Properties

Label 336.3.m.a
Level $336$
Weight $3$
Character orbit 336.m
Analytic conductor $9.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(127,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + (\beta_1 - 5) q^{5} + \beta_{3} q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{2} q^{3} + (\beta_1 - 5) q^{5} + \beta_{3} q^{7} - 3 q^{9} + ( - 5 \beta_{3} - 3 \beta_{2}) q^{11} + ( - 2 \beta_1 + 8) q^{13} + ( - 3 \beta_{3} + 5 \beta_{2}) q^{15} + ( - \beta_1 + 5) q^{17} - 8 \beta_{3} q^{19} + \beta_1 q^{21} + ( - 11 \beta_{3} + 7 \beta_{2}) q^{23} + ( - 10 \beta_1 + 21) q^{25} + 3 \beta_{2} q^{27} + (4 \beta_1 - 14) q^{29} - 12 \beta_{2} q^{31} + ( - 5 \beta_1 - 9) q^{33} + ( - 5 \beta_{3} + 7 \beta_{2}) q^{35} + ( - 2 \beta_1 - 52) q^{37} + (6 \beta_{3} - 8 \beta_{2}) q^{39} + ( - 7 \beta_1 + 23) q^{41} + ( - 8 \beta_{3} + 8 \beta_{2}) q^{43} + ( - 3 \beta_1 + 15) q^{45} + ( - 6 \beta_{3} - 2 \beta_{2}) q^{47} - 7 q^{49} + (3 \beta_{3} - 5 \beta_{2}) q^{51} + (14 \beta_1 + 28) q^{53} + (16 \beta_{3} - 20 \beta_{2}) q^{55} - 8 \beta_1 q^{57} + ( - 10 \beta_{3} - 42 \beta_{2}) q^{59} + (8 \beta_1 + 42) q^{61} - 3 \beta_{3} q^{63} + (18 \beta_1 - 82) q^{65} + ( - 6 \beta_{3} + 54 \beta_{2}) q^{67} + ( - 11 \beta_1 + 21) q^{69} + ( - 5 \beta_{3} + 33 \beta_{2}) q^{71} + ( - 10 \beta_1 - 8) q^{73} + (30 \beta_{3} - 21 \beta_{2}) q^{75} + (3 \beta_1 + 35) q^{77} + (6 \beta_{3} + 34 \beta_{2}) q^{79} + 9 q^{81} + ( - 28 \beta_{3} + 24 \beta_{2}) q^{83} + (10 \beta_1 - 46) q^{85} + ( - 12 \beta_{3} + 14 \beta_{2}) q^{87} + (5 \beta_1 + 59) q^{89} + (8 \beta_{3} - 14 \beta_{2}) q^{91} - 36 q^{93} + (40 \beta_{3} - 56 \beta_{2}) q^{95} + (10 \beta_1 - 76) q^{97} + (15 \beta_{3} + 9 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{5} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 20 q^{5} - 12 q^{9} + 32 q^{13} + 20 q^{17} + 84 q^{25} - 56 q^{29} - 36 q^{33} - 208 q^{37} + 92 q^{41} + 60 q^{45} - 28 q^{49} + 112 q^{53} + 168 q^{61} - 328 q^{65} + 84 q^{69} - 32 q^{73} + 140 q^{77} + 36 q^{81} - 184 q^{85} + 236 q^{89} - 144 q^{93} - 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - x^{2} - 2x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{3} + \nu^{2} + 3\nu + 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 3\beta_{2} + \beta _1 + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−0.895644 1.09445i
1.39564 + 0.228425i
−0.895644 + 1.09445i
1.39564 0.228425i
0 1.73205i 0 −9.58258 0 2.64575i 0 −3.00000 0
127.2 0 1.73205i 0 −0.417424 0 2.64575i 0 −3.00000 0
127.3 0 1.73205i 0 −9.58258 0 2.64575i 0 −3.00000 0
127.4 0 1.73205i 0 −0.417424 0 2.64575i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.3.m.a 4
3.b odd 2 1 1008.3.m.f 4
4.b odd 2 1 inner 336.3.m.a 4
7.b odd 2 1 2352.3.m.k 4
8.b even 2 1 1344.3.m.c 4
8.d odd 2 1 1344.3.m.c 4
12.b even 2 1 1008.3.m.f 4
28.d even 2 1 2352.3.m.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.3.m.a 4 1.a even 1 1 trivial
336.3.m.a 4 4.b odd 2 1 inner
1008.3.m.f 4 3.b odd 2 1
1008.3.m.f 4 12.b even 2 1
1344.3.m.c 4 8.b even 2 1
1344.3.m.c 4 8.d odd 2 1
2352.3.m.k 4 7.b odd 2 1
2352.3.m.k 4 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 10T_{5} + 4 \) acting on \(S_{3}^{\mathrm{new}}(336, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 10 T + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 404 T^{2} + 21904 \) Copy content Toggle raw display
$13$ \( (T^{2} - 16 T - 20)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 10 T + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 448)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 1988 T^{2} + 490000 \) Copy content Toggle raw display
$29$ \( (T^{2} + 28 T - 140)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 432)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 104 T + 2620)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 46 T - 500)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 1280 T^{2} + 65536 \) Copy content Toggle raw display
$47$ \( T^{4} + 528 T^{2} + 57600 \) Copy content Toggle raw display
$53$ \( (T^{2} - 56 T - 3332)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 11984 T^{2} + 21086464 \) Copy content Toggle raw display
$61$ \( (T^{2} - 84 T + 420)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 18000 T^{2} + 72182016 \) Copy content Toggle raw display
$71$ \( T^{4} + 6884 T^{2} + 9560464 \) Copy content Toggle raw display
$73$ \( (T^{2} + 16 T - 2036)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 7440 T^{2} + 10342656 \) Copy content Toggle raw display
$83$ \( T^{4} + 14432 T^{2} + 14137600 \) Copy content Toggle raw display
$89$ \( (T^{2} - 118 T + 2956)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 152 T + 3676)^{2} \) Copy content Toggle raw display
show more
show less