Properties

Label 3332.1.bp.b.655.1
Level 33323332
Weight 11
Character 3332.655
Analytic conductor 1.6631.663
Analytic rank 00
Dimension 88
Projective image D8D_{8}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(263,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(24))
 
chi = DirichletCharacter(H, H._module([12, 16, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.263");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3332=227217 3332 = 2^{2} \cdot 7^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3332.bp (of order 2424, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.662884622091.66288462209
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D8D_{8}
Projective field: Galois closure of 8.2.3089659810545728.4

Embedding invariants

Embedding label 655.1
Root 0.258819+0.965926i-0.258819 + 0.965926i of defining polynomial
Character χ\chi == 3332.655
Dual form 3332.1.bp.b.3215.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.9659260.258819i)q2+(0.866025+0.500000i)q4+(1.83195+0.241181i)q5+(0.7071070.707107i)q8+(0.2588190.965926i)q9+(1.83195+0.241181i)q10+(0.500000+0.866025i)q16+(0.258819+0.965926i)q17+(0.500000+0.866025i)q18+(1.707110.707107i)q20+(2.331950.624844i)q25+(0.707107+1.70711i)q29+(0.2588190.965926i)q321.00000iq34+(0.7071070.707107i)q36+(0.2411811.83195i)q37+(1.46593+1.12484i)q40+(0.2928930.707107i)q41+(0.241181+1.83195i)q452.41421q50+(0.3660251.36603i)q53+(1.124841.46593i)q58+(0.465926+0.607206i)q61+1.00000iq64+(0.258819+0.965926i)q68+(0.866025+0.500000i)q72+(1.124841.46593i)q73+(0.241181+1.83195i)q74+(1.124841.46593i)q80+(0.8660250.500000i)q81+(0.0999004+0.758819i)q82+(0.7071071.70711i)q85+(1.732051.00000i)q89+(0.7071071.70711i)q90+(0.7071071.70711i)q97+O(q100)q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-1.83195 + 0.241181i) q^{5} +(-0.707107 - 0.707107i) q^{8} +(0.258819 - 0.965926i) q^{9} +(1.83195 + 0.241181i) q^{10} +(0.500000 + 0.866025i) q^{16} +(0.258819 + 0.965926i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-1.70711 - 0.707107i) q^{20} +(2.33195 - 0.624844i) q^{25} +(-0.707107 + 1.70711i) q^{29} +(-0.258819 - 0.965926i) q^{32} -1.00000i q^{34} +(0.707107 - 0.707107i) q^{36} +(-0.241181 - 1.83195i) q^{37} +(1.46593 + 1.12484i) q^{40} +(-0.292893 - 0.707107i) q^{41} +(-0.241181 + 1.83195i) q^{45} -2.41421 q^{50} +(-0.366025 - 1.36603i) q^{53} +(1.12484 - 1.46593i) q^{58} +(-0.465926 + 0.607206i) q^{61} +1.00000i q^{64} +(-0.258819 + 0.965926i) q^{68} +(-0.866025 + 0.500000i) q^{72} +(-1.12484 - 1.46593i) q^{73} +(-0.241181 + 1.83195i) q^{74} +(-1.12484 - 1.46593i) q^{80} +(-0.866025 - 0.500000i) q^{81} +(0.0999004 + 0.758819i) q^{82} +(-0.707107 - 1.70711i) q^{85} +(1.73205 - 1.00000i) q^{89} +(0.707107 - 1.70711i) q^{90} +(0.707107 - 1.70711i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q164q188q20+4q254q37+4q408q414q458q50+4q53+4q614q74+O(q100) 8 q + 4 q^{16} - 4 q^{18} - 8 q^{20} + 4 q^{25} - 4 q^{37} + 4 q^{40} - 8 q^{41} - 4 q^{45} - 8 q^{50} + 4 q^{53} + 4 q^{61} - 4 q^{74}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3332Z)×\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times.

