Properties

Label 3375.1.m.b.2699.1
Level 33753375
Weight 11
Character 3375.2699
Analytic conductor 1.6841.684
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3375,1,Mod(674,3375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3375, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3375.674");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3375=3353 3375 = 3^{3} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3375.m (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.684344417641.68434441764
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 675)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.31640625.2

Embedding invariants

Embedding label 2699.1
Root 0.5877850.809017i-0.587785 - 0.809017i of defining polynomial
Character χ\chi == 3375.2699
Dual form 3375.1.m.b.674.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.309020.951057i)q2+(0.5000001.53884i)q41.61803iq7+(0.3090170.951057i)q8+(0.5877850.809017i)q11+(1.538842.11803i)q14+(0.3090170.951057i)q17+(0.309017+0.951057i)q19+(1.538840.500000i)q22+(0.809017+0.587785i)q23+(2.489900.809017i)q28+(0.587785+0.190983i)q29+1.00000q32+(1.309020.951057i)q34+(0.363271+0.500000i)q37+(1.30902+0.951057i)q38+(0.587785+0.809017i)q41+(1.53884+0.500000i)q44+(0.500000+1.53884i)q46+(0.190983+0.587785i)q471.61803q49+(0.5000001.53884i)q53+(1.53884+0.500000i)q56+(0.9510570.309017i)q58+(0.8090170.587785i)q61+(1.309020.951057i)q64+(1.538840.500000i)q671.61803q68+(0.5877850.190983i)q71+1.00000iq74+1.61803q76+(1.30902+0.951057i)q77+(0.1909830.587785i)q79+1.61803iq82+(0.5000001.53884i)q83+(0.587785+0.809017i)q88+(0.587785+0.809017i)q89+(0.500000+1.53884i)q92+(0.309017+0.951057i)q94+(0.951057+0.309017i)q97+(2.11803+1.53884i)q98+O(q100)q+(1.30902 - 0.951057i) q^{2} +(0.500000 - 1.53884i) q^{4} -1.61803i q^{7} +(-0.309017 - 0.951057i) q^{8} +(-0.587785 - 0.809017i) q^{11} +(-1.53884 - 2.11803i) q^{14} +(-0.309017 - 0.951057i) q^{17} +(0.309017 + 0.951057i) q^{19} +(-1.53884 - 0.500000i) q^{22} +(-0.809017 + 0.587785i) q^{23} +(-2.48990 - 0.809017i) q^{28} +(0.587785 + 0.190983i) q^{29} +1.00000 q^{32} +(-1.30902 - 0.951057i) q^{34} +(-0.363271 + 0.500000i) q^{37} +(1.30902 + 0.951057i) q^{38} +(-0.587785 + 0.809017i) q^{41} +(-1.53884 + 0.500000i) q^{44} +(-0.500000 + 1.53884i) q^{46} +(-0.190983 + 0.587785i) q^{47} -1.61803 q^{49} +(0.500000 - 1.53884i) q^{53} +(-1.53884 + 0.500000i) q^{56} +(0.951057 - 0.309017i) q^{58} +(0.809017 - 0.587785i) q^{61} +(1.30902 - 0.951057i) q^{64} +(1.53884 - 0.500000i) q^{67} -1.61803 q^{68} +(-0.587785 - 0.190983i) q^{71} +1.00000i q^{74} +1.61803 q^{76} +(-1.30902 + 0.951057i) q^{77} +(0.190983 - 0.587785i) q^{79} +1.61803i q^{82} +(-0.500000 - 1.53884i) q^{83} +(-0.587785 + 0.809017i) q^{88} +(0.587785 + 0.809017i) q^{89} +(0.500000 + 1.53884i) q^{92} +(0.309017 + 0.951057i) q^{94} +(0.951057 + 0.309017i) q^{97} +(-2.11803 + 1.53884i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q2+4q4+2q8+2q172q192q23+8q326q34+6q384q466q474q49+4q53+2q61+6q644q68+4q766q77+6q79+8q98+O(q100) 8 q + 6 q^{2} + 4 q^{4} + 2 q^{8} + 2 q^{17} - 2 q^{19} - 2 q^{23} + 8 q^{32} - 6 q^{34} + 6 q^{38} - 4 q^{46} - 6 q^{47} - 4 q^{49} + 4 q^{53} + 2 q^{61} + 6 q^{64} - 4 q^{68} + 4 q^{76} - 6 q^{77} + 6 q^{79}+ \cdots - 8 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3375Z)×\left(\mathbb{Z}/3375\mathbb{Z}\right)^\times.

