Properties

Label 936.2.g.c.469.3
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.3
Root \(0.264658 + 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.c.469.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.264658 - 1.38923i) q^{2} +(-1.85991 - 0.735342i) q^{4} +1.00000i q^{5} +3.24914 q^{7} +(-1.51380 + 2.38923i) q^{8} +(1.38923 + 0.264658i) q^{10} +1.05863i q^{11} +1.00000i q^{13} +(0.859912 - 4.51380i) q^{14} +(2.91855 + 2.73534i) q^{16} -1.00000 q^{17} +4.00000i q^{19} +(0.735342 - 1.85991i) q^{20} +(1.47068 + 0.280176i) q^{22} +2.94137 q^{23} +4.00000 q^{25} +(1.38923 + 0.264658i) q^{26} +(-6.04312 - 2.38923i) q^{28} +7.43965i q^{29} +5.05863 q^{31} +(4.57243 - 3.33060i) q^{32} +(-0.264658 + 1.38923i) q^{34} +3.24914i q^{35} -6.55691i q^{37} +(5.55691 + 1.05863i) q^{38} +(-2.38923 - 1.51380i) q^{40} +9.43965 q^{41} +0.307774i q^{43} +(0.778457 - 1.96896i) q^{44} +(0.778457 - 4.08623i) q^{46} -6.80605 q^{47} +3.55691 q^{49} +(1.05863 - 5.55691i) q^{50} +(0.735342 - 1.85991i) q^{52} -1.55691i q^{53} -1.05863 q^{55} +(-4.91855 + 7.76294i) q^{56} +(10.3354 + 1.96896i) q^{58} -5.67418i q^{59} -9.67418i q^{61} +(1.33881 - 7.02760i) q^{62} +(-3.41683 - 7.23362i) q^{64} -1.00000 q^{65} +1.50172i q^{67} +(1.85991 + 0.735342i) q^{68} +(4.51380 + 0.859912i) q^{70} +5.36641 q^{71} +3.55691 q^{73} +(-9.10905 - 1.73534i) q^{74} +(2.94137 - 7.43965i) q^{76} +3.43965i q^{77} -6.73281 q^{79} +(-2.73534 + 2.91855i) q^{80} +(2.49828 - 13.1138i) q^{82} +2.49828i q^{83} -1.00000i q^{85} +(0.427568 + 0.0814549i) q^{86} +(-2.52932 - 1.60256i) q^{88} -2.11727 q^{89} +3.24914i q^{91} +(-5.47068 - 2.16291i) q^{92} +(-1.80128 + 9.45517i) q^{94} -4.00000 q^{95} +7.67418 q^{97} +(0.941367 - 4.94137i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} + 2 q^{7} + 8 q^{8} - 4 q^{14} + 10 q^{16} - 6 q^{17} + 4 q^{20} + 8 q^{22} + 16 q^{23} + 24 q^{25} - 20 q^{28} + 32 q^{31} + 12 q^{32} - 2 q^{34} - 6 q^{40} + 20 q^{41} - 12 q^{44}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.264658 1.38923i 0.187142 0.982333i
\(3\) 0 0
\(4\) −1.85991 0.735342i −0.929956 0.367671i
\(5\) 1.00000i 0.447214i 0.974679 + 0.223607i \(0.0717831\pi\)
−0.974679 + 0.223607i \(0.928217\pi\)
\(6\) 0 0
\(7\) 3.24914 1.22806 0.614030 0.789283i \(-0.289547\pi\)
0.614030 + 0.789283i \(0.289547\pi\)
\(8\) −1.51380 + 2.38923i −0.535209 + 0.844720i
\(9\) 0 0
\(10\) 1.38923 + 0.264658i 0.439313 + 0.0836923i
\(11\) 1.05863i 0.319190i 0.987183 + 0.159595i \(0.0510188\pi\)
−0.987183 + 0.159595i \(0.948981\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0.859912 4.51380i 0.229821 1.20636i
\(15\) 0 0
\(16\) 2.91855 + 2.73534i 0.729636 + 0.683835i
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0.735342 1.85991i 0.164427 0.415889i
\(21\) 0 0
\(22\) 1.47068 + 0.280176i 0.313551 + 0.0597337i
\(23\) 2.94137 0.613317 0.306659 0.951820i \(-0.400789\pi\)
0.306659 + 0.951820i \(0.400789\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 1.38923 + 0.264658i 0.272450 + 0.0519038i
\(27\) 0 0
\(28\) −6.04312 2.38923i −1.14204 0.451522i
\(29\) 7.43965i 1.38151i 0.723090 + 0.690754i \(0.242721\pi\)
−0.723090 + 0.690754i \(0.757279\pi\)
\(30\) 0 0
\(31\) 5.05863 0.908557 0.454279 0.890860i \(-0.349897\pi\)
0.454279 + 0.890860i \(0.349897\pi\)
\(32\) 4.57243 3.33060i 0.808299 0.588772i
\(33\) 0 0
\(34\) −0.264658 + 1.38923i −0.0453885 + 0.238251i
\(35\) 3.24914i 0.549205i
\(36\) 0 0
\(37\) 6.55691i 1.07795i −0.842322 0.538975i \(-0.818812\pi\)
0.842322 0.538975i \(-0.181188\pi\)
\(38\) 5.55691 + 1.05863i 0.901451 + 0.171733i
\(39\) 0 0
\(40\) −2.38923 1.51380i −0.377770 0.239353i
\(41\) 9.43965 1.47423 0.737113 0.675770i \(-0.236189\pi\)
0.737113 + 0.675770i \(0.236189\pi\)
\(42\) 0 0
\(43\) 0.307774i 0.0469350i 0.999725 + 0.0234675i \(0.00747063\pi\)
−0.999725 + 0.0234675i \(0.992529\pi\)
\(44\) 0.778457 1.96896i 0.117357 0.296833i
\(45\) 0 0
\(46\) 0.778457 4.08623i 0.114777 0.602482i
\(47\) −6.80605 −0.992765 −0.496383 0.868104i \(-0.665339\pi\)
−0.496383 + 0.868104i \(0.665339\pi\)
\(48\) 0 0
\(49\) 3.55691 0.508131
\(50\) 1.05863 5.55691i 0.149713 0.785866i
\(51\) 0 0
\(52\) 0.735342 1.85991i 0.101974 0.257923i
\(53\) 1.55691i 0.213859i −0.994267 0.106929i \(-0.965898\pi\)
0.994267 0.106929i \(-0.0341019\pi\)
\(54\) 0 0
\(55\) −1.05863 −0.142746
\(56\) −4.91855 + 7.76294i −0.657268 + 1.03737i
\(57\) 0 0
\(58\) 10.3354 + 1.96896i 1.35710 + 0.258538i
\(59\) 5.67418i 0.738715i −0.929287 0.369358i \(-0.879578\pi\)
0.929287 0.369358i \(-0.120422\pi\)
\(60\) 0 0
\(61\) 9.67418i 1.23865i −0.785134 0.619326i \(-0.787406\pi\)
0.785134 0.619326i \(-0.212594\pi\)
\(62\) 1.33881 7.02760i 0.170029 0.892506i
\(63\) 0 0
\(64\) −3.41683 7.23362i −0.427103 0.904203i
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 1.50172i 0.183464i 0.995784 + 0.0917321i \(0.0292403\pi\)
−0.995784 + 0.0917321i \(0.970760\pi\)
\(68\) 1.85991 + 0.735342i 0.225547 + 0.0891733i
\(69\) 0 0
\(70\) 4.51380 + 0.859912i 0.539502 + 0.102779i
\(71\) 5.36641 0.636875 0.318438 0.947944i \(-0.396842\pi\)
0.318438 + 0.947944i \(0.396842\pi\)
\(72\) 0 0
\(73\) 3.55691 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(74\) −9.10905 1.73534i −1.05891 0.201729i
\(75\) 0 0
\(76\) 2.94137 7.43965i 0.337398 0.853386i
\(77\) 3.43965i 0.391984i
\(78\) 0 0
\(79\) −6.73281 −0.757501 −0.378750 0.925499i \(-0.623646\pi\)
−0.378750 + 0.925499i \(0.623646\pi\)
\(80\) −2.73534 + 2.91855i −0.305821 + 0.326303i
\(81\) 0 0