nn 785785 885885 16671667
χ(n)\chi(n) e(18)e\left(\frac{1}{8}\right) e(23)e\left(\frac{2}{3}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.965926 0.258819i −0.965926 0.258819i
33 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
44 0.866025 + 0.500000i 0.866025 + 0.500000i
55 −1.83195 + 0.241181i −1.83195 + 0.241181i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
66 0 0
77 0 0
88 −0.707107 0.707107i −0.707107 0.707107i
99 0.258819 0.965926i 0.258819 0.965926i
1010 1.83195 + 0.241181i 1.83195 + 0.241181i
1111 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 0 0
1616 0.500000 + 0.866025i 0.500000 + 0.866025i
1717 0.258819 + 0.965926i 0.258819 + 0.965926i
1818 −0.500000 + 0.866025i −0.500000 + 0.866025i
1919 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
2020 −1.70711 0.707107i −1.70711 0.707107i
2121 0 0
2222 0 0
2323 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
2424 0 0
2525 2.33195 0.624844i 2.33195 0.624844i
2626 0 0
2727 0 0
2828 0 0
2929 −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i 0.5π0.5\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3030 0 0
3131 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
3232 −0.258819 0.965926i −0.258819 0.965926i
3333 0 0
3434 1.00000i 1.00000i
3535 0 0
3636 0.707107 0.707107i 0.707107 0.707107i
3737 −0.241181 1.83195i −0.241181 1.83195i −0.500000 0.866025i 0.666667π-0.666667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
3838 0 0
3939 0 0
4040 1.46593 + 1.12484i 1.46593 + 1.12484i
4141 −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i 0.250000π-0.250000\pi
−1.00000 π\pi
4242 0 0
4343 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4444 0 0
4545 −0.241181 + 1.83195i −0.241181 + 1.83195i
4646 0 0
4747 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4848 0 0
4949 0 0
5050 −2.41421 −2.41421
5151 0 0
5252 0 0
5353 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 1.12484 1.46593i 1.12484 1.46593i
5959 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
6060 0 0
6161 −0.465926 + 0.607206i −0.465926 + 0.607206i −0.965926 0.258819i 0.916667π-0.916667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 0 0
6363 0 0
6464 1.00000i 1.00000i
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 −0.258819 + 0.965926i −0.258819 + 0.965926i
6969 0 0
7070 0 0
7171 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
7272 −0.866025 + 0.500000i −0.866025 + 0.500000i
7373 −1.12484 1.46593i −1.12484 1.46593i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.258819 0.965926i 0.583333π-0.583333\pi
7474 −0.241181 + 1.83195i −0.241181 + 1.83195i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
8080 −1.12484 1.46593i −1.12484 1.46593i
8181 −0.866025 0.500000i −0.866025 0.500000i
8282 0.0999004 + 0.758819i 0.0999004 + 0.758819i
8383 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
8484 0 0
8585 −0.707107 1.70711i −0.707107 1.70711i
8686 0 0
8787 0 0
8888 0 0
8989 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
9090 0.707107 1.70711i 0.707107 1.70711i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.707107 1.70711i 0.707107 1.70711i 1.00000i 0.5π-0.5\pi
0.707107 0.707107i 0.250000π-0.250000\pi
9898 0 0
9999 0 0
100100 2.33195 + 0.624844i 2.33195 + 0.624844i
101101 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
102102 0 0
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0 0
105105 0 0
106106 1.41421i 1.41421i
107107 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
108108 0 0
109109 0.758819 + 0.0999004i 0.758819 + 0.0999004i 0.500000 0.866025i 0.333333π-0.333333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.707107 0.292893i 0.707107 0.292893i 1.00000i 0.5π-0.5\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
114114 0 0
115115 0 0
116116 −1.46593 + 1.12484i −1.46593 + 1.12484i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.965926 0.258819i −0.965926 0.258819i
122122 0.607206 0.465926i 0.607206 0.465926i
123123 0 0
124124 0 0
125125 −2.41421 + 1.00000i −2.41421 + 1.00000i
126126 0 0
127127 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
128128 0.258819 0.965926i 0.258819 0.965926i
129129 0 0
130130 0 0