nn 10011001 23772377
χ(n)\chi(n) 1-1 e(310)e\left(\frac{3}{10}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
33 0 0
44 0.500000 1.53884i 0.500000 1.53884i
55 0 0
66 0 0
77 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
88 −0.309017 0.951057i −0.309017 0.951057i
99 0 0
1010 0 0
1111 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
1212 0 0
1313 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
1414 −1.53884 2.11803i −1.53884 2.11803i
1515 0 0
1616 0 0
1717 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
1818 0 0
1919 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
2020 0 0
2121 0 0
2222 −1.53884 0.500000i −1.53884 0.500000i
2323 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 −2.48990 0.809017i −2.48990 0.809017i
2929 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
3232 1.00000 1.00000
3333 0 0
3434 −1.30902 0.951057i −1.30902 0.951057i
3535 0 0
3636 0 0
3737 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
3838 1.30902 + 0.951057i 1.30902 + 0.951057i
3939 0 0
4040 0 0
4141 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −1.53884 + 0.500000i −1.53884 + 0.500000i
4545 0 0
4646 −0.500000 + 1.53884i −0.500000 + 1.53884i
4747 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
4848 0 0
4949 −1.61803 −1.61803
5050 0 0
5151 0 0
5252 0 0
5353 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
5454 0 0
5555 0 0
5656 −1.53884 + 0.500000i −1.53884 + 0.500000i
5757 0 0
5858 0.951057 0.309017i 0.951057 0.309017i
5959 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
6060 0 0
6161 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
6262 0 0
6363 0 0
6464 1.30902 0.951057i 1.30902 0.951057i
6565 0 0
6666 0 0
6767 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
6868 −1.61803 −1.61803
6969 0 0
7070 0 0
7171 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7272 0 0
7373 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
7474 1.00000i 1.00000i
7575 0 0
7676 1.61803 1.61803
7777 −1.30902 + 0.951057i −1.30902 + 0.951057i
7878 0 0
7979 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
8080 0 0
8181 0 0
8282 1.61803i 1.61803i
8383 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −0.587785 + 0.809017i −0.587785 + 0.809017i
8989 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
9090 0 0
9191 0 0
9292 0.500000 + 1.53884i 0.500000 + 1.53884i
9393 0 0
9494 0.309017 + 0.951057i 0.309017 + 0.951057i
9595 0 0
9696 0 0
9797 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
9898 −2.11803 + 1.53884i −2.11803 + 1.53884i
9999 0 0
100100 0 0
101101 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0 0
103103 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
104104 0 0
105105 0 0
106106 −0.809017 2.48990i −0.809017 2.48990i
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
114114 0 0
115115 0 0
116116 0.587785 0.809017i 0.587785 0.809017i
117117 0 0
118118 0 0
119119 −1.53884 + 0.500000i −1.53884 + 0.500000i
120120 0 0
121121 0 0
122122 0.500000 1.53884i 0.500000 1.53884i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
128128 0.500000 1.53884i 0.500000 1.53884i
129129 0 0
130130 0 0
131131 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
132132 0 0
133133 1.53884 0.500000i 1.53884 0.500000i
134134 1.53884 2.11803i 1.53884 2.11803i
135135 0 0
136136 −0.809017 + 0.587785i −0.809017 + 0.587785i
137137 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
138138 0 0
139139 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
140140 0 0
141141 0 0
142142 −0.951057 + 0.309017i −0.951057 + 0.309017i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.587785 + 0.809017i 0.587785 + 0.809017i
149149 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0.809017 0.587785i 0.809017 0.587785i
153153 0 0
154154 −0.809017 + 2.48990i −0.809017 + 2.48990i
155155 0 0
156156 0 0
157157 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
158158 −0.309017 0.951057i −0.309017 0.951057i
159159 0 0
160160 0 0
161161 0.951057 + 1.30902i 0.951057 + 1.30902i
162162 0 0
163163 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
164164 0.951057 + 1.30902i 0.951057 + 1.30902i
