(575\) −11.7655 −0.490654
\(576\) 0 0
\(577\) −45.1329 −1.87891 −0.939454 0.342674i \(-0.888667\pi\)
−0.939454 + 0.342674i \(0.888667\pi\)
\(578\) 0 0
\(579\) 13.3776 0.555953
\(580\) 0 0
\(581\) 8.11727 0.336761
\(582\) 0 0
\(583\) −1.64820 −0.0682615
\(584\) 0 0
\(585\) 7.55691 0.312440
\(586\) 0 0
\(587\) −5.05863 −0.208792 −0.104396 0.994536i \(-0.533291\pi\)
−0.104396 + 0.994536i \(0.533291\pi\)
\(588\) 0 0
\(589\) 20.2345 0.833749
\(590\) 0 0
\(591\) −35.0629 −1.44230
\(592\) 0 0
\(593\) 29.4328 1.20866 0.604330 0.796734i \(-0.293441\pi\)
0.604330 + 0.796734i \(0.293441\pi\)
\(594\) 0 0
\(595\) −3.24914 −0.133202
\(596\) 0 0
\(597\) −2.00000 −0.0818546
\(598\) 0 0
\(599\) 40.4293 1.65190 0.825949 0.563745i \(-0.190640\pi\)
0.825949 + 0.563745i \(0.190640\pi\)
\(600\) 0 0
\(601\) 22.9931 0.937909 0.468955 0.883222i \(-0.344631\pi\)
0.468955 + 0.883222i \(0.344631\pi\)
\(602\) 0 0
\(603\) 11.3484 0.462141
\(604\) 0 0
\(605\) −9.87930 −0.401650
\(606\) 0 0
\(607\) 17.7846 0.721853 0.360927 0.932594i \(-0.382460\pi\)
0.360927 + 0.932594i \(0.382460\pi\)
\(608\) 0 0
\(609\) 78.5397 3.18259
\(610\) 0 0
\(611\) 6.80605 0.275344
\(612\) 0 0
\(613\) 24.2277 0.978546 0.489273 0.872131i \(-0.337262\pi\)
0.489273 + 0.872131i \(0.337262\pi\)
\(614\) 0 0
\(615\) 30.6707 1.23676
\(616\) 0 0
\(617\) 18.2277 0.733818 0.366909 0.930257i \(-0.380416\pi\)
0.366909 + 0.930257i \(0.380416\pi\)
\(618\) 0 0
\(619\) −43.1982 −1.73628 −0.868142 0.496316i \(-0.834686\pi\)
−0.868142 + 0.496316i \(0.834686\pi\)
\(620\) 0 0
\(621\) 43.5500 1.74760
\(622\) 0 0
\(623\) 6.87930 0.275613
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 13.7586 0.549465
\(628\) 0 0
\(629\) 6.55691 0.261441
\(630\) 0 0
\(631\) 7.07668 0.281718 0.140859 0.990030i \(-0.455014\pi\)
0.140859 + 0.990030i \(0.455014\pi\)
\(632\) 0 0
\(633\) 5.87930 0.233681
\(634\) 0 0
\(635\) −15.9379 −0.632477
\(636\) 0 0
\(637\) 3.55691 0.140930
\(638\) 0 0
\(639\) 40.5535 1.60427
\(640\) 0 0
\(641\) −28.2277 −1.11493 −0.557463 0.830202i \(-0.688225\pi\)
−0.557463 + 0.830202i \(0.688225\pi\)
\(642\) 0 0
\(643\) 2.73281 0.107772 0.0538858 0.998547i \(-0.482839\pi\)
0.0538858 + 0.998547i \(0.482839\pi\)
\(644\) 0 0
\(645\) −1.00000 −0.0393750
\(646\) 0 0
\(647\) 14.5604 0.572427 0.286213 0.958166i \(-0.407603\pi\)
0.286213 + 0.958166i \(0.407603\pi\)
\(648\) 0 0
\(649\) −6.00688 −0.235790
\(650\) 0 0
\(651\) −53.4036 −2.09305
\(652\) 0 0
\(653\) −29.3415 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(654\) 0 0
\(655\) 7.69223 0.300560
\(656\) 0 0
\(657\) −26.8793 −1.04866
\(658\) 0 0
\(659\) −32.2829 −1.25756 −0.628781 0.777583i \(-0.716446\pi\)
−0.628781 + 0.777583i \(0.716446\pi\)
\(660\) 0 0