131131 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.500000 0.866025i 0.500000 0.866025i
137137 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
138138 0 0
139139 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0.965926 0.258819i 0.965926 0.258819i
145145 0.883663 3.29788i 0.883663 3.29788i
146146 0.707107 + 1.70711i 0.707107 + 1.70711i
147147 0 0
148148 0.707107 1.70711i 0.707107 1.70711i
149149 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
150150 0 0
151151 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
152152 0 0
153153 1.00000 1.00000
154154 0 0
155155 0 0
156156 0 0
157157 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
158158 0 0
159159 0 0
160160 0.707107 + 1.70711i 0.707107 + 1.70711i
161161 0 0
162162 0.707107 + 0.707107i 0.707107 + 0.707107i
163163 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
164164 0.0999004 0.758819i 0.0999004 0.758819i
165165 0 0
166166 0 0
167167 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
168168 0 0
169169 1.00000 1.00000
170170 0.241181 + 1.83195i 0.241181 + 1.83195i
171171 0 0
172172 0 0
173173 −0.0999004 0.758819i −0.0999004 0.758819i −0.965926 0.258819i 0.916667π-0.916667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 −1.93185 + 0.517638i −1.93185 + 0.517638i
179179 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
180180 −1.12484 + 1.46593i −1.12484 + 1.46593i
181181 0.707107 0.292893i 0.707107 0.292893i 1.00000i 0.5π-0.5\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
182182 0 0
183183 0 0
184184 0 0
185185 0.883663 + 3.29788i 0.883663 + 3.29788i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
192192 0 0
193193 −0.241181 + 1.83195i −0.241181 + 1.83195i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 −1.12484 + 1.46593i −1.12484 + 1.46593i
195195 0 0
196196 0 0
197197 −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i 0.250000π-0.250000\pi
−1.00000 π\pi
198198 0 0
199199 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
200200 −2.09077 1.20711i −2.09077 1.20711i
201201 0 0
202202 −1.41421 + 1.41421i −1.41421 + 1.41421i
203203 0 0
204204 0 0
205205 0.707107 + 1.22474i 0.707107 + 1.22474i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
212212 0.366025 1.36603i 0.366025 1.36603i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −0.707107 0.292893i −0.707107 0.292893i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
224224 0 0
225225 2.41421i 2.41421i
226226 −0.758819 + 0.0999004i −0.758819 + 0.0999004i
227227 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
228228 0 0
229229 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
230230 0 0
231231 0 0
232232 1.70711 0.707107i 1.70711 0.707107i
233233 −0.758819 + 0.0999004i −0.758819 + 0.0999004i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −1.46593 + 1.12484i −1.46593 + 1.12484i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
242242 0.866025 + 0.500000i 0.866025 + 0.500000i
243243 0 0
244244 −0.707107 + 0.292893i −0.707107 + 0.292893i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 2.59077 0.341081i 2.59077 0.341081i
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
258258 0 0
259259 0 0
260260 0 0
261261 1.46593 + 1.12484i 1.46593 + 1.12484i
262262 0 0
263263 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
264264 0 0
265265 1.00000 + 2.41421i 1.00000 + 2.41421i
266266 0 0
267267 0 0
268268 0 0
269269 1.46593 1.12484i 1.46593 1.12484i 0.500000 0.866025i 0.333333π-0.333333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
270270 0 0
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 −0.707107 + 0.707107i −0.707107 + 0.707107i
273273 0 0
274274 −1.00000 + 1.00000i −1.00000 + 1.00000i
275275 0 0
276276 0 0
277277 −0.465926 0.607206i −0.465926 0.607206i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
282282 0 0
283283 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 −1.00000 −1.00000
289289 −0.866025 + 0.500000i −0.866025 + 0.500000i
290290 −1.70711 + 2.95680i −1.70711 + 2.95680i
291291 0 0
292292 −0.241181 1.83195i −0.241181 1.83195i
293293 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
294294 0 0
295295 0 0