\(82\) 2.49828 13.1138i 0.275889 1.44818i
\(83\) 2.49828i 0.274222i 0.990556 + 0.137111i \(0.0437817\pi\)
−0.990556 + 0.137111i \(0.956218\pi\)
\(84\) 0 0
\(85\) 1.00000i 0.108465i
\(86\) 0.427568 + 0.0814549i 0.0461058 + 0.00878350i
\(87\) 0 0
\(88\) −2.52932 1.60256i −0.269626 0.170833i
\(89\) −2.11727 −0.224430 −0.112215 0.993684i \(-0.535795\pi\)
−0.112215 + 0.993684i \(0.535795\pi\)
\(90\) 0 0
\(91\) 3.24914i 0.340602i
\(92\) −5.47068 2.16291i −0.570358 0.225499i
\(93\) 0 0
\(94\) −1.80128 + 9.45517i −0.185788 + 0.975226i
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 7.67418 0.779195 0.389597 0.920985i \(-0.372614\pi\)
0.389597 + 0.920985i \(0.372614\pi\)
\(98\) 0.941367 4.94137i 0.0950924 0.499153i
\(99\) 0 0
\(100\) −7.43965 2.94137i −0.743965 0.294137i
\(101\) 3.11383i 0.309838i 0.987927 + 0.154919i \(0.0495116\pi\)
−0.987927 + 0.154919i \(0.950488\pi\)
\(102\) 0 0
\(103\) −17.6121 −1.73537 −0.867686 0.497112i \(-0.834394\pi\)
−0.867686 + 0.497112i \(0.834394\pi\)
\(104\) −2.38923 1.51380i −0.234283 0.148440i
\(105\) 0 0
\(106\) −2.16291 0.412050i −0.210080 0.0400219i
\(107\) 10.9414i 1.05774i 0.848702 + 0.528871i \(0.177384\pi\)
−0.848702 + 0.528871i \(0.822616\pi\)
\(108\) 0 0
\(109\) 10.3224i 0.988705i 0.869262 + 0.494352i \(0.164595\pi\)
−0.869262 + 0.494352i \(0.835405\pi\)
\(110\) −0.280176 + 1.47068i −0.0267137 + 0.140224i
\(111\) 0 0
\(112\) 9.48276 + 8.88751i 0.896037 + 0.839791i
\(113\) 17.1138 1.60993 0.804967 0.593320i \(-0.202183\pi\)
0.804967 + 0.593320i \(0.202183\pi\)
\(114\) 0 0
\(115\) 2.94137i 0.274284i
\(116\) 5.47068 13.8371i 0.507940 1.28474i
\(117\) 0 0
\(118\) −7.88273 1.50172i −0.725664 0.138244i
\(119\) −3.24914 −0.297848
\(120\) 0 0
\(121\) 9.87930 0.898118
\(122\) −13.4396 2.56035i −1.21677 0.231803i
\(123\) 0 0
\(124\) −9.40861 3.71982i −0.844918 0.334050i
\(125\) 9.00000i 0.804984i
\(126\) 0 0
\(127\) −15.9379 −1.41426 −0.707131 0.707082i \(-0.750011\pi\)
−0.707131 + 0.707082i \(0.750011\pi\)
\(128\) −10.9534 + 2.83231i −0.968157 + 0.250344i
\(129\) 0 0
\(130\) −0.264658 + 1.38923i −0.0232121 + 0.121843i
\(131\) 7.69223i 0.672073i −0.941849 0.336036i \(-0.890913\pi\)
0.941849 0.336036i \(-0.109087\pi\)
\(132\) 0 0
\(133\) 12.9966i 1.12694i
\(134\) 2.08623 + 0.397442i 0.180223 + 0.0343338i
\(135\) 0 0
\(136\) 1.51380 2.38923i 0.129807 0.204875i
\(137\) −5.32238 −0.454722 −0.227361 0.973811i \(-0.573010\pi\)
−0.227361 + 0.973811i \(0.573010\pi\)
\(138\) 0 0
\(139\) 12.4802i 1.05856i 0.848447 + 0.529280i \(0.177538\pi\)
−0.848447 + 0.529280i \(0.822462\pi\)
\(140\) 2.38923 6.04312i 0.201927 0.510736i
\(141\) 0 0
\(142\) 1.42026 7.45517i 0.119186 0.625624i
\(143\) −1.05863 −0.0885274
\(144\) 0 0
\(145\) −7.43965 −0.617829
\(146\) 0.941367 4.94137i 0.0779081 0.408950i
\(147\) 0 0
\(148\) −4.82157 + 12.1953i −0.396331 + 1.00245i
\(149\) 9.11383i 0.746634i −0.927704 0.373317i \(-0.878220\pi\)
0.927704 0.373317i \(-0.121780\pi\)
\(150\) 0 0
\(151\) −15.4216 −1.25499 −0.627496 0.778620i \(-0.715920\pi\)
−0.627496 + 0.778620i \(0.715920\pi\)
\(152\) −9.55691 6.05520i −0.775168 0.491141i
\(153\) 0 0
\(154\) 4.77846 + 0.910331i 0.385059 + 0.0733566i
\(155\) 5.05863i 0.406319i
\(156\) 0 0
\(157\) 3.79145i 0.302590i 0.988489 + 0.151295i \(0.0483444\pi\)
−0.988489 + 0.151295i \(0.951656\pi\)
\(158\) −1.78189 + 9.35342i −0.141760 + 0.744118i
\(159\) 0 0
\(160\) 3.33060 + 4.57243i 0.263307 + 0.361482i
\(161\) 9.55691 0.753190
\(162\) 0 0
\(163\) 4.17246i 0.326812i 0.986559 + 0.163406i \(0.0522481\pi\)
−0.986559 + 0.163406i \(0.947752\pi\)
\(164\) −17.5569 6.94137i −1.37096 0.542030i
\(165\) 0 0
\(166\) 3.47068 + 0.661191i 0.269377 + 0.0513184i
\(167\) −14.2897 −1.10577 −0.552886 0.833257i \(-0.686474\pi\)
−0.552886 + 0.833257i \(0.686474\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −1.38923 0.264658i −0.106549 0.0202984i
\(171\) 0 0
\(172\) 0.226319 0.572432i 0.0172566 0.0436475i
\(173\) 6.99656i 0.531939i 0.963981 + 0.265969i \(0.0856920\pi\)
−0.963981 + 0.265969i \(0.914308\pi\)
\(174\) 0 0
\(175\) 12.9966 0.982448
\(176\) −2.89572 + 3.08967i −0.218273 + 0.232893i
\(177\) 0 0
\(178\) −0.560352 + 2.94137i −0.0420002 + 0.220465i
\(179\) 17.7474i 1.32650i −0.748396 0.663252i \(-0.769176\pi\)
0.748396 0.663252i \(-0.230824\pi\)
\(180\) 0 0
\(181\) 8.11727i 0.603352i −0.953411 0.301676i \(-0.902454\pi\)
0.953411 0.301676i \(-0.0975460\pi\)
\(182\) 4.51380 + 0.859912i 0.334585 + 0.0637409i
\(183\) 0 0
\(184\) −4.45264 + 7.02760i −0.328253 + 0.518081i
\(185\) 6.55691 0.482074
\(186\) 0 0
\(187\) 1.05863i 0.0774149i
\(188\) 12.6587 + 5.00478i 0.923228 + 0.365011i
\(189\) 0 0
\(190\) −1.05863 + 5.55691i −0.0768013 + 0.403141i
\(191\) 19.9379 1.44266 0.721329 0.692593i \(-0.243532\pi\)
0.721329 + 0.692593i \(0.243532\pi\)
\(192\) 0 0
\(193\) 4.11727 0.296367 0.148184 0.988960i \(-0.452657\pi\)
0.148184 + 0.988960i \(0.452657\pi\)
\(194\) 2.03104 10.6612i 0.145820 0.765429i
\(195\) 0 0
\(196\) −6.61555 2.61555i −0.472539 0.186825i
\(197\) 10.7914i 0.768859i −0.923154 0.384429i \(-0.874398\pi\)
0.923154 0.384429i \(-0.125602\pi\)
\(198\) 0 0
\(199\) 0.615547 0.0436350 0.0218175 0.999762i \(-0.493055\pi\)
0.0218175 + 0.999762i \(0.493055\pi\)
\(200\) −6.05520 + 9.55691i −0.428167 + 0.675776i
\(201\) 0 0
\(202\) 4.32582 + 0.824101i 0.304364 + 0.0579835i
\(203\) 24.1725i 1.69657i
\(204\) 0 0
\(205\) 9.43965i 0.659294i
\(206\) −4.66119 + 24.4672i −0.324761 + 1.70471i
\(207\) 0 0
\(208\) −2.73534 + 2.91855i −0.189662 + 0.202365i