\(661\) 24.4102 0.949448 0.474724 0.880135i \(-0.342548\pi\)
0.474724 + 0.880135i \(0.342548\pi\)
\(662\) 0 0
\(663\) 3.24914 0.126186
\(664\) 0 0
\(665\) −12.9966 −0.503985
\(666\) 0 0
\(667\) −21.8827 −0.847303
\(668\) 0 0
\(669\) −22.1138 −0.854970
\(670\) 0 0
\(671\) −10.2414 −0.395365
\(672\) 0 0
\(673\) 11.8793 0.457913 0.228957 0.973437i \(-0.426469\pi\)
0.228957 + 0.973437i \(0.426469\pi\)
\(674\) 0 0
\(675\) −59.2242 −2.27954
\(676\) 0 0
\(677\) −8.76891 −0.337016 −0.168508 0.985700i \(-0.553895\pi\)
−0.168508 + 0.985700i \(0.553895\pi\)
\(678\) 0 0
\(679\) −24.9345 −0.956898
\(680\) 0 0
\(681\) −21.6742 −0.830556
\(682\) 0 0
\(683\) −3.38445 −0.129502 −0.0647512 0.997901i \(-0.520625\pi\)
−0.0647512 + 0.997901i \(0.520625\pi\)
\(684\) 0 0
\(685\) −5.32238 −0.203358
\(686\) 0 0
\(687\) 58.8544 2.24543
\(688\) 0 0
\(689\) −1.55691 −0.0593137
\(690\) 0 0
\(691\) 11.2242 0.426989 0.213495 0.976944i \(-0.431515\pi\)
0.213495 + 0.976944i \(0.431515\pi\)
\(692\) 0 0
\(693\) −25.9931 −0.987397
\(694\) 0 0
\(695\) −12.4802 −0.473402
\(696\) 0 0
\(697\) 9.43965 0.357552
\(698\) 0 0
\(699\) −37.1579 −1.40544
\(700\) 0 0
\(701\) −48.6707 −1.83827 −0.919134 0.393944i \(-0.871110\pi\)
−0.919134 + 0.393944i \(0.871110\pi\)
\(702\) 0 0
\(703\) 26.2277 0.989195
\(704\) 0 0
\(705\) 22.1138 0.832855
\(706\) 0 0
\(707\) −10.1173 −0.380499
\(708\) 0 0
\(709\) −11.7586 −0.441603 −0.220802 0.975319i \(-0.570867\pi\)
−0.220802 + 0.975319i \(0.570867\pi\)
\(710\) 0 0
\(711\) −50.8793 −1.90812
\(712\) 0 0
\(713\) 14.8793 0.557234
\(714\) 0 0
\(715\) 1.05863 0.0395906
\(716\) 0 0
\(717\) 54.7846 2.04597
\(718\) 0 0
\(719\) −38.7191 −1.44398 −0.721989 0.691905i \(-0.756772\pi\)
−0.721989 + 0.691905i \(0.756772\pi\)
\(720\) 0 0
\(721\) −57.2242 −2.13114
\(722\) 0 0
\(723\) −16.9966 −0.632109
\(724\) 0 0
\(725\) 29.7586 1.10521
\(726\) 0 0
\(727\) 8.93449 0.331362 0.165681 0.986179i \(-0.447018\pi\)
0.165681 + 0.986179i \(0.447018\pi\)
\(728\) 0 0
\(729\) 47.8984 1.77401
\(730\) 0 0
\(731\) −0.307774 −0.0113834
\(732\) 0 0
\(733\) −36.3484 −1.34256 −0.671279 0.741205i \(-0.734255\pi\)
−0.671279 + 0.741205i \(0.734255\pi\)
\(734\) 0 0
\(735\) 11.5569 0.426283
\(736\) 0 0
\(737\) 1.58977 0.0585599
\(738\) 0 0
\(739\) −8.44309 −0.310584 −0.155292 0.987869i \(-0.549632\pi\)
−0.155292 + 0.987869i \(0.549632\pi\)
\(740\) 0 0
\(741\) 12.9966 0.477441
\(742\) 0 0
\(743\) −22.5354 −0.826745 −0.413372 0.910562i \(-0.635649\pi\)
−0.413372 + 0.910562i \(0.635649\pi\)
\(744\) 0 0
\(745\) −9.11383 −0.333905
\(746\) 0 0
\(747\) −18.8793 −0.690757
\(748\) 0 0
\(749\) −35.5500 −1.29897
\(750\) 0 0
\(751\) 2.43621 0.0888986 0.0444493 0.999012i \(-0.485847\pi\)
0.0444493 + 0.999012i \(0.485847\pi\)