296296 −1.12484 + 1.46593i −1.12484 + 1.46593i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0.707107 1.22474i 0.707107 1.22474i
306306 −0.965926 0.258819i −0.965926 0.258819i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
312312 0 0
313313 0.465926 0.607206i 0.465926 0.607206i −0.500000 0.866025i 0.666667π-0.666667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
314314 1.00000 + 1.00000i 1.00000 + 1.00000i
315315 0 0
316316 0 0
317317 −1.46593 1.12484i −1.46593 1.12484i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
318318 0 0
319319 0 0
320320 −0.241181 1.83195i −0.241181 1.83195i
321321 0 0
322322 0 0
323323 0 0
324324 −0.500000 0.866025i −0.500000 0.866025i
325325 0 0
326326 0 0
327327 0 0
328328 −0.292893 + 0.707107i −0.292893 + 0.707107i
329329 0 0
330330 0 0
331331 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
332332 0 0
333333 −1.83195 0.241181i −1.83195 0.241181i
334334 0 0
335335 0 0
336336 0 0
337337 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i 0.250000π-0.250000\pi
1.00000i 0.5π0.5\pi
338338 −0.965926 0.258819i −0.965926 0.258819i
339339 0 0
340340 0.241181 1.83195i 0.241181 1.83195i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −0.0999004 + 0.758819i −0.0999004 + 0.758819i
347347 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
348348 0 0
349349 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
354354 0 0
355355 0 0
356356 2.00000 2.00000
357357 0 0
358358 0 0
359359 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
360360 1.46593 1.12484i 1.46593 1.12484i
361361 0.866025 + 0.500000i 0.866025 + 0.500000i
362362 −0.758819 + 0.0999004i −0.758819 + 0.0999004i
363363 0 0
364364 0 0
365365 2.41421 + 2.41421i 2.41421 + 2.41421i
366366 0 0
367367 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
368368 0 0
369369 −0.758819 + 0.0999004i −0.758819 + 0.0999004i
370370 3.41421i 3.41421i
371371 0 0
372372 0 0
373373 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
384384 0 0
385385 0 0
386386 0.707107 1.70711i 0.707107 1.70711i
387387 0 0
388388 1.46593 1.12484i 1.46593 1.12484i
389389 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0.0999004 + 0.758819i 0.0999004 + 0.758819i
395395 0 0
396396 0 0
397397 −0.607206 0.465926i −0.607206 0.465926i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
398398 0 0
399399 0 0
400400 1.70711 + 1.70711i 1.70711 + 1.70711i
401401 1.12484 1.46593i 1.12484 1.46593i 0.258819 0.965926i 0.416667π-0.416667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
402402 0 0
403403 0 0
404404 1.73205 1.00000i 1.73205 1.00000i
405405 1.70711 + 0.707107i 1.70711 + 0.707107i
406406 0 0
407407 0 0
408408 0 0
409409 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
410410 −0.366025 1.36603i −0.366025 1.36603i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
420420 0 0
421421 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
422422 0 0
423423 0 0
424424 −0.707107 + 1.22474i −0.707107 + 1.22474i
425425 1.20711 + 2.09077i 1.20711 + 2.09077i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
432432 0 0
433433 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0.607206 + 0.465926i 0.607206 + 0.465926i
437437 0 0
438438 0 0
439439 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 0 0
445445 −2.93185 + 2.24969i −2.93185 + 2.24969i
446446 0 0
447447 0 0
448448 0 0
449449 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i 0.250000π0.250000\pi
1.00000i 0.5π0.5\pi
450450 −0.624844 + 2.33195i −0.624844 + 2.33195i
451451 0 0
452452 0.758819 + 0.0999004i 0.758819 + 0.0999004i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
458458 0.707107 1.22474i 0.707107 1.22474i
459459 0 0
460460 0 0
461461 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 −1.83195 + 0.241181i −1.83195 + 0.241181i
465465 0 0
466466 0.758819 + 0.0999004i 0.758819 + 0.0999004i
467467 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −1.41421 −1.41421
478478 0 0
479479 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
480480 0 0
481481 0 0
482482 1.70711 0.707107i 1.70711 0.707107i
483483 0 0
484484 −0.707107 0.707107i −0.707107 0.707107i
485485 −0.883663 + 3.29788i −0.883663 + 3.29788i
486486 0 0
487487 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