165165 0 0
166166 −2.11803 1.53884i −2.11803 1.53884i
167167 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
168168 0 0
169169 0.309017 + 0.951057i 0.309017 + 0.951057i
170170 0 0
171171 0 0
172172 0 0
173173 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 1.53884 + 0.500000i 1.53884 + 0.500000i
179179 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
180180 0 0
181181 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
182182 0 0
183183 0 0
184184 0.809017 + 0.587785i 0.809017 + 0.587785i
185185 0 0
186186 0 0
187187 −0.587785 + 0.809017i −0.587785 + 0.809017i
188188 0.809017 + 0.587785i 0.809017 + 0.587785i
189189 0 0
190190 0 0
191191 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
192192 0 0
193193 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
194194 1.53884 0.500000i 1.53884 0.500000i
195195 0 0
196196 −0.809017 + 2.48990i −0.809017 + 2.48990i
197197 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0.951057 + 1.30902i 0.951057 + 1.30902i
203203 0.309017 0.951057i 0.309017 0.951057i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0.587785 0.809017i 0.587785 0.809017i
210210 0 0
211211 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
212212 −2.11803 1.53884i −2.11803 1.53884i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 1.61803 1.61803
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
224224 1.61803i 1.61803i
225225 0 0
226226 0 0
227227 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
228228 0 0
229229 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
230230 0 0
231231 0 0
232232 0.618034i 0.618034i
233233 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 −1.53884 + 2.11803i −1.53884 + 2.11803i
239239 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
240240 0 0
241241 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
242242 0 0
243243 0 0
244244 −0.500000 1.53884i −0.500000 1.53884i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
252252 0 0
253253 0.951057 + 0.309017i 0.951057 + 0.309017i
254254 0.951057 + 0.309017i 0.951057 + 0.309017i
255255 0 0
256256 −0.309017 0.951057i −0.309017 0.951057i
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0.809017 + 0.587785i 0.809017 + 0.587785i
260260 0 0
261261 0 0
262262 0.587785 0.809017i 0.587785 0.809017i
263263 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
264264 0 0
265265 0 0
266266 1.53884 2.11803i 1.53884 2.11803i
267267 0 0
268268 2.61803i 2.61803i
269269 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
270270 0 0
271271 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
272272 0 0
273273 0 0
274274 1.61803 1.61803
275275 0 0
276276 0 0
277277 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
278278 −0.500000 + 1.53884i −0.500000 + 1.53884i
279279 0 0
280280 0 0
281281 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
282282 0 0
283283 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
284284 −0.587785 + 0.809017i −0.587785 + 0.809017i
285285 0 0
286286 0 0
287287 1.30902 + 0.951057i 1.30902 + 0.951057i
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 0 0
295295 0 0
296296 0.587785 + 0.190983i 0.587785 + 0.190983i
297297 0 0
298298 1.53884 + 2.11803i 1.53884 + 2.11803i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0.618034i 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
308308 0.809017 + 2.48990i 0.809017 + 2.48990i
309309 0 0
310310 0 0
311311 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
312312 0 0
313313 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
314314 −0.587785 0.809017i −0.587785 0.809017i
315315 0 0
316316 −0.809017 0.587785i −0.809017 0.587785i
317317 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
318318 0 0
319319 −0.190983 0.587785i −0.190983 0.587785i
320320 0 0
321321 0 0
322322 2.48990 + 0.809017i 2.48990 + 0.809017i
323323 0.809017 0.587785i 0.809017 0.587785i
324324 0 0
325325 0 0
326326 1.61803i 1.61803i
327327 0 0
328328 0.951057 + 0.309017i 0.951057 + 0.309017i
329329 0.951057 + 0.309017i 0.951057 + 0.309017i
330330 0 0
331331 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
332332 −2.61803 −2.61803