\(209\) −4.23453 −0.292909
\(210\) 0 0
\(211\) 1.80949i 0.124571i 0.998058 + 0.0622853i \(0.0198389\pi\)
−0.998058 + 0.0622853i \(0.980161\pi\)
\(212\) −1.14486 + 2.89572i −0.0786296 + 0.198879i
\(213\) 0 0
\(214\) 15.2001 + 2.89572i 1.03905 + 0.197948i
\(215\) −0.307774 −0.0209900
\(216\) 0 0
\(217\) 16.4362 1.11576
\(218\) 14.3401 + 2.73190i 0.971237 + 0.185028i
\(219\) 0 0
\(220\) 1.96896 + 0.778457i 0.132748 + 0.0524836i
\(221\) 1.00000i 0.0672673i
\(222\) 0 0
\(223\) −6.80605 −0.455767 −0.227884 0.973688i \(-0.573181\pi\)
−0.227884 + 0.973688i \(0.573181\pi\)
\(224\) 14.8565 10.8216i 0.992640 0.723047i
\(225\) 0 0
\(226\) 4.52932 23.7750i 0.301286 1.58149i
\(227\) 6.67074i 0.442753i 0.975188 + 0.221376i \(0.0710549\pi\)
−0.975188 + 0.221376i \(0.928945\pi\)
\(228\) 0 0
\(229\) 18.1138i 1.19700i −0.801124 0.598498i \(-0.795765\pi\)
0.801124 0.598498i \(-0.204235\pi\)
\(230\) 4.08623 + 0.778457i 0.269438 + 0.0513299i
\(231\) 0 0
\(232\) −17.7750 11.2621i −1.16699 0.739395i
\(233\) −11.4362 −0.749211 −0.374606 0.927184i \(-0.622222\pi\)
−0.374606 + 0.927184i \(0.622222\pi\)
\(234\) 0 0
\(235\) 6.80605i 0.443978i
\(236\) −4.17246 + 10.5535i −0.271604 + 0.686973i
\(237\) 0 0
\(238\) −0.859912 + 4.51380i −0.0557398 + 0.292586i
\(239\) −16.8613 −1.09066 −0.545332 0.838220i \(-0.683596\pi\)
−0.545332 + 0.838220i \(0.683596\pi\)
\(240\) 0 0
\(241\) −5.23109 −0.336964 −0.168482 0.985705i \(-0.553887\pi\)
−0.168482 + 0.985705i \(0.553887\pi\)
\(242\) 2.61464 13.7246i 0.168075 0.882251i
\(243\) 0 0
\(244\) −7.11383 + 17.9931i −0.455416 + 1.15189i
\(245\) 3.55691i 0.227243i
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) −7.65775 + 12.0862i −0.486268 + 0.767476i
\(249\) 0 0
\(250\) 12.5031 + 2.38192i 0.790763 + 0.150646i
\(251\) 2.05520i 0.129723i −0.997894 0.0648614i \(-0.979339\pi\)
0.997894 0.0648614i \(-0.0206605\pi\)
\(252\) 0 0
\(253\) 3.11383i 0.195765i
\(254\) −4.21811 + 22.1414i −0.264667 + 1.38928i
\(255\) 0 0
\(256\) 1.03581 + 15.9664i 0.0647382 + 0.997902i
\(257\) 21.2277 1.32414 0.662072 0.749440i \(-0.269677\pi\)
0.662072 + 0.749440i \(0.269677\pi\)
\(258\) 0 0
\(259\) 21.3043i 1.32379i
\(260\) 1.85991 + 0.735342i 0.115347 + 0.0456040i
\(261\) 0 0
\(262\) −10.6863 2.03581i −0.660199 0.125773i
\(263\) −23.5569 −1.45258 −0.726291 0.687388i \(-0.758757\pi\)
−0.726291 + 0.687388i \(0.758757\pi\)
\(264\) 0 0
\(265\) 1.55691 0.0956405
\(266\) 18.0552 + 3.43965i 1.10704 + 0.210898i
\(267\) 0 0
\(268\) 1.10428 2.79307i 0.0674544 0.170614i
\(269\) 6.32582i 0.385692i −0.981229 0.192846i \(-0.938228\pi\)
0.981229 0.192846i \(-0.0617718\pi\)
\(270\) 0 0
\(271\) 3.45769 0.210040 0.105020 0.994470i \(-0.466509\pi\)
0.105020 + 0.994470i \(0.466509\pi\)
\(272\) −2.91855 2.73534i −0.176963 0.165854i
\(273\) 0 0
\(274\) −1.40861 + 7.39400i −0.0850974 + 0.446688i
\(275\) 4.23453i 0.255352i
\(276\) 0 0
\(277\) 28.5535i 1.71561i 0.513974 + 0.857806i \(0.328173\pi\)
−0.513974 + 0.857806i \(0.671827\pi\)
\(278\) 17.3379 + 3.30300i 1.03986 + 0.198101i
\(279\) 0 0
\(280\) −7.76294 4.91855i −0.463924 0.293939i
\(281\) −24.9966 −1.49117 −0.745585 0.666411i \(-0.767830\pi\)
−0.745585 + 0.666411i \(0.767830\pi\)
\(282\) 0 0
\(283\) 21.8207i 1.29710i −0.761170 0.648552i \(-0.775375\pi\)
0.761170 0.648552i \(-0.224625\pi\)
\(284\) −9.98104 3.94614i −0.592266 0.234160i
\(285\) 0 0
\(286\) −0.280176 + 1.47068i −0.0165672 + 0.0869633i
\(287\) 30.6707 1.81044
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) −1.96896 + 10.3354i −0.115622 + 0.606914i
\(291\) 0 0
\(292\) −6.61555 2.61555i −0.387146 0.153063i
\(293\) 27.4362i 1.60284i −0.598102 0.801420i \(-0.704078\pi\)
0.598102 0.801420i \(-0.295922\pi\)
\(294\) 0 0
\(295\) 5.67418 0.330364
\(296\) 15.6660 + 9.92585i 0.910566 + 0.576928i
\(297\) 0 0
\(298\) −12.6612 2.41205i −0.733443 0.139726i
\(299\) 2.94137i 0.170104i
\(300\) 0 0
\(301\) 1.00000i 0.0576390i
\(302\) −4.08145 + 21.4241i −0.234861 + 1.23282i
\(303\) 0 0
\(304\) −10.9414 + 11.6742i −0.627530 + 0.669560i
\(305\) 9.67418 0.553942
\(306\) 0 0
\(307\) 26.6707i 1.52218i −0.648646 0.761090i \(-0.724665\pi\)
0.648646 0.761090i \(-0.275335\pi\)
\(308\) 2.52932 6.39744i 0.144121 0.364528i
\(309\) 0 0
\(310\) 7.02760 + 1.33881i 0.399141 + 0.0760393i
\(311\) −6.87930 −0.390089 −0.195045 0.980794i \(-0.562485\pi\)
−0.195045 + 0.980794i \(0.562485\pi\)
\(312\) 0 0
\(313\) 17.6707 0.998809 0.499405 0.866369i \(-0.333552\pi\)
0.499405 + 0.866369i \(0.333552\pi\)
\(314\) 5.26719 + 1.00344i 0.297245 + 0.0566273i
\(315\) 0 0
\(316\) 12.5224 + 4.95092i 0.704442 + 0.278511i
\(317\) 1.11383i 0.0625588i −0.999511 0.0312794i \(-0.990042\pi\)
0.999511 0.0312794i \(-0.00995817\pi\)
\(318\) 0 0
\(319\) −7.87586 −0.440963
\(320\) 7.23362 3.41683i 0.404372 0.191006i
\(321\) 0 0
\(322\) 2.52932 13.2767i 0.140953 0.739884i
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) 4.00000i 0.221880i
\(326\) 5.79650 + 1.10428i 0.321039 + 0.0611602i
\(327\) 0 0
\(328\) −14.2897 + 22.5535i −0.789018 + 1.24531i
\(329\) −22.1138 −1.21917
\(330\) 0 0
\(331\) 18.4983i 1.01676i 0.861134 + 0.508379i \(0.169755\pi\)
−0.861134 + 0.508379i \(0.830245\pi\)
\(332\) 1.83709 4.64658i 0.100823 0.255014i
\(333\) 0 0
\(334\) −3.78189 + 19.8517i −0.206936 + 1.08624i
\(335\) −1.50172 −0.0820477
\(336\) 0 0
\(337\) −17.4362 −0.949811 −0.474905 0.880037i \(-0.657518\pi\)
−0.474905 + 0.880037i \(0.657518\pi\)
\(338\) −0.264658 + 1.38923i −0.0143955 + 0.0755641i
