Properties

Label 3364.1.j.e
Level 33643364
Weight 11
Character orbit 3364.j
Analytic conductor 1.6791.679
Analytic rank 00
Dimension 66
Projective image D7D_{7}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,1,Mod(571,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 12]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.571");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3364=22292 3364 = 2^{2} \cdot 29^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3364.j (of order 1414, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.678854702501.67885470250
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ14)\Q(\zeta_{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+x4x3+x2x+1 x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 116)
Projective image: D7D_{7}
Projective field: Galois closure of 7.1.38068692544.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ146q2ζ145q4+(ζ145+1)q5ζ144q8+ζ144q9+(ζ146ζ144)q10+(ζ146+1)q13++ζ143q98+O(q100) q - \zeta_{14}^{6} q^{2} - \zeta_{14}^{5} q^{4} + ( - \zeta_{14}^{5} + 1) q^{5} - \zeta_{14}^{4} q^{8} + \zeta_{14}^{4} q^{9} + ( - \zeta_{14}^{6} - \zeta_{14}^{4}) q^{10} + (\zeta_{14}^{6} + 1) q^{13} + \cdots + \zeta_{14}^{3} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+q2q4+5q5+q8q9+2q10+5q13q16+2q17+q182q20+4q25+2q26+q322q34q365q37+2q40+2q412q45++q98+O(q100) 6 q + q^{2} - q^{4} + 5 q^{5} + q^{8} - q^{9} + 2 q^{10} + 5 q^{13} - q^{16} + 2 q^{17} + q^{18} - 2 q^{20} + 4 q^{25} + 2 q^{26} + q^{32} - 2 q^{34} - q^{36} - 5 q^{37} + 2 q^{40} + 2 q^{41} - 2 q^{45}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3364Z)×\left(\mathbb{Z}/3364\mathbb{Z}\right)^\times.

nn 16831683 25252525
χ(n)\chi(n) 1-1 ζ145-\zeta_{14}^{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
571.1
0.900969 + 0.433884i
0.900969 0.433884i
−0.623490 0.781831i
−0.623490 + 0.781831i
0.222521 + 0.974928i
0.222521 0.974928i
0.900969 0.433884i 0 0.623490 0.781831i 1.62349 0.781831i 0 0 0.222521 0.974928i −0.222521 + 0.974928i 1.12349 1.40881i
1031.1 0.900969 + 0.433884i 0 0.623490 + 0.781831i 1.62349 + 0.781831i 0 0 0.222521 + 0.974928i −0.222521 0.974928i 1.12349 + 1.40881i
1415.1 −0.623490 + 0.781831i 0 −0.222521 0.974928i 0.777479 0.974928i 0 0 0.900969 + 0.433884i −0.900969 0.433884i 0.277479 + 1.21572i
1619.1 −0.623490 0.781831i 0 −0.222521 + 0.974928i 0.777479 + 0.974928i 0 0 0.900969 0.433884i −0.900969 + 0.433884i 0.277479 1.21572i
2287.1 0.222521 0.974928i 0 −0.900969 0.433884i 0.0990311 0.433884i 0 0 −0.623490 + 0.781831i 0.623490 0.781831i −0.400969 0.193096i
2327.1 0.222521 + 0.974928i 0 −0.900969 + 0.433884i 0.0990311 + 0.433884i 0 0 −0.623490 0.781831i 0.623490 + 0.781831i −0.400969 + 0.193096i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 571.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
29.d even 7 1 inner
116.j odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3364.1.j.e 6
4.b odd 2 1 CM 3364.1.j.e 6
29.b even 2 1 3364.1.j.b 6
29.c odd 4 2 3364.1.h.c 12
29.d even 7 1 3364.1.b.b 3
29.d even 7 2 3364.1.j.c 6
29.d even 7 2 3364.1.j.d 6
29.d even 7 1 inner 3364.1.j.e 6
29.e even 14 2 116.1.j.a 6
29.e even 14 1 3364.1.b.c 3
29.e even 14 2 3364.1.j.a 6
29.e even 14 1 3364.1.j.b 6
29.f odd 28 2 3364.1.d.a 6
29.f odd 28 2 3364.1.h.c 12
29.f odd 28 4 3364.1.h.d 12
29.f odd 28 4 3364.1.h.e 12
87.h odd 14 2 1044.1.bb.a 6
116.d odd 2 1 3364.1.j.b 6
116.e even 4 2 3364.1.h.c 12
116.h odd 14 2 116.1.j.a 6
116.h odd 14 1 3364.1.b.c 3
116.h odd 14 2 3364.1.j.a 6
116.h odd 14 1 3364.1.j.b 6
116.j odd 14 1 3364.1.b.b 3
116.j odd 14 2 3364.1.j.c 6
116.j odd 14 2 3364.1.j.d 6
116.j odd 14 1 inner 3364.1.j.e 6
116.l even 28 2 3364.1.d.a 6
116.l even 28 2 3364.1.h.c 12
116.l even 28 4 3364.1.h.d 12
116.l even 28 4 3364.1.h.e 12
145.l even 14 2 2900.1.bj.a 6
145.q odd 28 4 2900.1.bd.a 12
232.o even 14 2 1856.1.bh.a 6
232.t odd 14 2 1856.1.bh.a 6
348.t even 14 2 1044.1.bb.a 6
580.y odd 14 2 2900.1.bj.a 6
580.bh even 28 4 2900.1.bd.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.1.j.a 6 29.e even 14 2
116.1.j.a 6 116.h odd 14 2
1044.1.bb.a 6 87.h odd 14 2
1044.1.bb.a 6 348.t even 14 2
1856.1.bh.a 6 232.o even 14 2
1856.1.bh.a 6 232.t odd 14 2
2900.1.bd.a 12 145.q odd 28 4
2900.1.bd.a 12 580.bh even 28 4
2900.1.bj.a 6 145.l even 14 2
2900.1.bj.a 6 580.y odd 14 2
3364.1.b.b 3 29.d even 7 1
3364.1.b.b 3 116.j odd 14 1
3364.1.b.c 3 29.e even 14 1
3364.1.b.c 3 116.h odd 14 1
3364.1.d.a 6 29.f odd 28 2
3364.1.d.a 6 116.l even 28 2
3364.1.h.c 12 29.c odd 4 2
3364.1.h.c 12 29.f odd 28 2
3364.1.h.c 12 116.e even 4 2
3364.1.h.c 12 116.l even 28 2
3364.1.h.d 12 29.f odd 28 4
3364.1.h.d 12 116.l even 28 4
3364.1.h.e 12 29.f odd 28 4
3364.1.h.e 12 116.l even 28 4
3364.1.j.a 6 29.e even 14 2
3364.1.j.a 6 116.h odd 14 2
3364.1.j.b 6 29.b even 2 1
3364.1.j.b 6 29.e even 14 1
3364.1.j.b 6 116.d odd 2 1
3364.1.j.b 6 116.h odd 14 1
3364.1.j.c 6 29.d even 7 2
3364.1.j.c 6 116.j odd 14 2
3364.1.j.d 6 29.d even 7 2
3364.1.j.d 6 116.j odd 14 2
3364.1.j.e 6 1.a even 1 1 trivial
3364.1.j.e 6 4.b odd 2 1 CM
3364.1.j.e 6 29.d even 7 1 inner
3364.1.j.e 6 116.j odd 14 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3364,[χ])S_{1}^{\mathrm{new}}(3364, [\chi]):