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
338338 1.30902 + 0.951057i 1.30902 + 0.951057i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 0 0
345345 0 0
346346 −0.309017 + 0.951057i −0.309017 + 0.951057i
347347 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 −0.587785 0.809017i −0.587785 0.809017i
353353 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
354354 0 0
355355 0 0
356356 1.53884 0.500000i 1.53884 0.500000i
357357 0 0
358358 −0.951057 + 0.309017i −0.951057 + 0.309017i
359359 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
360360 0 0
361361 0 0
362362 1.30902 + 0.951057i 1.30902 + 0.951057i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
368368 0 0
369369 0 0
370370 0 0
371371 −2.48990 0.809017i −2.48990 0.809017i
372372 0 0
373373 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
374374 1.61803i 1.61803i
375375 0 0
376376 0.618034 0.618034
377377 0 0
378378 0 0
379379 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
380380 0 0
381381 0 0
382382 2.61803i 2.61803i
383383 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
384384 0 0
385385 0 0
386386 −0.951057 1.30902i −0.951057 1.30902i
387387 0 0
388388 0.951057 1.30902i 0.951057 1.30902i
389389 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
390390 0 0
391391 0.809017 + 0.587785i 0.809017 + 0.587785i
392392 0.500000 + 1.53884i 0.500000 + 1.53884i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
402402 0 0
403403 0 0
404404 1.53884 + 0.500000i 1.53884 + 0.500000i
405405 0 0
406406 −0.500000 1.53884i −0.500000 1.53884i
407407 0.618034 0.618034
408408 0 0
409409 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 1.61803i 1.61803i
419419 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
420420 0 0
421421 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
422422 −0.809017 + 2.48990i −0.809017 + 2.48990i
423423 0 0
424424 −1.61803 −1.61803
425425 0 0
426426 0 0
427427 −0.951057 1.30902i −0.951057 1.30902i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
432432 0 0
433433 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
434434 0 0
435435 0 0
436436 1.30902 0.951057i 1.30902 0.951057i
437437 −0.809017 0.587785i −0.809017 0.587785i
438438 0 0
439439 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 2.48990 + 0.809017i 2.48990 + 0.809017i
447447 0 0
448448 −1.53884 2.11803i −1.53884 2.11803i
449449 0.618034i 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
450450 0 0
451451 1.00000 1.00000
452452 0 0
453453 0 0
454454 −0.809017 + 2.48990i −0.809017 + 2.48990i
455455 0 0
456456 0 0
457457 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
462462 0 0
463463 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
464464 0 0
465465 0 0
466466 1.30902 + 0.951057i 1.30902 + 0.951057i
467467 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
468468 0 0
469469 −0.809017 2.48990i −0.809017 2.48990i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 2.61803i 2.61803i
477477 0 0
478478 −2.48990 0.809017i −2.48990 0.809017i
479479 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
480480 0 0
481481 0 0
482482 −1.00000 −1.00000
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
488488 −0.809017 0.587785i −0.809017 0.587785i
489489 0 0
490490 0 0
491491 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
492492 0 0
493493 0.618034i 0.618034i
494494 0 0
495495 0 0
496496 0 0
497497 −0.309017 + 0.951057i −0.309017 + 0.951057i
498498 0 0
499499 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 0 0
501501 0 0
502502 −0.951057 1.30902i −0.951057 1.30902i
503503 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
504504 0 0
505505 0 0
506506 1.53884 0.500000i 1.53884 0.500000i
507507 0 0
508508 0.951057 0.309017i 0.951057 0.309017i
509509 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0.587785 0.190983i 0.587785 0.190983i
518518 1.61803 1.61803
519519 0 0
520520 0 0
521521 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
522522 0 0
523523 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
524524 1.00000i 1.00000i
525525 0 0
526526 1.61803 1.61803