\(339\) 0 0
\(340\) −0.735342 + 1.85991i −0.0398795 + 0.100868i
\(341\) 5.35524i 0.290002i
\(342\) 0 0
\(343\) −11.1871 −0.604045
\(344\) −0.735342 0.465907i −0.0396470 0.0251200i
\(345\) 0 0
\(346\) 9.71982 + 1.85170i 0.522541 + 0.0995479i
\(347\) 8.98539i 0.482361i 0.970480 + 0.241181i \(0.0775346\pi\)
−0.970480 + 0.241181i \(0.922465\pi\)
\(348\) 0 0
\(349\) 10.9931i 0.588448i 0.955736 + 0.294224i \(0.0950612\pi\)
−0.955736 + 0.294224i \(0.904939\pi\)
\(350\) 3.43965 18.0552i 0.183857 0.965091i
\(351\) 0 0
\(352\) 3.52588 + 4.84053i 0.187930 + 0.258001i
\(353\) −23.2311 −1.23647 −0.618233 0.785995i \(-0.712151\pi\)
−0.618233 + 0.785995i \(0.712151\pi\)
\(354\) 0 0
\(355\) 5.36641i 0.284819i
\(356\) 3.93793 + 1.55691i 0.208710 + 0.0825163i
\(357\) 0 0
\(358\) −24.6552 4.69700i −1.30307 0.248244i
\(359\) 11.2863 0.595668 0.297834 0.954618i \(-0.403736\pi\)
0.297834 + 0.954618i \(0.403736\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −11.2767 2.14830i −0.592692 0.112912i
\(363\) 0 0
\(364\) 2.38923 6.04312i 0.125230 0.316745i
\(365\) 3.55691i 0.186177i
\(366\) 0 0
\(367\) 13.6121 0.710546 0.355273 0.934763i \(-0.384388\pi\)
0.355273 + 0.934763i \(0.384388\pi\)
\(368\) 8.58451 + 8.04564i 0.447499 + 0.419408i
\(369\) 0 0
\(370\) 1.73534 9.10905i 0.0902161 0.473557i
\(371\) 5.05863i 0.262631i
\(372\) 0 0
\(373\) 33.1070i 1.71421i −0.515139 0.857107i \(-0.672260\pi\)
0.515139 0.857107i \(-0.327740\pi\)
\(374\) −1.47068 0.280176i −0.0760472 0.0144876i
\(375\) 0 0
\(376\) 10.3030 16.2612i 0.531337 0.838608i
\(377\) −7.43965 −0.383161
\(378\) 0 0
\(379\) 33.1690i 1.70378i 0.523722 + 0.851889i \(0.324543\pi\)
−0.523722 + 0.851889i \(0.675457\pi\)
\(380\) 7.43965 + 2.94137i 0.381646 + 0.150889i
\(381\) 0 0
\(382\) 5.27674 27.6983i 0.269981 1.41717i
\(383\) −33.0698 −1.68979 −0.844894 0.534934i \(-0.820337\pi\)
−0.844894 + 0.534934i \(0.820337\pi\)
\(384\) 0 0
\(385\) −3.43965 −0.175301
\(386\) 1.08967 5.71982i 0.0554627 0.291131i
\(387\) 0 0
\(388\) −14.2733 5.64315i −0.724617 0.286487i
\(389\) 19.5569i 0.991575i −0.868444 0.495787i \(-0.834880\pi\)
0.868444 0.495787i \(-0.165120\pi\)
\(390\) 0 0
\(391\) −2.94137 −0.148751
\(392\) −5.38445 + 8.49828i −0.271956 + 0.429228i
\(393\) 0 0
\(394\) −14.9918 2.85605i −0.755275 0.143886i
\(395\) 6.73281i 0.338765i
\(396\) 0 0
\(397\) 34.2208i 1.71749i −0.512402 0.858746i \(-0.671244\pi\)
0.512402 0.858746i \(-0.328756\pi\)
\(398\) 0.162910 0.855136i 0.00816593 0.0428641i
\(399\) 0 0
\(400\) 11.6742 + 10.9414i 0.583709 + 0.547068i
\(401\) 32.6707 1.63150 0.815750 0.578405i \(-0.196325\pi\)
0.815750 + 0.578405i \(0.196325\pi\)
\(402\) 0 0
\(403\) 5.05863i 0.251988i
\(404\) 2.28973 5.79145i 0.113918 0.288135i
\(405\) 0 0
\(406\) 33.5811 + 6.39744i 1.66660 + 0.317500i
\(407\) 6.94137 0.344071
\(408\) 0 0
\(409\) −6.20855 −0.306993 −0.153497 0.988149i \(-0.549053\pi\)
−0.153497 + 0.988149i \(0.549053\pi\)
\(410\) 13.1138 + 2.49828i 0.647646 + 0.123381i
\(411\) 0 0
\(412\) 32.7570 + 12.9509i 1.61382 + 0.638046i
\(413\) 18.4362i 0.907187i
\(414\) 0 0
\(415\) −2.49828 −0.122636
\(416\) 3.33060 + 4.57243i 0.163296 + 0.224182i
\(417\) 0 0
\(418\) −1.12070 + 5.88273i −0.0548154 + 0.287734i
\(419\) 0.369845i 0.0180681i −0.999959 0.00903405i \(-0.997124\pi\)
0.999959 0.00903405i \(-0.00287567\pi\)
\(420\) 0 0
\(421\) 3.87930i 0.189065i −0.995522 0.0945327i \(-0.969864\pi\)
0.995522 0.0945327i \(-0.0301357\pi\)
\(422\) 2.51380 + 0.478897i 0.122370 + 0.0233124i
\(423\) 0 0
\(424\) 3.71982 + 2.35685i 0.180651 + 0.114459i
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 31.4328i 1.52114i
\(428\) 8.04564 20.3500i 0.388901 0.983653i
\(429\) 0 0
\(430\) −0.0814549 + 0.427568i −0.00392810 + 0.0206192i
\(431\) −0.516327 −0.0248706 −0.0124353 0.999923i \(-0.503958\pi\)
−0.0124353 + 0.999923i \(0.503958\pi\)
\(432\) 0 0
\(433\) 30.7846 1.47941 0.739706 0.672930i \(-0.234965\pi\)
0.739706 + 0.672930i \(0.234965\pi\)
\(434\) 4.34998 22.8337i 0.208806 1.09605i
\(435\) 0 0
\(436\) 7.59048 19.1987i 0.363518 0.919452i
\(437\) 11.7655i 0.562819i
\(438\) 0 0
\(439\) 30.4362 1.45264 0.726321 0.687356i \(-0.241229\pi\)
0.726321 + 0.687356i \(0.241229\pi\)
\(440\) 1.60256 2.52932i 0.0763989 0.120580i
\(441\) 0 0
\(442\) −1.38923 0.264658i −0.0660789 0.0125885i
\(443\) 3.45769i 0.164280i −0.996621 0.0821400i \(-0.973825\pi\)
0.996621 0.0821400i \(-0.0261755\pi\)
\(444\) 0 0
\(445\) 2.11727i 0.100368i
\(446\) −1.80128 + 9.45517i −0.0852930 + 0.447715i
\(447\) 0 0
\(448\) −11.1017 23.5031i −0.524508 1.11042i
\(449\) −14.7880 −0.697889 −0.348945 0.937143i \(-0.613460\pi\)
−0.348945 + 0.937143i \(0.613460\pi\)
\(450\) 0 0
\(451\) 9.99312i 0.470558i
\(452\) −31.8302 12.5845i −1.49717 0.591926i
\(453\) 0 0
\(454\) 9.26719 + 1.76547i 0.434931 + 0.0828575i
\(455\) −3.24914 −0.152322
\(456\) 0 0
\(457\) 31.8759 1.49109 0.745545 0.666455i \(-0.232189\pi\)
0.745545 + 0.666455i \(0.232189\pi\)
\(458\) −25.1642 4.79397i −1.17585 0.224008i
\(459\) 0 0
\(460\) 2.16291 5.47068i 0.100846 0.255072i
\(461\) 18.5569i 0.864282i −0.901806 0.432141i \(-0.857758\pi\)
0.901806 0.432141i \(-0.142242\pi\)
\(462\) 0 0
\(463\) −24.8241 −1.15367 −0.576837 0.816859i \(-0.695713\pi\)
−0.576837 + 0.816859i \(0.695713\pi\)
\(464\) −20.3500 + 21.7129i −0.944724 + 1.00800i
\(465\) 0 0
\(466\) −3.02669 + 15.8875i −0.140209 + 0.735975i
\(467\) 40.2829i 1.86407i −0.362371 0.932034i \(-0.618033\pi\)
0.362371 0.932034i \(-0.381967\pi\)
\(468\) 0 0
\(469\) 4.87930i 0.225305i