488488 0.758819 0.0999004i 0.758819 0.0999004i
489489 0 0
490490 0 0
491491 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
492492 0 0
493493 −1.83195 0.241181i −1.83195 0.241181i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
500500 −2.59077 0.341081i −2.59077 0.341081i
501501 0 0
502502 0 0
503503 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
504504 0 0
505505 −1.41421 + 3.41421i −1.41421 + 3.41421i
506506 0 0
507507 0 0
508508 0 0
509509 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
510510 0 0
511511 0 0
512512 0.707107 0.707107i 0.707107 0.707107i
513513 0 0
514514 1.22474 + 0.707107i 1.22474 + 0.707107i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0.0999004 0.758819i 0.0999004 0.758819i −0.866025 0.500000i 0.833333π-0.833333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
522522 −1.12484 1.46593i −1.12484 1.46593i
523523 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.258819 + 0.965926i 0.258819 + 0.965926i
530530 −0.341081 2.59077i −0.341081 2.59077i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −1.70711 + 0.707107i −1.70711 + 0.707107i
539539 0 0
540540 0 0
541541 −0.0999004 0.758819i −0.0999004 0.758819i −0.965926 0.258819i 0.916667π-0.916667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
542542 0 0
543543 0 0
544544 0.866025 0.500000i 0.866025 0.500000i
545545 −1.41421 −1.41421
546546 0 0
547547 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
548548 1.22474 0.707107i 1.22474 0.707107i
549549 0.465926 + 0.607206i 0.465926 + 0.607206i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0.292893 + 0.707107i 0.292893 + 0.707107i
555555 0 0
556556 0 0
557557 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.707107 + 1.22474i 0.707107 + 1.22474i
563563 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
564564 0 0
565565 −1.22474 + 0.707107i −1.22474 + 0.707107i
566566 0 0
567567 0 0
568568 0 0
569569 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 0 0
571571 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0.965926 + 0.258819i 0.965926 + 0.258819i
577577 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
578578 0.965926 0.258819i 0.965926 0.258819i
579579 0 0
580580 2.41421 2.41421i 2.41421 2.41421i
581581 0 0
582582 0 0
583583 0 0
584584 −0.241181 + 1.83195i −0.241181 + 1.83195i
585585 0 0
586586 0.366025 1.36603i 0.366025 1.36603i
587587 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.46593 1.12484i 1.46593 1.12484i
593593 1.93185 + 0.517638i 1.93185 + 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
600600 0 0
601601 −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 1.83195 + 0.241181i 1.83195 + 0.241181i
606606 0 0
607607 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
608608 0 0
609609 0 0
610610 −1.00000 + 1.00000i −1.00000 + 1.00000i
611611 0 0
612612 0.866025 + 0.500000i 0.866025 + 0.500000i
613613 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i 0.250000π0.250000\pi
−1.00000 π\pi
618618 0 0
619619 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 2.09077 1.20711i 2.09077 1.20711i
626626 −0.607206 + 0.465926i −0.607206 + 0.465926i
627627 0 0
628628 −0.707107 1.22474i −0.707107 1.22474i
629629 1.70711 0.707107i 1.70711 0.707107i
630630 0 0
631631 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
632632 0 0
633633 0 0
634634 1.12484 + 1.46593i 1.12484 + 1.46593i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 −0.241181 + 1.83195i −0.241181 + 1.83195i
641641 0.465926 + 0.607206i 0.465926 + 0.607206i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0.258819 + 0.965926i 0.258819 + 0.965926i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −1.12484 + 1.46593i −1.12484 + 1.46593i −0.258819 + 0.965926i 0.583333π0.583333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0 0
655655 0 0
656656 0.465926 0.607206i 0.465926 0.607206i
657657 −1.70711 + 0.707107i −1.70711 + 0.707107i
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 1.70711 + 0.707107i 1.70711 + 0.707107i
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i 0.250000π-0.250000\pi
−1.00000 π\pi
674674 −0.607206 0.465926i −0.607206 0.465926i
675675 0 0