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 2.61803i 2.61803i
533533 0 0
534534 0 0
535535 0 0
536536 −0.951057 1.30902i −0.951057 1.30902i
537537 0 0
538538 −0.951057 + 1.30902i −0.951057 + 1.30902i
539539 0.951057 + 1.30902i 0.951057 + 1.30902i
540540 0 0
541541 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
542542 −0.500000 1.53884i −0.500000 1.53884i
543543 0 0
544544 −0.309017 0.951057i −0.309017 0.951057i
545545 0 0
546546 0 0
547547 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
548548 1.30902 0.951057i 1.30902 0.951057i
549549 0 0
550550 0 0
551551 0.618034i 0.618034i
552552 0 0
553553 −0.951057 0.309017i −0.951057 0.309017i
554554 0 0
555555 0 0
556556 0.500000 + 1.53884i 0.500000 + 1.53884i
557557 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.951057 1.30902i 0.951057 1.30902i
563563 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
564564 0 0
565565 0 0
566566 −0.951057 + 1.30902i −0.951057 + 1.30902i
567567 0 0
568568 0.618034i 0.618034i
569569 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
570570 0 0
571571 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
572572 0 0
573573 0 0
574574 2.61803 2.61803
575575 0 0
576576 0 0
577577 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
578578 0 0
579579 0 0
580580 0 0
581581 −2.48990 + 0.809017i −2.48990 + 0.809017i
582582 0 0
583583 −1.53884 + 0.500000i −1.53884 + 0.500000i
584584 0 0
585585 0 0
586586 1.30902 0.951057i 1.30902 0.951057i
587587 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 0 0
596596 2.48990 + 0.809017i 2.48990 + 0.809017i
597597 0 0
598598 0 0
599599 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0.309017 + 0.951057i 0.309017 + 0.951057i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
614614 0.587785 + 0.809017i 0.587785 + 0.809017i
615615 0 0
616616 1.30902 + 0.951057i 1.30902 + 0.951057i
617617 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
618618 0 0
619619 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
620620 0 0
621621 0 0
622622 1.53884 + 0.500000i 1.53884 + 0.500000i
623623 1.30902 0.951057i 1.30902 0.951057i
624624 0 0
625625 0 0
626626 2.61803i 2.61803i
627627 0 0
628628 −0.951057 0.309017i −0.951057 0.309017i
629629 0.587785 + 0.190983i 0.587785 + 0.190983i
630630 0 0
631631 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
632632 −0.618034 −0.618034
633633 0 0
634634 −2.11803 1.53884i −2.11803 1.53884i
635635 0 0
636636 0 0
637637 0 0
638638 −0.809017 0.587785i −0.809017 0.587785i
639639 0 0
640640 0 0
641641 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
642642 0 0
643643 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 2.48990 0.809017i 2.48990 0.809017i
645645 0 0
646646 0.500000 1.53884i 0.500000 1.53884i
647647 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −0.951057 1.30902i −0.951057 1.30902i
653653 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 1.53884 0.500000i 1.53884 0.500000i
659659 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
660660 0 0
661661 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
662662 0 0
663663 0 0
664664 −1.30902 + 0.951057i −1.30902 + 0.951057i
665665 0 0
666666 0 0
667667 −0.587785 + 0.190983i −0.587785 + 0.190983i
668668 0 0
669669 0 0
670670 0 0
671671 −0.951057 0.309017i −0.951057 0.309017i
672672 0 0
673673 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
674674 0 0
675675 0 0
676676 1.61803 1.61803
677677 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
678678 0 0
679679 0.500000 1.53884i 0.500000 1.53884i
680680 0 0
681681 0 0
682682 0 0
683683 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
684684 0 0
685685 0 0
686686 0.951057 + 1.30902i 0.951057 + 1.30902i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
692692 0.309017 + 0.951057i 0.309017 + 0.951057i
693693 0 0
694694 −0.500000 1.53884i −0.500000 1.53884i
695695 0 0
696696 0 0
697697 0.951057 + 0.309017i 0.951057 + 0.309017i
698698 0 0
699699 0 0
700700 0 0
701701 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
702702 0 0
703703 −0.587785 0.190983i −0.587785 0.190983i
704704 −1.53884 0.500000i −1.53884 0.500000i
705705 0 0