\(470\) −9.45517 1.80128i −0.436134 0.0830868i
\(471\) 0 0
\(472\) 13.5569 + 8.58957i 0.624008 + 0.395367i
\(473\) −0.325819 −0.0149812
\(474\) 0 0
\(475\) 16.0000i 0.734130i
\(476\) 6.04312 + 2.38923i 0.276986 + 0.109510i
\(477\) 0 0
\(478\) −4.46247 + 23.4241i −0.204109 + 1.07139i
\(479\) 4.07324 0.186111 0.0930556 0.995661i \(-0.470337\pi\)
0.0930556 + 0.995661i \(0.470337\pi\)
\(480\) 0 0
\(481\) 6.55691 0.298970
\(482\) −1.38445 + 7.26719i −0.0630601 + 0.331011i
\(483\) 0 0
\(484\) −18.3746 7.26466i −0.835210 0.330212i
\(485\) 7.67418i 0.348467i
\(486\) 0 0
\(487\) 15.0518 0.682060 0.341030 0.940052i \(-0.389224\pi\)
0.341030 + 0.940052i \(0.389224\pi\)
\(488\) 23.1138 + 14.6448i 1.04631 + 0.662937i
\(489\) 0 0
\(490\) 4.94137 + 0.941367i 0.223228 + 0.0425266i
\(491\) 3.92676i 0.177212i 0.996067 + 0.0886061i \(0.0282412\pi\)
−0.996067 + 0.0886061i \(0.971759\pi\)
\(492\) 0 0
\(493\) 7.43965i 0.335065i
\(494\) −1.05863 + 5.55691i −0.0476302 + 0.250017i
\(495\) 0 0
\(496\) 14.7638 + 13.8371i 0.662916 + 0.621304i
\(497\) 17.4362 0.782121
\(498\) 0 0
\(499\) 32.3189i 1.44679i −0.690432 0.723397i \(-0.742580\pi\)
0.690432 0.723397i \(-0.257420\pi\)
\(500\) 6.61808 16.7392i 0.295969 0.748600i
\(501\) 0 0
\(502\) −2.85514 0.543924i −0.127431 0.0242765i
\(503\) 16.1104 0.718327 0.359163 0.933275i \(-0.383062\pi\)
0.359163 + 0.933275i \(0.383062\pi\)
\(504\) 0 0
\(505\) −3.11383 −0.138564
\(506\) 4.32582 + 0.824101i 0.192306 + 0.0366357i
\(507\) 0 0
\(508\) 29.6431 + 11.7198i 1.31520 + 0.519983i
\(509\) 16.2277i 0.719278i −0.933091 0.359639i \(-0.882900\pi\)
0.933091 0.359639i \(-0.117100\pi\)
\(510\) 0 0
\(511\) 11.5569 0.511248
\(512\) 22.4552 + 2.78667i 0.992387 + 0.123155i
\(513\) 0 0
\(514\) 5.61808 29.4901i 0.247803 1.30075i
\(515\) 17.6121i 0.776082i
\(516\) 0 0
\(517\) 7.20512i 0.316881i
\(518\) −29.5966 5.63837i −1.30040 0.247736i
\(519\) 0 0
\(520\) 1.51380 2.38923i 0.0663845 0.104775i
\(521\) 8.32238 0.364610 0.182305 0.983242i \(-0.441644\pi\)
0.182305 + 0.983242i \(0.441644\pi\)
\(522\) 0 0
\(523\) 32.2829i 1.41163i −0.708396 0.705815i \(-0.750581\pi\)
0.708396 0.705815i \(-0.249419\pi\)
\(524\) −5.65641 + 14.3069i −0.247102 + 0.624998i
\(525\) 0 0
\(526\) −6.23453 + 32.7259i −0.271839 + 1.42692i
\(527\) −5.05863 −0.220358
\(528\) 0 0
\(529\) −14.3484 −0.623842
\(530\) 0.412050 2.16291i 0.0178983 0.0939508i
\(531\) 0 0
\(532\) 9.55691 24.1725i 0.414345 1.04801i
\(533\) 9.43965i 0.408877i
\(534\) 0 0
\(535\) −10.9414 −0.473037
\(536\) −3.58795 2.27330i −0.154976 0.0981916i
\(537\) 0 0
\(538\) −8.78801 1.67418i −0.378878 0.0721790i
\(539\) 3.76547i 0.162190i
\(540\) 0 0
\(541\) 2.32238i 0.0998470i −0.998753 0.0499235i \(-0.984102\pi\)
0.998753 0.0499235i \(-0.0158977\pi\)
\(542\) 0.915107 4.80353i 0.0393072 0.206329i
\(543\) 0 0
\(544\) −4.57243 + 3.33060i −0.196041 + 0.142798i
\(545\) −10.3224 −0.442162
\(546\) 0 0
\(547\) 9.89390i 0.423033i 0.977374 + 0.211516i \(0.0678402\pi\)
−0.977374 + 0.211516i \(0.932160\pi\)
\(548\) 9.89916 + 3.91377i 0.422871 + 0.167188i
\(549\) 0 0
\(550\) 5.88273 + 1.12070i 0.250841 + 0.0477870i
\(551\) −29.7586 −1.26776
\(552\) 0 0
\(553\) −21.8759 −0.930256
\(554\) 39.6673 + 7.55691i 1.68530 + 0.321063i
\(555\) 0 0
\(556\) 9.17724 23.2121i 0.389202 0.984414i
\(557\) 30.3155i 1.28451i −0.766491 0.642255i \(-0.777999\pi\)
0.766491 0.642255i \(-0.222001\pi\)
\(558\) 0 0
\(559\) −0.307774 −0.0130174
\(560\) −8.88751 + 9.48276i −0.375566 + 0.400720i
\(561\) 0 0
\(562\) −6.61555 + 34.7259i −0.279060 + 1.46483i
\(563\) 38.7440i 1.63286i −0.577441 0.816432i \(-0.695949\pi\)
0.577441 0.816432i \(-0.304051\pi\)
\(564\) 0 0
\(565\) 17.1138i 0.719984i
\(566\) −30.3139 5.77502i −1.27419 0.242742i
\(567\) 0 0
\(568\) −8.12366 + 12.8216i −0.340861 + 0.537981i
\(569\) 19.2345 0.806354 0.403177 0.915122i \(-0.367906\pi\)
0.403177 + 0.915122i \(0.367906\pi\)
\(570\) 0 0
\(571\) 10.8320i 0.453307i −0.973976 0.226653i \(-0.927222\pi\)
0.973976 0.226653i \(-0.0727784\pi\)
\(572\) 1.96896 + 0.778457i 0.0823265 + 0.0325489i
\(573\) 0 0
\(574\) 8.11727 42.6087i 0.338808 1.77845i
\(575\) 11.7655 0.490654
\(576\) 0 0
\(577\) −45.1329 −1.87891 −0.939454 0.342674i \(-0.888667\pi\)
−0.939454 + 0.342674i \(0.888667\pi\)
\(578\) −4.23453 + 22.2277i −0.176133 + 0.924549i
\(579\) 0 0
\(580\) 13.8371 + 5.47068i 0.574554 + 0.227158i
\(581\) 8.11727i 0.336761i
\(582\) 0 0
\(583\) 1.64820 0.0682615
\(584\) −5.38445 + 8.49828i −0.222810 + 0.351661i
\(585\) 0 0
\(586\) −38.1152 7.26122i −1.57452 0.299958i
\(587\) 5.05863i 0.208792i −0.994536 0.104396i \(-0.966709\pi\)
0.994536 0.104396i \(-0.0332910\pi\)
\(588\) 0 0
\(589\) 20.2345i 0.833749i
\(590\) 1.50172 7.88273i 0.0618248 0.324527i
\(591\) 0 0
\(592\) 17.9354 19.1367i 0.737140 0.786511i
\(593\) −29.4328 −1.20866 −0.604330 0.796734i \(-0.706559\pi\)
−0.604330 + 0.796734i \(0.706559\pi\)
\(594\) 0 0
\(595\) 3.24914i 0.133202i
\(596\) −6.70178 + 16.9509i −0.274516 + 0.694337i
\(597\) 0 0
\(598\) 4.08623 + 0.778457i 0.167098 + 0.0318335i
\(599\) 40.4293 1.65190 0.825949 0.563745i \(-0.190640\pi\)
0.825949 + 0.563745i \(0.190640\pi\)
\(600\) 0 0
\(601\) −22.9931 −0.937909 −0.468955 0.883222i \(-0.655369\pi\)
−0.468955 + 0.883222i \(0.655369\pi\)
\(602\) 1.38923 + 0.264658i 0.0566207 + 0.0107867i
\(603\) 0 0
\(604\) 28.6828 + 11.3401i 1.16709 + 0.461424i
\(605\) 9.87930i 0.401650i
\(606\) 0 0
\(607\) 17.7846 0.721853 0.360927 0.932594i \(-0.382460\pi\)
