Properties

Label 336.3.m.b
Level $336$
Weight $3$
Character orbit 336.m
Analytic conductor $9.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(127,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - 2 q^{5} - \beta_{3} q^{7} - 3 q^{9} + ( - 4 \beta_{3} + 4 \beta_{2}) q^{11} + ( - 4 \beta_1 + 2) q^{13} + 2 \beta_{2} q^{15} + ( - 4 \beta_1 + 14) q^{17} + (8 \beta_{3} - 4 \beta_{2}) q^{19}+ \cdots + (12 \beta_{3} - 12 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 12 q^{9} + 8 q^{13} + 56 q^{17} - 84 q^{25} - 56 q^{29} + 48 q^{33} + 104 q^{37} - 40 q^{41} + 24 q^{45} - 28 q^{49} + 40 q^{53} - 48 q^{57} - 24 q^{61} - 16 q^{65} - 144 q^{69} + 232 q^{73}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - x^{2} - 2x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{3} + \nu^{2} + 3\nu + 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 3\beta_{2} + \beta _1 + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
1.39564 + 0.228425i
−0.895644 1.09445i
−0.895644 + 1.09445i
1.39564 0.228425i
0 1.73205i 0 −2.00000 0 2.64575i 0 −3.00000 0
127.2 0 1.73205i 0 −2.00000 0 2.64575i 0 −3.00000 0
127.3 0 1.73205i 0 −2.00000 0 2.64575i 0 −3.00000 0
127.4 0 1.73205i 0 −2.00000 0 2.64575i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.3.m.b 4
3.b odd 2 1 1008.3.m.e 4
4.b odd 2 1 inner 336.3.m.b 4
7.b odd 2 1 2352.3.m.i 4
8.b even 2 1 1344.3.m.b 4
8.d odd 2 1 1344.3.m.b 4
12.b even 2 1 1008.3.m.e 4
28.d even 2 1 2352.3.m.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.3.m.b 4 1.a even 1 1 trivial
336.3.m.b 4 4.b odd 2 1 inner
1008.3.m.e 4 3.b odd 2 1
1008.3.m.e 4 12.b even 2 1
1344.3.m.b 4 8.b even 2 1
1344.3.m.b 4 8.d odd 2 1
2352.3.m.i 4 7.b odd 2 1
2352.3.m.i 4 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 2 \) acting on \(S_{3}^{\mathrm{new}}(336, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 2)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 320T^{2} + 4096 \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T - 332)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 28 T - 140)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 992 T^{2} + 160000 \) Copy content Toggle raw display
$23$ \( T^{4} + 1088 T^{2} + 102400 \) Copy content Toggle raw display
$29$ \( (T^{2} + 28 T - 1148)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 768)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 52 T - 668)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 20 T - 236)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 2432 T^{2} + 102400 \) Copy content Toggle raw display
$47$ \( T^{4} + 9600 T^{2} + 10653696 \) Copy content Toggle raw display
$53$ \( (T^{2} - 20 T - 1244)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 1760T^{2} + 256 \) Copy content Toggle raw display
$61$ \( (T^{2} + 12 T - 300)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 3072)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 11840 T^{2} + 25563136 \) Copy content Toggle raw display
$73$ \( (T^{2} - 116 T + 2020)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 9408)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 15200 T^{2} + 45373696 \) Copy content Toggle raw display
$89$ \( (T^{2} - 76 T - 1580)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 44 T - 4892)^{2} \) Copy content Toggle raw display
show more
show less