706706 0.809017 + 2.48990i 0.809017 + 2.48990i
707707 1.61803 1.61803
708708 0 0
709709 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
710710 0 0
711711 0 0
712712 0.587785 0.809017i 0.587785 0.809017i
713713 0 0
714714 0 0
715715 0 0
716716 −0.587785 + 0.809017i −0.587785 + 0.809017i
717717 0 0
718718 1.61803i 1.61803i
719719 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 1.61803 1.61803
725725 0 0
726726 0 0
727727 1.17557 + 1.61803i 1.17557 + 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
734734 −0.951057 + 1.30902i −0.951057 + 1.30902i
735735 0 0
736736 −0.809017 + 0.587785i −0.809017 + 0.587785i
737737 −1.30902 0.951057i −1.30902 0.951057i
738738 0 0
739739 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
740740 0 0
741741 0 0
742742 −4.02874 + 1.30902i −4.02874 + 1.30902i
743743 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
744744 0 0
745745 0 0
746746 −1.53884 0.500000i −1.53884 0.500000i
747747 0 0
748748 0.951057 + 1.30902i 0.951057 + 1.30902i
749749 0 0
750750 0 0
751751 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
758758 −0.309017 0.951057i −0.309017 0.951057i
759759 0 0
760760 0 0
761761 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
762762 0 0
763763 0.951057 1.30902i 0.951057 1.30902i
764764 1.53884 + 2.11803i 1.53884 + 2.11803i
765765 0 0
766766 −0.809017 0.587785i −0.809017 0.587785i
767767 0 0
768768 0 0
769769 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
770770 0 0
771771 0 0
772772 −1.53884 0.500000i −1.53884 0.500000i
773773 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
774774 0 0
775775 0 0
776776 1.00000i 1.00000i
777777 0 0
778778 0 0
779779 −0.951057 0.309017i −0.951057 0.309017i
780780 0 0
781781 0.190983 + 0.587785i 0.190983 + 0.587785i
782782 1.61803 1.61803
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −2.48990 + 0.809017i −2.48990 + 0.809017i
795795 0 0
796796 0 0
797797 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
798798 0 0
799799 0.618034 0.618034
800800 0 0
801801 0 0
802802 −1.53884 2.11803i −1.53884 2.11803i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0.951057 0.309017i 0.951057 0.309017i
809809 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
810810 0 0
811811 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
812812 −1.30902 0.951057i −1.30902 0.951057i
813813 0 0
814814 0.809017 0.587785i 0.809017 0.587785i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
822822 0 0
823823 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
828828 0 0
829829 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.500000 + 1.53884i 0.500000 + 1.53884i
834834 0 0
835835 0 0
836836 −0.951057 1.30902i −0.951057 1.30902i
837837 0 0
838838 1.53884 2.11803i 1.53884 2.11803i
839839 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
840840 0 0
841841 −0.500000 0.363271i −0.500000 0.363271i
842842 0.500000 + 1.53884i 0.500000 + 1.53884i
843843 0 0
844844 0.809017 + 2.48990i 0.809017 + 2.48990i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0.618034i 0.618034i
852852 0 0
853853 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
854854 −2.48990 0.809017i −2.48990 0.809017i
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
864864 0 0
865865 0 0
866866 0.951057 1.30902i 0.951057 1.30902i
867867 0 0
868868 0 0
869869 −0.587785 + 0.190983i −0.587785 + 0.190983i
870870 0 0
871871 0 0
872872 0.309017 0.951057i 0.309017 0.951057i
873873 0 0
874874 −1.61803 −1.61803
875875 0 0
876876 0 0
877877 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
878878 −0.500000 + 1.53884i −0.500000 + 1.53884i
879879 0 0
880880 0 0
881881 1.90211 0.618034i 1.90211 0.618034i 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
882882 0 0
883883 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
884884 0 0
885885 0 0
886886 −1.30902 + 0.951057i −1.30902 + 0.951057i
887887 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
888888 0 0
889889 0.809017 0.587785i 0.809017 0.587785i
890890 0 0
891891 0 0
892892 2.48990 0.809017i 2.48990 0.809017i
893893 −0.618034 −0.618034
894894 0 0
895895 0 0
896896 −2.48990 0.809017i −2.48990 0.809017i
