Properties

Label 3375.1.o.a.701.1
Level 33753375
Weight 11
Character 3375.701
Analytic conductor 1.6841.684
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3375,1,Mod(26,3375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3375, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3375.26");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3375=3353 3375 = 3^{3} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3375.o (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.684344417641.68434441764
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 675)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.31640625.2

Embedding invariants

Embedding label 701.1
Root 0.951057+0.309017i0.951057 + 0.309017i of defining polynomial
Character χ\chi == 3375.701
Dual form 3375.1.o.a.2051.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.951057+1.30902i)q2+(0.5000001.53884i)q4+1.61803q7+(0.951057+0.309017i)q8+(0.5877850.809017i)q11+(1.53884+2.11803i)q14+(0.9510570.309017i)q17+(0.309017+0.951057i)q19+(0.500000+1.53884i)q22+(0.587785+0.809017i)q23+(0.8090172.48990i)q28+(0.5877850.190983i)q29+1.00000iq32+(1.309020.951057i)q34+(0.500000+0.363271i)q37+(0.9510571.30902i)q38+(0.587785+0.809017i)q41+(1.538840.500000i)q44+(0.5000001.53884i)q46+(0.5877850.190983i)q47+1.61803q49+(1.538840.500000i)q53+(1.53884+0.500000i)q56+(0.309017+0.951057i)q58+(0.809017+0.587785i)q61+(1.309020.951057i)q64+(0.5000001.53884i)q67+1.61803iq68+(0.5877850.190983i)q711.00000iq74+1.61803q76+(0.9510571.30902i)q77+(0.1909830.587785i)q791.61803q82+(1.53884+0.500000i)q83+(0.8090170.587785i)q88+(0.5877850.809017i)q89+(1.53884+0.500000i)q92+(0.309017+0.951057i)q94+(0.3090170.951057i)q97+(1.53884+2.11803i)q98+O(q100)q+(-0.951057 + 1.30902i) q^{2} +(-0.500000 - 1.53884i) q^{4} +1.61803 q^{7} +(0.951057 + 0.309017i) q^{8} +(0.587785 - 0.809017i) q^{11} +(-1.53884 + 2.11803i) q^{14} +(-0.951057 - 0.309017i) q^{17} +(-0.309017 + 0.951057i) q^{19} +(0.500000 + 1.53884i) q^{22} +(-0.587785 + 0.809017i) q^{23} +(-0.809017 - 2.48990i) q^{28} +(0.587785 - 0.190983i) q^{29} +1.00000i q^{32} +(1.30902 - 0.951057i) q^{34} +(-0.500000 + 0.363271i) q^{37} +(-0.951057 - 1.30902i) q^{38} +(0.587785 + 0.809017i) q^{41} +(-1.53884 - 0.500000i) q^{44} +(-0.500000 - 1.53884i) q^{46} +(0.587785 - 0.190983i) q^{47} +1.61803 q^{49} +(1.53884 - 0.500000i) q^{53} +(1.53884 + 0.500000i) q^{56} +(-0.309017 + 0.951057i) q^{58} +(0.809017 + 0.587785i) q^{61} +(-1.30902 - 0.951057i) q^{64} +(0.500000 - 1.53884i) q^{67} +1.61803i q^{68} +(0.587785 - 0.190983i) q^{71} -1.00000i q^{74} +1.61803 q^{76} +(0.951057 - 1.30902i) q^{77} +(-0.190983 - 0.587785i) q^{79} -1.61803 q^{82} +(1.53884 + 0.500000i) q^{83} +(0.809017 - 0.587785i) q^{88} +(0.587785 - 0.809017i) q^{89} +(1.53884 + 0.500000i) q^{92} +(-0.309017 + 0.951057i) q^{94} +(-0.309017 - 0.951057i) q^{97} +(-1.53884 + 2.11803i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q4+4q7+2q19+4q222q28+6q344q374q46+4q49+2q58+2q616q64+4q67+4q766q794q82+2q88+2q94+2q97+O(q100) 8 q - 4 q^{4} + 4 q^{7} + 2 q^{19} + 4 q^{22} - 2 q^{28} + 6 q^{34} - 4 q^{37} - 4 q^{46} + 4 q^{49} + 2 q^{58} + 2 q^{61} - 6 q^{64} + 4 q^{67} + 4 q^{76} - 6 q^{79} - 4 q^{82} + 2 q^{88} + 2 q^{94} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3375Z)×\left(\mathbb{Z}/3375\mathbb{Z}\right)^\times.