0.360927 + 0.932594i \(0.382460\pi\)
\(608\) 13.3224 + 18.2897i 0.540294 + 0.741746i
\(609\) 0 0
\(610\) 2.56035 13.4396i 0.103666 0.544155i
\(611\) 6.80605i 0.275344i
\(612\) 0 0
\(613\) 24.2277i 0.978546i −0.872131 0.489273i \(-0.837262\pi\)
0.872131 0.489273i \(-0.162738\pi\)
\(614\) −37.0518 7.05863i −1.49529 0.284863i
\(615\) 0 0
\(616\) −8.21811 5.20693i −0.331117 0.209793i
\(617\) 18.2277 0.733818 0.366909 0.930257i \(-0.380416\pi\)
0.366909 + 0.930257i \(0.380416\pi\)
\(618\) 0 0
\(619\) 43.1982i 1.73628i 0.496316 + 0.868142i \(0.334686\pi\)
−0.496316 + 0.868142i \(0.665314\pi\)
\(620\) 3.71982 9.40861i 0.149392 0.377859i
\(621\) 0 0
\(622\) −1.82066 + 9.55691i −0.0730019 + 0.383197i
\(623\) −6.87930 −0.275613
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 4.67671 24.5487i 0.186919 0.981163i
\(627\) 0 0
\(628\) 2.78801 7.05176i 0.111254 0.281396i
\(629\) 6.55691i 0.261441i
\(630\) 0 0
\(631\) −7.07668 −0.281718 −0.140859 0.990030i \(-0.544986\pi\)
−0.140859 + 0.990030i \(0.544986\pi\)
\(632\) 10.1921 16.0862i 0.405421 0.639876i
\(633\) 0 0
\(634\) −1.54736 0.294784i −0.0614536 0.0117074i
\(635\) 15.9379i 0.632477i
\(636\) 0 0
\(637\) 3.55691i 0.140930i
\(638\) −2.08441 + 10.9414i −0.0825226 + 0.433173i
\(639\) 0 0
\(640\) −2.83231 10.9534i −0.111957 0.432973i
\(641\) 28.2277 1.11493 0.557463 0.830202i \(-0.311775\pi\)
0.557463 + 0.830202i \(0.311775\pi\)
\(642\) 0 0
\(643\) 2.73281i 0.107772i 0.998547 + 0.0538858i \(0.0171607\pi\)
−0.998547 + 0.0538858i \(0.982839\pi\)
\(644\) −17.7750 7.02760i −0.700434 0.276926i
\(645\) 0 0
\(646\) −5.55691 1.05863i −0.218634 0.0416514i
\(647\) 14.5604 0.572427 0.286213 0.958166i \(-0.407603\pi\)
0.286213 + 0.958166i \(0.407603\pi\)
\(648\) 0 0
\(649\) 6.00688 0.235790
\(650\) 5.55691 + 1.05863i 0.217960 + 0.0415230i
\(651\) 0 0
\(652\) 3.06819 7.76041i 0.120159 0.303921i
\(653\) 29.3415i 1.14822i 0.818778 + 0.574111i \(0.194652\pi\)
−0.818778 + 0.574111i \(0.805348\pi\)
\(654\) 0 0
\(655\) 7.69223 0.300560
\(656\) 27.5500 + 25.8207i 1.07565 + 1.00813i
\(657\) 0 0
\(658\) −5.85261 + 30.7212i −0.228158 + 1.19764i
\(659\) 32.2829i 1.25756i 0.777583 + 0.628781i \(0.216446\pi\)
−0.777583 + 0.628781i \(0.783554\pi\)
\(660\) 0 0
\(661\) 24.4102i 0.949448i −0.880135 0.474724i \(-0.842548\pi\)
0.880135 0.474724i \(-0.157452\pi\)
\(662\) 25.6983 + 4.89572i 0.998794 + 0.190278i
\(663\) 0 0
\(664\) −5.96896 3.78189i −0.231641 0.146766i
\(665\) −12.9966 −0.503985
\(666\) 0 0
\(667\) 21.8827i 0.847303i
\(668\) 26.5776 + 10.5078i 1.02832 + 0.406560i
\(669\) 0 0
\(670\) −0.397442 + 2.08623i −0.0153545 + 0.0805981i
\(671\) 10.2414 0.395365
\(672\) 0 0
\(673\) 11.8793 0.457913 0.228957 0.973437i \(-0.426469\pi\)
0.228957 + 0.973437i \(0.426469\pi\)
\(674\) −4.61464 + 24.2229i −0.177749 + 0.933031i
\(675\) 0 0
\(676\) 1.85991 + 0.735342i 0.0715351 + 0.0282824i
\(677\) 8.76891i 0.337016i −0.985700 0.168508i \(-0.946105\pi\)
0.985700 0.168508i \(-0.0538950\pi\)
\(678\) 0 0
\(679\) 24.9345 0.956898
\(680\) 2.38923 + 1.51380i 0.0916227 + 0.0580515i
\(681\) 0 0
\(682\) 7.43965 + 1.41731i 0.284879 + 0.0542715i
\(683\) 3.38445i 0.129502i −0.997901 0.0647512i \(-0.979375\pi\)
0.997901 0.0647512i \(-0.0206254\pi\)
\(684\) 0 0
\(685\) 5.32238i 0.203358i
\(686\) −2.96075 + 15.5414i −0.113042 + 0.593373i
\(687\) 0 0
\(688\) −0.841866 + 0.898251i −0.0320958 + 0.0342455i
\(689\) 1.55691 0.0593137
\(690\) 0 0
\(691\) 11.2242i 0.426989i 0.976944 + 0.213495i \(0.0684846\pi\)
−0.976944 + 0.213495i \(0.931515\pi\)
\(692\) 5.14486 13.0130i 0.195578 0.494680i
\(693\) 0 0
\(694\) 12.4828 + 2.37806i 0.473839 + 0.0902699i
\(695\) −12.4802 −0.473402
\(696\) 0 0
\(697\) −9.43965 −0.357552
\(698\) 15.2720 + 2.90942i 0.578052 + 0.110123i
\(699\) 0 0
\(700\) −24.1725 9.55691i −0.913633 0.361217i
\(701\) 48.6707i 1.83827i 0.393944 + 0.919134i \(0.371110\pi\)
−0.393944 + 0.919134i \(0.628890\pi\)
\(702\) 0 0
\(703\) 26.2277 0.989195
\(704\) 7.65775 3.61717i 0.288612 0.136327i
\(705\) 0 0
\(706\) −6.14830 + 32.2733i −0.231394 + 1.21462i
\(707\) 10.1173i 0.380499i
\(708\) 0 0
\(709\) 11.7586i 0.441603i 0.975319 + 0.220802i \(0.0708673\pi\)
−0.975319 + 0.220802i \(0.929133\pi\)
\(710\) 7.45517 + 1.42026i 0.279787 + 0.0533016i
\(711\) 0 0
\(712\) 3.20512 5.05863i 0.120117 0.189580i
\(713\) 14.8793 0.557234
\(714\) 0 0
\(715\) 1.05863i 0.0395906i
\(716\) −13.0504 + 33.0086i −0.487717 + 1.23359i
\(717\) 0 0
\(718\) 2.98701 15.6792i 0.111474 0.585144i
\(719\) 38.7191 1.44398 0.721989 0.691905i \(-0.243228\pi\)
0.721989 + 0.691905i \(0.243228\pi\)
\(720\) 0 0
\(721\) −57.2242 −2.13114
\(722\) 0.793975 4.16769i 0.0295487 0.155105i
\(723\) 0 0
\(724\) −5.96896 + 15.0974i −0.221835 + 0.561090i
\(725\) 29.7586i 1.10521i
\(726\) 0 0
\(727\) −8.93449 −0.331362 −0.165681 0.986179i \(-0.552982\pi\)
−0.165681 + 0.986179i \(0.552982\pi\)
\(728\) −7.76294 4.91855i −0.287714 0.182293i
\(729\) 0 0
\(730\) 4.94137 + 0.941367i 0.182888 + 0.0348415i
\(731\) 0.307774i 0.0113834i
\(732\) 0 0
\(733\) 36.3484i 1.34256i −0.741205 0.671279i \(-0.765745\pi\)
0.741205 0.671279i \(-0.234255\pi\)
\(734\) 3.60256 18.9103i 0.132973 0.697993i
\(735\) 0 0
\(736\) 13.4492 9.79650i 0.495744 0.361104i
\(737\) −1.58977 −0.0585599
\(738\) 0 0
\(739\) 8.44309i 0.310584i −0.987869 0.155292i \(-0.950368\pi\)
0.987869 0.155292i \(-0.0496318\pi\)
\(740\) −12.1953 4.82157i −0.448308 0.177245i
\(741\) 0 0
\(742\) −7.02760 1.33881i −0.257991 0.0491492i
\(743\) −22.5354 −0.826745 −0.413372 0.910562i \(-0.635649\pi\)