\(752\) 0 0
\(753\) −6.67762 −0.243346
\(754\) 0 0
\(755\) 15.4216 0.561250
\(756\) 0 0
\(757\) −43.1329 −1.56769 −0.783847 0.620955i \(-0.786745\pi\)
−0.783847 + 0.620955i \(0.786745\pi\)
\(758\) 0 0
\(759\) 10.1173 0.367234
\(760\) 0 0
\(761\) −30.0191 −1.08819 −0.544096 0.839023i \(-0.683127\pi\)
−0.544096 + 0.839023i \(0.683127\pi\)
\(762\) 0 0
\(763\) −33.5389 −1.21419
\(764\) 0 0
\(765\) 7.55691 0.273221
\(766\) 0 0
\(767\) −5.67418 −0.204883
\(768\) 0 0
\(769\) −35.3484 −1.27469 −0.637347 0.770577i \(-0.719968\pi\)
−0.637347 + 0.770577i \(0.719968\pi\)
\(770\) 0 0
\(771\) −68.9716 −2.48395
\(772\) 0 0
\(773\) 47.2277 1.69866 0.849330 0.527862i \(-0.177006\pi\)
0.849330 + 0.527862i \(0.177006\pi\)
\(774\) 0 0
\(775\) −20.2345 −0.726846
\(776\) 0 0
\(777\) −69.2208 −2.48328
\(778\) 0 0
\(779\) 37.7586 1.35284
\(780\) 0 0
\(781\) 5.68106 0.203284
\(782\) 0 0
\(783\) −110.152 −3.93651
\(784\) 0 0
\(785\) 3.79145 0.135323
\(786\) 0 0
\(787\) −24.7880 −0.883597 −0.441799 0.897114i \(-0.645659\pi\)
−0.441799 + 0.897114i \(0.645659\pi\)
\(788\) 0 0
\(789\) −76.5397 −2.72489
\(790\) 0 0
\(791\) 55.6052 1.97709
\(792\) 0 0
\(793\) −9.67418 −0.343540
\(794\) 0 0
\(795\) −5.05863 −0.179411
\(796\) 0 0
\(797\) 32.1104 1.13741 0.568704 0.822542i \(-0.307445\pi\)
0.568704 + 0.822542i \(0.307445\pi\)
\(798\) 0 0
\(799\) 6.80605 0.240781
\(800\) 0 0
\(801\) −16.0000 −0.565332
\(802\) 0 0
\(803\) −3.76547 −0.132880
\(804\) 0 0
\(805\) −9.55691 −0.336837
\(806\) 0 0
\(807\) 20.5535 0.723517
\(808\) 0 0
\(809\) −4.55004 −0.159971 −0.0799854 0.996796i \(-0.525487\pi\)
−0.0799854 + 0.996796i \(0.525487\pi\)
\(810\) 0 0
\(811\) −48.3449 −1.69762 −0.848810 0.528698i \(-0.822680\pi\)
−0.848810 + 0.528698i \(0.822680\pi\)
\(812\) 0 0
\(813\) 11.2345 0.394012
\(814\) 0 0
\(815\) 4.17246 0.146155
\(816\) 0 0
\(817\) −1.23109 −0.0430706
\(818\) 0 0
\(819\) −24.5535 −0.857968
\(820\) 0 0
\(821\) 24.3484 0.849764 0.424882 0.905249i \(-0.360316\pi\)
0.424882 + 0.905249i \(0.360316\pi\)
\(822\) 0 0
\(823\) 28.4431 0.991464 0.495732 0.868476i \(-0.334900\pi\)
0.495732 + 0.868476i \(0.334900\pi\)
\(824\) 0 0
\(825\) −13.7586 −0.479013
\(826\) 0 0
\(827\) 34.6448 1.20472 0.602358 0.798226i \(-0.294228\pi\)
0.602358 + 0.798226i \(0.294228\pi\)
\(828\) 0 0
\(829\) 34.2208 1.18854 0.594268 0.804267i \(-0.297442\pi\)
0.594268 + 0.804267i \(0.297442\pi\)
\(830\) 0 0
\(831\) −92.7743 −3.21830
\(832\) 0 0
\(833\) 3.55691 0.123240
\(834\) 0 0
\(835\) −14.2897 −0.494516
\(836\) 0 0
\(837\) 74.8984 2.58887
\(838\) 0 0
\(839\) −12.9345 −0.446548 −0.223274 0.974756i \(-0.571675\pi\)
−0.223274 + 0.974756i \(0.571675\pi\)
\(840\) 0 0
\(841\) 26.3484 0.908564
\(842\) 0 0
\(843\) −81.2173 −2.79727