nn 10011001 23772377
χ(n)\chi(n) 1-1 e(15)e\left(\frac{1}{5}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
33 0 0
44 −0.500000 1.53884i −0.500000 1.53884i
55 0 0
66 0 0
77 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
88 0.951057 + 0.309017i 0.951057 + 0.309017i
99 0 0
1010 0 0
1111 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
1212 0 0
1313 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
1414 −1.53884 + 2.11803i −1.53884 + 2.11803i
1515 0 0
1616 0 0
1717 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
1818 0 0
1919 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
2020 0 0
2121 0 0
2222 0.500000 + 1.53884i 0.500000 + 1.53884i
2323 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 −0.809017 2.48990i −0.809017 2.48990i
2929 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
3030 0 0
3131 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
3232 1.00000i 1.00000i
3333 0 0
3434 1.30902 0.951057i 1.30902 0.951057i
3535 0 0
3636 0 0
3737 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3838 −0.951057 1.30902i −0.951057 1.30902i
3939 0 0
4040 0 0
4141 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 −1.53884 0.500000i −1.53884 0.500000i
4545 0 0
4646 −0.500000 1.53884i −0.500000 1.53884i
4747 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
4848 0 0
4949 1.61803 1.61803
5050 0 0
5151 0 0
5252 0 0
5353 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
5454 0 0
5555 0 0
5656 1.53884 + 0.500000i 1.53884 + 0.500000i
5757 0 0
5858 −0.309017 + 0.951057i −0.309017 + 0.951057i
5959 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
6060 0 0
6161 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
6262 0 0
6363 0 0
6464 −1.30902 0.951057i −1.30902 0.951057i
6565 0 0
6666 0 0
6767 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
6868 1.61803i 1.61803i
6969 0 0
7070 0 0
7171 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
7272 0 0
7373 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7474 1.00000i 1.00000i
7575 0 0
7676 1.61803 1.61803
7777 0.951057 1.30902i 0.951057 1.30902i
7878 0 0
7979 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
8080 0 0
8181 0 0
8282 −1.61803 −1.61803
8383 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0.809017 0.587785i 0.809017 0.587785i
8989 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
9090 0 0
9191 0 0
9292 1.53884 + 0.500000i 1.53884 + 0.500000i
9393 0 0
9494 −0.309017 + 0.951057i −0.309017 + 0.951057i
9595 0 0
9696 0 0
9797 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
9898 −1.53884 + 2.11803i −1.53884 + 2.11803i
9999 0 0
100100 0 0
101101 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0 0
103103 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
104104 0 0
105105 0 0
106106 −0.809017 + 2.48990i −0.809017 + 2.48990i
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
114114 0 0
115115 0 0
116116 −0.587785 0.809017i −0.587785 0.809017i
117117 0 0
118118 0 0
119119 −1.53884 0.500000i −1.53884 0.500000i
120120 0 0
121121 0 0
122122 −1.53884 + 0.500000i −1.53884 + 0.500000i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
128128 1.53884 0.500000i 1.53884 0.500000i
129129 0 0
130130 0 0
131131 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
132132 0 0
133133 −0.500000 + 1.53884i −0.500000 + 1.53884i
134134 1.53884 + 2.11803i 1.53884 + 2.11803i
135135 0 0
136136 −0.809017 0.587785i −0.809017 0.587785i
137137 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
138138 0 0
139139 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
140140 0 0
141141 0 0
142142 −0.309017 + 0.951057i −0.309017 + 0.951057i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.809017 + 0.587785i 0.809017 + 0.587785i
149149 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 −0.587785 + 0.809017i −0.587785 + 0.809017i
153153 0 0
154154 0.809017 + 2.48990i 0.809017 + 2.48990i
155155 0 0
156156 0 0
157157 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
158158 0.951057 + 0.309017i 0.951057 + 0.309017i
159159 0 0
160160 0 0
161161 −0.951057 + 1.30902i −0.951057 + 1.30902i
162162 0 0
163163 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
164164 0.951057 1.30902i 0.951057 1.30902i
165165 0 0
166166 −2.11803 + 1.53884i −2.11803 + 1.53884i
167167 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
168168 0 0
169169 −0.309017 + 0.951057i −0.309017 + 0.951057i
170170 0 0
171171 0 0
172172 0 0
173173 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0.500000 + 1.53884i 0.500000 + 1.53884i
179179 −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
182182 0 0
183183 0 0
184184 −0.809017 + 0.587785i −0.809017 + 0.587785i
185185 0 0
186186 0 0
187187 −0.809017 + 0.587785i −0.809017 + 0.587785i
188188 −0.587785 0.809017i −0.587785 0.809017i
189189 0 0
190190 0 0
191191 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 1.53884 + 0.500000i 1.53884 + 0.500000i
195195 0 0
196196 −0.809017 2.48990i −0.809017 2.48990i
197197 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 −1.30902 0.951057i −1.30902 0.951057i
203203 0.951057 0.309017i 0.951057 0.309017i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0.587785 + 0.809017i 0.587785 + 0.809017i
210210 0 0
211211 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
212212 −1.53884 2.11803i −1.53884 2.11803i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 1.61803i 1.61803i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
224224 1.61803i 1.61803i
225225 0 0
226226 0 0
227227 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
228228 0 0
229229 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
230230 0 0
231231 0 0
232232 0.618034 0.618034
233233 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 2.11803 1.53884i 2.11803 1.53884i