−0.413372 + 0.910562i \(0.635649\pi\)
\(744\) 0 0
\(745\) 9.11383 0.333905
\(746\) −45.9931 8.76203i −1.68393 0.320801i
\(747\) 0 0
\(748\) −0.778457 + 1.96896i −0.0284632 + 0.0719925i
\(749\) 35.5500i 1.29897i
\(750\) 0 0
\(751\) 2.43621 0.0888986 0.0444493 0.999012i \(-0.485847\pi\)
0.0444493 + 0.999012i \(0.485847\pi\)
\(752\) −19.8638 18.6169i −0.724357 0.678888i
\(753\) 0 0
\(754\) −1.96896 + 10.3354i −0.0717055 + 0.376392i
\(755\) 15.4216i 0.561250i
\(756\) 0 0
\(757\) 43.1329i 1.56769i 0.620955 + 0.783847i \(0.286745\pi\)
−0.620955 + 0.783847i \(0.713255\pi\)
\(758\) 46.0794 + 8.77846i 1.67368 + 0.318848i
\(759\) 0 0
\(760\) 6.05520 9.55691i 0.219645 0.346666i
\(761\) −30.0191 −1.08819 −0.544096 0.839023i \(-0.683127\pi\)
−0.544096 + 0.839023i \(0.683127\pi\)
\(762\) 0 0
\(763\) 33.5389i 1.21419i
\(764\) −37.0828 14.6612i −1.34161 0.530423i
\(765\) 0 0
\(766\) −8.75220 + 45.9415i −0.316230 + 1.65993i
\(767\) 5.67418 0.204883
\(768\) 0 0
\(769\) −35.3484 −1.27469 −0.637347 0.770577i \(-0.719968\pi\)
−0.637347 + 0.770577i \(0.719968\pi\)
\(770\) −0.910331 + 4.77846i −0.0328061 + 0.172204i
\(771\) 0 0
\(772\) −7.65775 3.02760i −0.275609 0.108966i
\(773\) 47.2277i 1.69866i 0.527862 + 0.849330i \(0.322994\pi\)
−0.527862 + 0.849330i \(0.677006\pi\)
\(774\) 0 0
\(775\) 20.2345 0.726846
\(776\) −11.6172 + 18.3354i −0.417032 + 0.658201i
\(777\) 0 0
\(778\) −27.1690 5.17590i −0.974057 0.185565i
\(779\) 37.7586i 1.35284i
\(780\) 0 0
\(781\) 5.68106i 0.203284i
\(782\) −0.778457 + 4.08623i −0.0278376 + 0.146123i
\(783\) 0 0
\(784\) 10.3810 + 9.72938i 0.370751 + 0.347478i
\(785\) −3.79145 −0.135323
\(786\) 0 0
\(787\) 24.7880i 0.883597i −0.897114 0.441799i \(-0.854341\pi\)
0.897114 0.441799i \(-0.145659\pi\)
\(788\) −7.93540 + 20.0711i −0.282687 + 0.715005i
\(789\) 0 0
\(790\) −9.35342 1.78189i −0.332780 0.0633970i
\(791\) 55.6052 1.97709
\(792\) 0 0
\(793\) 9.67418 0.343540
\(794\) −47.5405 9.05681i −1.68715 0.321414i
\(795\) 0 0
\(796\) −1.14486 0.452638i −0.0405786 0.0160433i
\(797\) 32.1104i 1.13741i −0.822542 0.568704i \(-0.807445\pi\)
0.822542 0.568704i \(-0.192555\pi\)
\(798\) 0 0
\(799\) 6.80605 0.240781
\(800\) 18.2897 13.3224i 0.646640 0.471017i
\(801\) 0 0
\(802\) 8.64658 45.3871i 0.305321 1.60268i
\(803\) 3.76547i 0.132880i
\(804\) 0 0
\(805\) 9.55691i 0.336837i
\(806\) 7.02760 + 1.33881i 0.247537 + 0.0471575i
\(807\) 0 0
\(808\) −7.43965 4.71371i −0.261726 0.165828i
\(809\) −4.55004 −0.159971 −0.0799854 0.996796i \(-0.525487\pi\)
−0.0799854 + 0.996796i \(0.525487\pi\)
\(810\) 0 0
\(811\) 48.3449i 1.69762i 0.528698 + 0.848810i \(0.322680\pi\)
−0.528698 + 0.848810i \(0.677320\pi\)
\(812\) 17.7750 44.9587i 0.623781 1.57774i
\(813\) 0 0
\(814\) 1.83709 9.64315i 0.0643900 0.337992i
\(815\) −4.17246 −0.146155
\(816\) 0 0
\(817\) −1.23109 −0.0430706
\(818\) −1.64315 + 8.62510i −0.0574512 + 0.301570i
\(819\) 0 0
\(820\) 6.94137 17.5569i 0.242403 0.613114i
\(821\) 24.3484i 0.849764i 0.905249 + 0.424882i \(0.139684\pi\)
−0.905249 + 0.424882i \(0.860316\pi\)
\(822\) 0 0
\(823\) −28.4431 −0.991464 −0.495732 0.868476i \(-0.665100\pi\)
−0.495732 + 0.868476i \(0.665100\pi\)
\(824\) 26.6612 42.0794i 0.928787 1.46590i
\(825\) 0 0
\(826\) −25.6121 4.87930i −0.891159 0.169772i
\(827\) 34.6448i 1.20472i 0.798226 + 0.602358i \(0.205772\pi\)
−0.798226 + 0.602358i \(0.794228\pi\)
\(828\) 0 0
\(829\) 34.2208i 1.18854i 0.804267 + 0.594268i \(0.202558\pi\)
−0.804267 + 0.594268i \(0.797442\pi\)
\(830\) −0.661191 + 3.47068i −0.0229503 + 0.120469i
\(831\) 0 0
\(832\) 7.23362 3.41683i 0.250781 0.118457i
\(833\) −3.55691 −0.123240
\(834\) 0 0
\(835\) 14.2897i 0.494516i
\(836\) 7.87586 + 3.11383i 0.272392 + 0.107694i
\(837\) 0 0
\(838\) −0.513799 0.0978825i −0.0177489 0.00338129i
\(839\) −12.9345 −0.446548 −0.223274 0.974756i \(-0.571675\pi\)
−0.223274 + 0.974756i \(0.571675\pi\)
\(840\) 0 0
\(841\) −26.3484 −0.908564
\(842\) −5.38923 1.02669i −0.185725 0.0353820i
\(843\) 0 0
\(844\) 1.33060 3.36550i 0.0458010 0.115845i
\(845\) 1.00000i 0.0344010i
\(846\) 0 0
\(847\) 32.0992 1.10294
\(848\) 4.25869 4.54392i 0.146244 0.156039i
\(849\) 0 0
\(850\) −1.05863 + 5.55691i −0.0363108 + 0.190601i
\(851\) 19.2863i 0.661126i
\(852\) 0 0
\(853\) 31.6448i 1.08350i 0.840541 + 0.541748i \(0.182237\pi\)
−0.840541 + 0.541748i \(0.817763\pi\)
\(854\) −43.6673 8.31894i −1.49426 0.284668i
\(855\) 0 0
\(856\) −26.1414 16.5630i −0.893496 0.566113i
\(857\) −38.8724 −1.32786 −0.663928 0.747796i \(-0.731112\pi\)
−0.663928 + 0.747796i \(0.731112\pi\)
\(858\) 0 0
\(859\) 29.8207i 1.01747i −0.860924 0.508734i \(-0.830114\pi\)
0.860924 0.508734i \(-0.169886\pi\)
\(860\) 0.572432 + 0.226319i 0.0195198 + 0.00771741i
\(861\) 0 0
\(862\) −0.136650 + 0.717296i −0.00465432 + 0.0244312i
\(863\) −24.5163 −0.834545 −0.417273 0.908781i \(-0.637014\pi\)
−0.417273 + 0.908781i \(0.637014\pi\)
\(864\) 0 0
\(865\) −6.99656 −0.237890
\(866\) 8.14739 42.7668i 0.276860 1.45328i
\(867\) 0 0
\(868\) −30.5699 12.0862i −1.03761 0.410233i
\(869\) 7.12758i 0.241787i
\(870\) 0 0
\(871\) −1.50172 −0.0508838
\(872\) −24.6625 15.6260i −0.835179 0.529163i
\(873\) 0 0
\(874\) 16.3449 + 3.11383i 0.552875 + 0.105327i
\(875\) 29.2423i 0.988569i
\(876\) 0 0
\(877\) 4.34836i 0.146834i −0.997301 0.0734169i \(-0.976610\pi\)
0.997301 0.0734169i \(-0.0233904\pi\)
\(878\) 8.05520 42.2829i 0.271850 1.42698i
\(879\) 0 0
\(880\) −3.08967 2.89572i −0.104153 0.0976148i
\(881\) −27.6967 −0.933126 −0.466563 0.884488i \(-0.654508\pi\)
