Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3364,1,Mod(571,3364)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3364, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([7, 12]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3364.571");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3364.j (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 116) |
Projective image: | |
Projective field: | Galois closure of 7.1.38068692544.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
571.1 |
|
0.900969 | − | 0.433884i | 0 | 0.623490 | − | 0.781831i | 1.62349 | − | 0.781831i | 0 | 0 | 0.222521 | − | 0.974928i | −0.222521 | + | 0.974928i | 1.12349 | − | 1.40881i | ||||||||||||||||||||||||
1031.1 | 0.900969 | + | 0.433884i | 0 | 0.623490 | + | 0.781831i | 1.62349 | + | 0.781831i | 0 | 0 | 0.222521 | + | 0.974928i | −0.222521 | − | 0.974928i | 1.12349 | + | 1.40881i | |||||||||||||||||||||||||
1415.1 | −0.623490 | + | 0.781831i | 0 | −0.222521 | − | 0.974928i | 0.777479 | − | 0.974928i | 0 | 0 | 0.900969 | + | 0.433884i | −0.900969 | − | 0.433884i | 0.277479 | + | 1.21572i | |||||||||||||||||||||||||
1619.1 | −0.623490 | − | 0.781831i | 0 | −0.222521 | + | 0.974928i | 0.777479 | + | 0.974928i | 0 | 0 | 0.900969 | − | 0.433884i | −0.900969 | + | 0.433884i | 0.277479 | − | 1.21572i | |||||||||||||||||||||||||
2287.1 | 0.222521 | − | 0.974928i | 0 | −0.900969 | − | 0.433884i | 0.0990311 | − | 0.433884i | 0 | 0 | −0.623490 | + | 0.781831i | 0.623490 | − | 0.781831i | −0.400969 | − | 0.193096i | |||||||||||||||||||||||||
2327.1 | 0.222521 | + | 0.974928i | 0 | −0.900969 | + | 0.433884i | 0.0990311 | + | 0.433884i | 0 | 0 | −0.623490 | − | 0.781831i | 0.623490 | + | 0.781831i | −0.400969 | + | 0.193096i | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
29.d | even | 7 | 1 | inner |
116.j | odd | 14 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|