T3 T_{3} Copy content Toggle raw display
T565T55+11T5413T53+9T523T5+1 T_{5}^{6} - 5T_{5}^{5} + 11T_{5}^{4} - 13T_{5}^{3} + 9T_{5}^{2} - 3T_{5} + 1 Copy content Toggle raw display
T173T1722T17+1 T_{17}^{3} - T_{17}^{2} - 2T_{17} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6T5+T4++1 T^{6} - T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T65T5++1 T^{6} - 5 T^{5} + \cdots + 1 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6 T^{6} Copy content Toggle raw display
1313 T65T5++1 T^{6} - 5 T^{5} + \cdots + 1 Copy content Toggle raw display
1717 (T3T22T+1)2 (T^{3} - T^{2} - 2 T + 1)^{2} Copy content Toggle raw display
1919 T6 T^{6} Copy content Toggle raw display
2323 T6 T^{6} Copy content Toggle raw display
2929 T6 T^{6} Copy content Toggle raw display
3131 T6 T^{6} Copy content Toggle raw display
3737 T6+5T5++1 T^{6} + 5 T^{5} + \cdots + 1 Copy content Toggle raw display
4141 (T3T22T+1)2 (T^{3} - T^{2} - 2 T + 1)^{2} Copy content Toggle raw display
4343 T6 T^{6} Copy content Toggle raw display
4747 T6 T^{6} Copy content Toggle raw display
5353 T6+2T5++1 T^{6} + 2 T^{5} + \cdots + 1 Copy content Toggle raw display
5959 T6 T^{6} Copy content Toggle raw display
6161 T6+5T5++1 T^{6} + 5 T^{5} + \cdots + 1 Copy content Toggle raw display
6767 T6 T^{6} Copy content Toggle raw display
7171 T6 T^{6} Copy content Toggle raw display
7373 T62T5++1 T^{6} - 2 T^{5} + \cdots + 1 Copy content Toggle raw display
7979 T6 T^{6} Copy content Toggle raw display
8383 T6 T^{6} Copy content Toggle raw display
8989 T6+5T5++1 T^{6} + 5 T^{5} + \cdots + 1 Copy content Toggle raw display
9797 T62T5++1 T^{6} - 2 T^{5} + \cdots + 1 Copy content Toggle raw display
show more
show less