−0.466563 + 0.884488i \(0.654508\pi\)
\(882\) 0 0
\(883\) 14.0440i 0.472619i −0.971678 0.236310i \(-0.924062\pi\)
0.971678 0.236310i \(-0.0759379\pi\)
\(884\) −0.735342 + 1.85991i −0.0247322 + 0.0625556i
\(885\) 0 0
\(886\) −4.80353 0.915107i −0.161378 0.0307436i
\(887\) 3.66730 0.123136 0.0615680 0.998103i \(-0.480390\pi\)
0.0615680 + 0.998103i \(0.480390\pi\)
\(888\) 0 0
\(889\) −51.7846 −1.73680
\(890\) −2.94137 0.560352i −0.0985948 0.0187830i
\(891\) 0 0
\(892\) 12.6587 + 5.00478i 0.423843 + 0.167572i
\(893\) 27.2242i 0.911024i
\(894\) 0 0
\(895\) 17.7474 0.593231
\(896\) −35.5893 + 9.20259i −1.18895 + 0.307437i
\(897\) 0 0
\(898\) −3.91377 + 20.5439i −0.130604 + 0.685560i
\(899\) 37.6344i 1.25518i
\(900\) 0 0
\(901\) 1.55691i 0.0518683i
\(902\) 13.8827 + 2.64476i 0.462244 + 0.0880610i
\(903\) 0 0
\(904\) −25.9069 + 40.8888i −0.861650 + 1.35994i
\(905\) 8.11727 0.269827
\(906\) 0 0
\(907\) 9.39239i 0.311869i −0.987767 0.155935i \(-0.950161\pi\)
0.987767 0.155935i \(-0.0498389\pi\)
\(908\) 4.90528 12.4070i 0.162787 0.411741i
\(909\) 0 0
\(910\) −0.859912 + 4.51380i −0.0285058 + 0.149631i
\(911\) −3.64496 −0.120763 −0.0603815 0.998175i \(-0.519232\pi\)
−0.0603815 + 0.998175i \(0.519232\pi\)
\(912\) 0 0
\(913\) −2.64476 −0.0875289
\(914\) 8.43621 44.2829i 0.279045 1.46475i
\(915\) 0 0
\(916\) −13.3199 + 33.6901i −0.440100 + 1.11315i
\(917\) 24.9931i 0.825346i
\(918\) 0 0
\(919\) 12.6516 0.417339 0.208670 0.977986i \(-0.433087\pi\)
0.208670 + 0.977986i \(0.433087\pi\)
\(920\) −7.02760 4.45264i −0.231693 0.146799i
\(921\) 0 0
\(922\) −25.7798 4.91124i −0.849012 0.161743i
\(923\) 5.36641i 0.176637i
\(924\) 0 0
\(925\) 26.2277i 0.862360i
\(926\) −6.56990 + 34.4863i −0.215900 + 1.13329i
\(927\) 0 0
\(928\) 24.7785 + 34.0173i 0.813393 + 1.11667i
\(929\) −37.1070 −1.21744 −0.608720 0.793385i \(-0.708317\pi\)
−0.608720 + 0.793385i \(0.708317\pi\)
\(930\) 0 0
\(931\) 14.2277i 0.466293i
\(932\) 21.2703 + 8.40952i 0.696733 + 0.275463i
\(933\) 0 0
\(934\) −55.9621 10.6612i −1.83114 0.348845i
\(935\) 1.05863 0.0346210
\(936\) 0 0
\(937\) 50.8724 1.66193 0.830965 0.556325i \(-0.187789\pi\)
0.830965 + 0.556325i \(0.187789\pi\)
\(938\) 6.77846 + 1.29135i 0.221324 + 0.0421639i
\(939\) 0 0
\(940\) −5.00478 + 12.6587i −0.163238 + 0.412880i
\(941\) 21.4622i 0.699647i −0.936816 0.349824i \(-0.886241\pi\)
0.936816 0.349824i \(-0.113759\pi\)
\(942\) 0 0
\(943\) 27.7655 0.904168
\(944\) 15.5208 16.5604i 0.505160 0.538994i
\(945\) 0 0
\(946\) −0.0862308 + 0.452638i −0.00280361 + 0.0147165i
\(947\) 61.1690i 1.98773i −0.110617 0.993863i \(-0.535283\pi\)
0.110617 0.993863i \(-0.464717\pi\)
\(948\) 0 0
\(949\) 3.55691i 0.115462i
\(950\) 22.2277 + 4.23453i 0.721160 + 0.137386i
\(951\) 0 0
\(952\) 4.91855 7.76294i 0.159411 0.251598i
\(953\) −13.2345 −0.428709 −0.214354 0.976756i \(-0.568765\pi\)
−0.214354 + 0.976756i \(0.568765\pi\)
\(954\) 0 0
\(955\) 19.9379i 0.645176i
\(956\) 31.3604 + 12.3988i 1.01427 + 0.401005i
\(957\) 0 0
\(958\) 1.07802 5.65866i 0.0348291 0.182823i
\(959\) −17.2932 −0.558425
\(960\) 0 0
\(961\) −5.41023 −0.174524
\(962\) 1.73534 9.10905i 0.0559497 0.293688i
\(963\) 0 0
\(964\) 9.72938 + 3.84664i 0.313362 + 0.123892i
\(965\) 4.11727i 0.132539i
\(966\) 0 0
\(967\) 48.4441 1.55786 0.778929 0.627112i \(-0.215763\pi\)
0.778929 + 0.627112i \(0.215763\pi\)
\(968\) −14.9553 + 23.6039i −0.480680 + 0.758658i
\(969\) 0 0
\(970\) 10.6612 + 2.03104i 0.342310 + 0.0652126i
\(971\) 5.69910i 0.182893i −0.995810 0.0914464i \(-0.970851\pi\)
0.995810 0.0914464i \(-0.0291490\pi\)
\(972\) 0 0
\(973\) 40.5500i 1.29997i
\(974\) 3.98357 20.9103i 0.127642 0.670010i
\(975\) 0 0
\(976\) 26.4622 28.2345i 0.847034 0.903765i
\(977\) −2.65164 −0.0848334 −0.0424167 0.999100i \(-0.513506\pi\)
−0.0424167 + 0.999100i \(0.513506\pi\)
\(978\) 0 0
\(979\) 2.24141i 0.0716357i
\(980\) 2.61555 6.61555i 0.0835506 0.211326i
\(981\) 0 0
\(982\) 5.45517 + 1.03925i 0.174081 + 0.0331638i
\(983\) −27.2491 −0.869113 −0.434556 0.900645i \(-0.643095\pi\)
−0.434556 + 0.900645i \(0.643095\pi\)
\(984\) 0 0
\(985\) 10.7914 0.343844
\(986\) −10.3354 1.96896i −0.329145 0.0627046i
\(987\) 0 0
\(988\) 7.43965 + 2.94137i 0.236687 + 0.0935773i
\(989\) 0.905275i 0.0287861i
\(990\) 0 0
\(991\) 22.7552 0.722841 0.361421 0.932403i \(-0.382292\pi\)
0.361421 + 0.932403i \(0.382292\pi\)
\(992\) 23.1303 16.8483i 0.734386 0.534933i
\(993\) 0 0
\(994\) 4.61464 24.2229i 0.146367 0.768303i
\(995\) 0.615547i 0.0195142i
\(996\) 0 0
\(997\) 4.79488i 0.151856i −0.997113 0.0759278i \(-0.975808\pi\)
0.997113 0.0759278i \(-0.0241918\pi\)
\(998\) −44.8984 8.55348i −1.42123 0.270756i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.c.469.3 6
3.2 odd 2 104.2.b.c.53.4 yes 6
4.3 odd 2 3744.2.g.c.1873.4 6
8.3 odd 2 3744.2.g.c.1873.1 6
8.5 even 2 inner 936.2.g.c.469.4 6
12.11 even 2 416.2.b.c.209.1 6
24.5 odd 2 104.2.b.c.53.3 6
24.11 even 2 416.2.b.c.209.6 6
48.5 odd 4 3328.2.a.bh.1.3 3
48.11 even 4 3328.2.a.bf.1.1 3
48.29 odd 4 3328.2.a.be.1.1 3
48.35 even 4 3328.2.a.bg.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.b.c.53.3 6 24.5 odd 2
104.2.b.c.53.4 yes 6 3.2 odd 2
416.2.b.c.209.1 6 12.11 even 2
416.2.b.c.209.6 6 24.11 even 2
936.2.g.c.469.3 6 1.1 even 1 trivial
936.2.g.c.469.4 6 8.5 even 2 inner
3328.2.a.be.1.1 3 48.29 odd 4
3328.2.a.bf.1.1 3 48.11 even 4
3328.2.a.bg.1.3 3 48.35 even 4
3328.2.a.bh.1.3 3 48.5 odd 4
3744.2.g.c.1873.1 6 8.3 odd 2
3744.2.g.c.1873.4 6 4.3 odd 2