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) 32.0992 1.10294
\(848\) 0 0
\(849\) 70.8984 2.43323
\(850\) 0 0
\(851\) 19.2863 0.661126
\(852\) 0 0
\(853\) −31.6448 −1.08350 −0.541748 0.840541i \(-0.682237\pi\)
−0.541748 + 0.840541i \(0.682237\pi\)
\(854\) 0 0
\(855\) 30.2277 1.03376
\(856\) 0 0
\(857\) −38.8724 −1.32786 −0.663928 0.747796i \(-0.731112\pi\)
−0.663928 + 0.747796i \(0.731112\pi\)
\(858\) 0 0
\(859\) 29.8207 1.01747 0.508734 0.860924i \(-0.330114\pi\)
0.508734 + 0.860924i \(0.330114\pi\)
\(860\) 0 0
\(861\) −99.6536 −3.39618
\(862\) 0 0
\(863\) 24.5163 0.834545 0.417273 0.908781i \(-0.362986\pi\)
0.417273 + 0.908781i \(0.362986\pi\)
\(864\) 0 0
\(865\) −6.99656 −0.237890
\(866\) 0 0
\(867\) −51.9862 −1.76555
\(868\) 0 0
\(869\) −7.12758 −0.241787
\(870\) 0 0
\(871\) 1.50172 0.0508838
\(872\) 0 0
\(873\) 57.9931 1.96277
\(874\) 0 0
\(875\) 29.2423 0.988569
\(876\) 0 0
\(877\) −4.34836 −0.146834 −0.0734169 0.997301i \(-0.523390\pi\)
−0.0734169 + 0.997301i \(0.523390\pi\)
\(878\) 0 0
\(879\) −89.1441 −3.00676
\(880\) 0 0
\(881\) 27.6967 0.933126 0.466563 0.884488i \(-0.345492\pi\)
0.466563 + 0.884488i \(0.345492\pi\)
\(882\) 0 0
\(883\) −14.0440 −0.472619 −0.236310 0.971678i \(-0.575938\pi\)
−0.236310 + 0.971678i \(0.575938\pi\)
\(884\) 0 0
\(885\) −18.4362 −0.619726
\(886\) 0 0
\(887\) 3.66730 0.123136 0.0615680 0.998103i \(-0.480390\pi\)
0.0615680 + 0.998103i \(0.480390\pi\)
\(888\) 0 0
\(889\) 51.7846 1.73680
\(890\) 0 0
\(891\) 26.9276 0.902109
\(892\) 0 0
\(893\) 27.2242 0.911024
\(894\) 0 0
\(895\) 17.7474 0.593231
\(896\) 0 0
\(897\) 9.55691 0.319096
\(898\) 0 0
\(899\) −37.6344 −1.25518
\(900\) 0 0
\(901\) −1.55691 −0.0518683
\(902\) 0 0
\(903\) 3.24914 0.108125
\(904\) 0 0
\(905\) 8.11727 0.269827
\(906\) 0 0
\(907\) 9.39239 0.311869 0.155935 0.987767i \(-0.450161\pi\)
0.155935 + 0.987767i \(0.450161\pi\)
\(908\) 0 0
\(909\) 23.5309 0.780472
\(910\) 0 0
\(911\) 3.64496 0.120763 0.0603815 0.998175i \(-0.480768\pi\)
0.0603815 + 0.998175i \(0.480768\pi\)
\(912\) 0 0
\(913\) −2.64476 −0.0875289
\(914\) 0 0
\(915\) −31.4328 −1.03914
\(916\) 0 0
\(917\) −24.9931 −0.825346
\(918\) 0 0
\(919\) −12.6516 −0.417339 −0.208670 0.977986i \(-0.566913\pi\)
−0.208670 + 0.977986i \(0.566913\pi\)
\(920\) 0 0
\(921\) −86.6570 −2.85544
\(922\) 0 0
\(923\) 5.36641 0.176637
\(924\) 0 0
\(925\) −26.2277 −0.862360
\(926\) 0 0
\(927\) 133.093 4.37135
\(928\) 0 0
\(929\) 37.1070 1.21744 0.608720 0.793385i \(-0.291683\pi\)
0.608720 + 0.793385i \(0.291683\pi\)
\(930\) 0 0
\(931\) 14.2277 0.466293
\(932\) 0 0
\(933\) −22.3518 −0.731765
\(934\) 0 0
\(935\) 1.05863 0.0346210
\(936\) 0 0
\(937\) −50.8724 −1.66193 −0.830965 0.556325i \(-0.812211\pi\)