897897 0 0
898898 0.587785 + 0.809017i 0.587785 + 0.809017i
899899 0 0
900900 0 0
901901 −1.61803 −1.61803
902902 1.30902 0.951057i 1.30902 0.951057i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
908908 0.809017 + 2.48990i 0.809017 + 2.48990i
909909 0 0
910910 0 0
911911 −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
912912 0 0
913913 −0.951057 + 1.30902i −0.951057 + 1.30902i
914914 0.951057 + 1.30902i 0.951057 + 1.30902i
915915 0 0
916916 0 0
917917 −0.309017 0.951057i −0.309017 0.951057i
918918 0 0
919919 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
920920 0 0
921921 0 0
922922 1.53884 + 0.500000i 1.53884 + 0.500000i
923923 0 0
924924 0 0
925925 0 0
926926 1.61803i 1.61803i
927927 0 0
928928 0.587785 + 0.190983i 0.587785 + 0.190983i
929929 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
930930 0 0
931931 −0.500000 1.53884i −0.500000 1.53884i
932932 1.61803 1.61803
933933 0 0
934934 −0.809017 0.587785i −0.809017 0.587785i
935935 0 0
936936 0 0
937937 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
938938 −3.42705 2.48990i −3.42705 2.48990i
939939 0 0
940940 0 0
941941 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
942942 0 0
943943 1.00000i 1.00000i
944944 0 0
945945 0 0
946946 0 0
947947 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0.951057 + 1.30902i 0.951057 + 1.30902i
953953 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
954954 0 0
955955 0 0
956956 −2.48990 + 0.809017i −2.48990 + 0.809017i
957957 0 0
958958 0 0
959959 0.951057 1.30902i 0.951057 1.30902i
960960 0 0
961961 0.809017 0.587785i 0.809017 0.587785i
962962 0 0
963963 0 0
964964 −0.809017 + 0.587785i −0.809017 + 0.587785i
965965 0 0
966966 0 0
967967 −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
972972 0 0
973973 0.951057 + 1.30902i 0.951057 + 1.30902i
974974 1.61803i 1.61803i
975975 0 0
976976 0 0
977977 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
978978 0 0
979979 0.309017 0.951057i 0.309017 0.951057i
980980 0 0
981981 0 0
982982 0 0
983983 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
984984 0 0
985985 0 0
986986 −0.587785 0.809017i −0.587785 0.809017i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
992992 0 0
993993 0 0
994994 0.500000 + 1.53884i 0.500000 + 1.53884i
995995 0 0
996996 0 0
997997 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
998998 1.30902 0.951057i 1.30902 0.951057i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3375.1.m.b.2699.1 8
3.2 odd 2 3375.1.m.a.2699.1 8
5.2 odd 4 3375.1.o.a.2051.2 8
5.3 odd 4 675.1.o.a.161.1 8
5.4 even 2 3375.1.m.a.2699.2 8
15.2 even 4 3375.1.o.a.2051.1 8
15.8 even 4 675.1.o.a.161.2 yes 8
15.14 odd 2 inner 3375.1.m.b.2699.2 8
25.9 even 10 3375.1.m.a.674.2 8
25.12 odd 20 3375.1.o.a.701.1 8
25.13 odd 20 675.1.o.a.566.2 yes 8
25.16 even 5 inner 3375.1.m.b.674.1 8
45.13 odd 12 2025.1.y.a.836.2 16
45.23 even 12 2025.1.y.a.836.1 16
45.38 even 12 2025.1.y.a.1511.2 16
45.43 odd 12 2025.1.y.a.1511.1 16
75.38 even 20 675.1.o.a.566.1 yes 8
75.41 odd 10 3375.1.m.a.674.1 8
75.59 odd 10 inner 3375.1.m.b.674.2 8
75.62 even 20 3375.1.o.a.701.2 8
225.13 odd 60 2025.1.y.a.1241.2 16
225.38 even 60 2025.1.y.a.1916.2 16
225.88 odd 60 2025.1.y.a.1916.1 16
225.113 even 60 2025.1.y.a.1241.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.1.o.a.161.1 8 5.3 odd 4
675.1.o.a.161.2 yes 8 15.8 even 4
675.1.o.a.566.1 yes 8 75.38 even 20
675.1.o.a.566.2 yes 8 25.13 odd 20
2025.1.y.a.836.1 16 45.23 even 12
2025.1.y.a.836.2 16 45.13 odd 12
2025.1.y.a.1241.1 16 225.113 even 60
2025.1.y.a.1241.2 16 225.13 odd 60
2025.1.y.a.1511.1 16 45.43 odd 12
2025.1.y.a.1511.2 16 45.38 even 12
2025.1.y.a.1916.1 16 225.88 odd 60
2025.1.y.a.1916.2 16 225.38 even 60
3375.1.m.a.674.1 8 75.41 odd 10
3375.1.m.a.674.2 8 25.9 even 10
3375.1.m.a.2699.1 8 3.2 odd 2
3375.1.m.a.2699.2 8 5.4 even 2
3375.1.m.b.674.1 8 25.16 even 5 inner
3375.1.m.b.674.2 8 75.59 odd 10 inner
3375.1.m.b.2699.1 8 1.1 even 1 trivial
3375.1.m.b.2699.2 8 15.14 odd 2 inner
3375.1.o.a.701.1 8 25.12 odd 20
3375.1.o.a.701.2 8 75.62 even 20
3375.1.o.a.2051.1 8 15.2 even 4
3375.1.o.a.2051.2 8 5.2 odd 4