676676 0.866025 + 0.500000i 0.866025 + 0.500000i
677677 0.241181 + 1.83195i 0.241181 + 1.83195i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
678678 0 0
679679 0 0
680680 −0.707107 + 1.70711i −0.707107 + 1.70711i
681681 0 0
682682 0 0
683683 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
684684 0 0
685685 −1.00000 + 2.41421i −1.00000 + 2.41421i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
692692 0.292893 0.707107i 0.292893 0.707107i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.607206 0.465926i 0.607206 0.465926i
698698 1.00000 + 1.73205i 1.00000 + 1.73205i
699699 0 0
700700 0 0
701701 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1.00000 + 1.00000i 1.00000 + 1.00000i
707707 0 0
708708 0 0
709709 1.83195 0.241181i 1.83195 0.241181i 0.866025 0.500000i 0.166667π-0.166667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
710710 0 0
711711 0 0
712712 −1.93185 0.517638i −1.93185 0.517638i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
720720 −1.70711 + 0.707107i −1.70711 + 0.707107i
721721 0 0
722722 −0.707107 0.707107i −0.707107 0.707107i
723723 0 0
724724 0.758819 + 0.0999004i 0.758819 + 0.0999004i
725725 −0.582262 + 4.42272i −0.582262 + 4.42272i
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −0.707107 + 0.707107i −0.707107 + 0.707107i
730730 −1.70711 2.95680i −1.70711 2.95680i
731731 0 0
732732 0 0
733733 1.93185 + 0.517638i 1.93185 + 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0.758819 + 0.0999004i 0.758819 + 0.0999004i
739739 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
740740 −0.883663 + 3.29788i −0.883663 + 3.29788i
741741 0 0
742742 0 0
743743 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
744744 0 0
745745 0 0
746746 −0.366025 1.36603i −0.366025 1.36603i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
762762 0 0
763763 0 0
764764 0 0
765765 −1.83195 + 0.241181i −1.83195 + 0.241181i
766766 0 0
767767 0 0
768768 0 0
769769 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
770770 0 0
771771 0 0
772772 −1.12484 + 1.46593i −1.12484 + 1.46593i
773773 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
774774 0 0
775775 0 0
776776 −1.70711 + 0.707107i −1.70711 + 0.707107i
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 2.41421 + 1.00000i 2.41421 + 1.00000i
786786 0 0
787787 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
788788 0.0999004 0.758819i 0.0999004 0.758819i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0.465926 + 0.607206i 0.465926 + 0.607206i
795795 0 0
796796 0 0
797797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
798798 0 0
799799 0 0
800800 −1.20711 2.09077i −1.20711 2.09077i
801801 −0.517638 1.93185i −0.517638 1.93185i
802802 −1.46593 + 1.12484i −1.46593 + 1.12484i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −1.93185 + 0.517638i −1.93185 + 0.517638i
809809 1.83195 + 0.241181i 1.83195 + 0.241181i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
810810 −1.46593 1.12484i −1.46593 1.12484i
811811 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −1.00000 + 1.00000i −1.00000 + 1.00000i
819819 0 0
820820 1.41421i 1.41421i
821821 0.758819 0.0999004i 0.758819 0.0999004i 0.258819 0.965926i 0.416667π-0.416667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
828828 0 0
829829 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
840840 0 0
841841 −1.70711 1.70711i −1.70711 1.70711i
842842 0.366025 1.36603i 0.366025 1.36603i
843843 0 0
844844 0 0
845845 −1.83195 + 0.241181i −1.83195 + 0.241181i
846846 0 0
847847 0 0
848848 1.00000 1.00000i 1.00000 1.00000i
849849 0 0
850850 −0.624844 2.33195i −0.624844 2.33195i
851851 0 0
852852 0 0
853853 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 00
0.707107 + 0.707107i 0.250000π0.250000\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.83195 + 0.241181i 1.83195 + 0.241181i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
858858 0 0
859859 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
864864 0 0
865865 0.366025 + 1.36603i 0.366025 + 1.36603i
866866 −0.707107 1.22474i −0.707107 1.22474i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.465926 0.607206i −0.465926 0.607206i
873873 −1.46593 1.12484i −1.46593 1.12484i