−0.830965 + 0.556325i \(0.812211\pi\)
\(938\) 0 0
\(939\) −57.4147 −1.87366
\(940\) 0 0
\(941\) 21.4622 0.699647 0.349824 0.936816i \(-0.386241\pi\)
0.349824 + 0.936816i \(0.386241\pi\)
\(942\) 0 0
\(943\) 27.7655 0.904168
\(944\) 0 0
\(945\) −48.1070 −1.56492
\(946\) 0 0
\(947\) 61.1690 1.98773 0.993863 0.110617i \(-0.0352827\pi\)
0.993863 + 0.110617i \(0.0352827\pi\)
\(948\) 0 0
\(949\) −3.55691 −0.115462
\(950\) 0 0
\(951\) 3.61899 0.117354
\(952\) 0 0
\(953\) −13.2345 −0.428709 −0.214354 0.976756i \(-0.568765\pi\)
−0.214354 + 0.976756i \(0.568765\pi\)
\(954\) 0 0
\(955\) −19.9379 −0.645176
\(956\) 0 0
\(957\) −25.5898 −0.827200
\(958\) 0 0
\(959\) 17.2932 0.558425
\(960\) 0 0
\(961\) −5.41023 −0.174524
\(962\) 0 0
\(963\) 82.6830 2.66442
\(964\) 0 0
\(965\) 4.11727 0.132539
\(966\) 0 0
\(967\) −48.4441 −1.55786 −0.778929 0.627112i \(-0.784237\pi\)
−0.778929 + 0.627112i \(0.784237\pi\)
\(968\) 0 0
\(969\) 12.9966 0.417510
\(970\) 0 0
\(971\) −5.69910 −0.182893 −0.0914464 0.995810i \(-0.529149\pi\)
−0.0914464 + 0.995810i \(0.529149\pi\)
\(972\) 0 0
\(973\) 40.5500 1.29997
\(974\) 0 0
\(975\) −12.9966 −0.416223
\(976\) 0 0
\(977\) 2.65164 0.0848334 0.0424167 0.999100i \(-0.486494\pi\)
0.0424167 + 0.999100i \(0.486494\pi\)
\(978\) 0 0
\(979\) −2.24141 −0.0716357
\(980\) 0 0
\(981\) 78.0054 2.49052
\(982\) 0 0
\(983\) −27.2491 −0.869113 −0.434556 0.900645i \(-0.643095\pi\)
−0.434556 + 0.900645i \(0.643095\pi\)
\(984\) 0 0
\(985\) −10.7914 −0.343844
\(986\) 0 0
\(987\) −71.8509 −2.28704
\(988\) 0 0
\(989\) −0.905275 −0.0287861
\(990\) 0 0
\(991\) 22.7552 0.722841 0.361421 0.932403i \(-0.382292\pi\)
0.361421 + 0.932403i \(0.382292\pi\)
\(992\) 0 0
\(993\) −60.1035 −1.90733
\(994\) 0 0
\(995\) −0.615547 −0.0195142
\(996\) 0 0
\(997\) 4.79488 0.151856 0.0759278 0.997113i \(-0.475808\pi\)
0.0759278 + 0.997113i \(0.475808\pi\)
\(998\) 0 0
\(999\) 97.0820 3.07154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.a.bh.1.3 3
4.3 odd 2 3328.2.a.bf.1.1 3
8.3 odd 2 3328.2.a.bg.1.3 3
8.5 even 2 3328.2.a.be.1.1 3
16.3 odd 4 416.2.b.c.209.1 6
16.5 even 4 104.2.b.c.53.3 6
16.11 odd 4 416.2.b.c.209.6 6
16.13 even 4 104.2.b.c.53.4 yes 6
48.5 odd 4 936.2.g.c.469.4 6
48.11 even 4 3744.2.g.c.1873.1 6
48.29 odd 4 936.2.g.c.469.3 6
48.35 even 4 3744.2.g.c.1873.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.b.c.53.3 6 16.5 even 4
104.2.b.c.53.4 yes 6 16.13 even 4
416.2.b.c.209.1 6 16.3 odd 4
416.2.b.c.209.6 6 16.11 odd 4
936.2.g.c.469.3 6 48.29 odd 4
936.2.g.c.469.4 6 48.5 odd 4
3328.2.a.be.1.1 3 8.5 even 2
3328.2.a.bf.1.1 3 4.3 odd 2
3328.2.a.bg.1.3 3 8.3 odd 2
3328.2.a.bh.1.3 3 1.1 even 1 trivial
3744.2.g.c.1873.1 6 48.11 even 4
3744.2.g.c.1873.4 6 48.35 even 4