874874 0 0
875875 0 0
876876 0 0
877877 −0.465926 + 0.607206i −0.465926 + 0.607206i −0.965926 0.258819i 0.916667π-0.916667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.707107 0.292893i −0.707107 0.292893i 1.00000i 0.5π-0.5\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
888888 0 0
889889 0 0
890890 3.41421 1.41421i 3.41421 1.41421i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −0.241181 1.83195i −0.241181 1.83195i
899899 0 0
900900 1.20711 2.09077i 1.20711 2.09077i
901901 1.22474 0.707107i 1.22474 0.707107i
902902 0 0
903903 0 0
904904 −0.707107 0.292893i −0.707107 0.292893i
905905 −1.22474 + 0.707107i −1.22474 + 0.707107i
906906 0 0
907907 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
908908 0 0
909909 −1.41421 1.41421i −1.41421 1.41421i
910910 0 0
911911 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −1.00000 + 1.00000i −1.00000 + 1.00000i
917917 0 0
918918 0 0
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 0 0
922922 −1.73205 + 1.00000i −1.73205 + 1.00000i
923923 0 0
924924 0 0
925925 −1.70711 4.12132i −1.70711 4.12132i
926926 0 0
927927 0 0
928928 1.83195 + 0.241181i 1.83195 + 0.241181i
929929 −0.607206 0.465926i −0.607206 0.465926i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
930930 0 0
931931 0 0
932932 −0.707107 0.292893i −0.707107 0.292893i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.0999004 + 0.758819i −0.0999004 + 0.758819i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
954954 1.36603 + 0.366025i 1.36603 + 0.366025i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.258819 0.965926i 0.258819 0.965926i
962962 0 0
963963 0 0
964964 −1.83195 + 0.241181i −1.83195 + 0.241181i
965965 3.41421i 3.41421i
966966 0 0
967967 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 0.500000 + 0.866025i 0.500000 + 0.866025i
969969 0 0
970970 1.70711 2.95680i 1.70711 2.95680i
971971 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −0.758819 0.0999004i −0.758819 0.0999004i
977977 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0.292893 0.707107i 0.292893 0.707107i
982982 0 0
983983 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
984984 0 0
985985 0.707107 + 1.22474i 0.707107 + 1.22474i
986986 1.70711 + 0.707107i 1.70711 + 0.707107i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.0999004 + 0.758819i −0.0999004 + 0.758819i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.1.bp.b.655.1 8
4.3 odd 2 CM 3332.1.bp.b.655.1 8
7.2 even 3 inner 3332.1.bp.b.2627.1 8
7.3 odd 6 3332.1.w.c.1471.1 yes 4
7.4 even 3 3332.1.w.b.1471.1 4
7.5 odd 6 3332.1.bp.c.2627.1 8
7.6 odd 2 3332.1.bp.c.655.1 8
17.2 even 8 inner 3332.1.bp.b.1243.1 8
28.3 even 6 3332.1.w.c.1471.1 yes 4
28.11 odd 6 3332.1.w.b.1471.1 4
28.19 even 6 3332.1.bp.c.2627.1 8
28.23 odd 6 inner 3332.1.bp.b.2627.1 8
28.27 even 2 3332.1.bp.c.655.1 8
68.19 odd 8 inner 3332.1.bp.b.1243.1 8
119.2 even 24 inner 3332.1.bp.b.3215.1 8
119.19 odd 24 3332.1.bp.c.3215.1 8
119.53 even 24 3332.1.w.b.2059.1 yes 4
119.87 odd 24 3332.1.w.c.2059.1 yes 4
119.104 odd 8 3332.1.bp.c.1243.1 8
476.19 even 24 3332.1.bp.c.3215.1 8
476.87 even 24 3332.1.w.c.2059.1 yes 4
476.223 even 8 3332.1.bp.c.1243.1 8
476.291 odd 24 3332.1.w.b.2059.1 yes 4
476.359 odd 24 inner 3332.1.bp.b.3215.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.1.w.b.1471.1 4 7.4 even 3
3332.1.w.b.1471.1 4 28.11 odd 6
3332.1.w.b.2059.1 yes 4 119.53 even 24
3332.1.w.b.2059.1 yes 4 476.291 odd 24
3332.1.w.c.1471.1 yes 4 7.3 odd 6
3332.1.w.c.1471.1 yes 4 28.3 even 6
3332.1.w.c.2059.1 yes 4 119.87 odd 24
3332.1.w.c.2059.1 yes 4 476.87 even 24
3332.1.bp.b.655.1 8 1.1 even 1 trivial
3332.1.bp.b.655.1 8 4.3 odd 2 CM
3332.1.bp.b.1243.1 8 17.2 even 8 inner
3332.1.bp.b.1243.1 8 68.19 odd 8 inner
3332.1.bp.b.2627.1 8 7.2 even 3 inner
3332.1.bp.b.2627.1 8 28.23 odd 6 inner
3332.1.bp.b.3215.1 8 119.2 even 24 inner
3332.1.bp.b.3215.1 8 476.359 odd 24 inner
3332.1.bp.c.655.1 8 7.6 odd 2
3332.1.bp.c.655.1 8 28.27 even 2
3332.1.bp.c.1243.1 8 119.104 odd 8
3332.1.bp.c.1243.1 8 476.223 even 8
3332.1.bp.c.2627.1 8 7.5 odd 6
3332.1.bp.c.2627.1 8 28.19 even 6
3332.1.bp.c.3215.1 8 119.19 odd 24
3332.1.bp.c.3215.1 8 476.19 even 24