239239 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
240240 0 0
241241 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
242242 0 0
243243 0 0
244244 0.500000 1.53884i 0.500000 1.53884i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
252252 0 0
253253 0.309017 + 0.951057i 0.309017 + 0.951057i
254254 0.951057 0.309017i 0.951057 0.309017i
255255 0 0
256256 −0.309017 + 0.951057i −0.309017 + 0.951057i
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 −0.809017 + 0.587785i −0.809017 + 0.587785i
260260 0 0
261261 0 0
262262 0.809017 0.587785i 0.809017 0.587785i
263263 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
264264 0 0
265265 0 0
266266 −1.53884 2.11803i −1.53884 2.11803i
267267 0 0
268268 −2.61803 −2.61803
269269 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
270270 0 0
271271 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
272272 0 0
273273 0 0
274274 −1.61803 −1.61803
275275 0 0
276276 0 0
277277 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
278278 −1.53884 + 0.500000i −1.53884 + 0.500000i
279279 0 0
280280 0 0
281281 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
282282 0 0
283283 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
284284 −0.587785 0.809017i −0.587785 0.809017i
285285 0 0
286286 0 0
287287 0.951057 + 1.30902i 0.951057 + 1.30902i
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
294294 0 0
295295 0 0
296296 −0.587785 + 0.190983i −0.587785 + 0.190983i
297297 0 0
298298 2.11803 + 1.53884i 2.11803 + 1.53884i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
308308 −2.48990 0.809017i −2.48990 0.809017i
309309 0 0
310310 0 0
311311 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
312312 0 0
313313 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
314314 −0.587785 + 0.809017i −0.587785 + 0.809017i
315315 0 0
316316 −0.809017 + 0.587785i −0.809017 + 0.587785i
317317 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
318318 0 0
319319 0.190983 0.587785i 0.190983 0.587785i
320320 0 0
321321 0 0
322322 −0.809017 2.48990i −0.809017 2.48990i
323323 0.587785 0.809017i 0.587785 0.809017i
324324 0 0
325325 0 0
326326 1.61803i 1.61803i
327327 0 0
328328 0.309017 + 0.951057i 0.309017 + 0.951057i
329329 0.951057 0.309017i 0.951057 0.309017i
330330 0 0
331331 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
332332 2.61803i 2.61803i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
338338 −0.951057 1.30902i −0.951057 1.30902i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0 0
346346 −0.309017 0.951057i −0.309017 0.951057i
347347 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0.809017 + 0.587785i 0.809017 + 0.587785i
353353 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
354354 0 0
355355 0 0
356356 −1.53884 0.500000i −1.53884 0.500000i
357357 0 0
358358 0.309017 0.951057i 0.309017 0.951057i
359359 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
360360 0 0
361361 0 0
362362 0.951057 + 1.30902i 0.951057 + 1.30902i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
368368 0 0
369369 0 0
370370 0 0
371371 2.48990 0.809017i 2.48990 0.809017i
372372 0 0
373373 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
374374 1.61803i 1.61803i
375375 0 0
376376 0.618034 0.618034
377377 0 0
378378 0 0
379379 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
380380 0 0
381381 0 0
382382 −2.61803 −2.61803
383383 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0.951057 1.30902i 0.951057 1.30902i
387387 0 0
388388 −1.30902 + 0.951057i −1.30902 + 0.951057i
389389 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
390390 0 0
391391 0.809017 0.587785i 0.809017 0.587785i
392392 1.53884 + 0.500000i 1.53884 + 0.500000i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
402402 0 0
403403 0 0
404404 1.53884 0.500000i 1.53884 0.500000i
405405 0 0
406406 −0.500000 + 1.53884i −0.500000 + 1.53884i
407407 0.618034i 0.618034i
408408 0 0
409409 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 −1.61803 −1.61803
419419 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
420420 0 0
421421 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
422422 2.48990 0.809017i 2.48990 0.809017i
423423 0 0
424424 1.61803 1.61803
425425 0 0
426426 0 0
427427 1.30902 + 0.951057i 1.30902 + 0.951057i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
432432 0 0
433433 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
434434 0 0
435435 0 0
436436 1.30902 + 0.951057i 1.30902 + 0.951057i
437437 −0.587785 0.809017i −0.587785 0.809017i
438438 0 0
439439 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
440440 0 0
441441 0 0
442442 0 0
443443 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
444444 0 0
445445 0 0
446446 −2.48990 + 0.809017i −2.48990 + 0.809017i
447447 0 0
448448 −2.11803 1.53884i −2.11803 1.53884i
449449 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
450450 0 0
451451 1.00000 1.00000
452452 0 0
453453 0 0
454454 0.809017 + 2.48990i 0.809017 + 2.48990i
455455 0 0
456456 0 0
457457 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 0 0
459459 0 0
460460 0 0
461461 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
462462 0 0
463463 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
464464 0 0
465465 0 0
466466 1.30902 0.951057i 1.30902 0.951057i
467467 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
468468 0 0
469469 0.809017 2.48990i 0.809017 2.48990i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 2.61803i 2.61803i
477477 0 0
478478 −0.809017 2.48990i −0.809017 2.48990i
479479 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
480480 0 0
481481 0 0
482482 1.00000i 1.00000i
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
488488 0.587785 + 0.809017i 0.587785 + 0.809017i
489489 0 0
490490 0 0
491491 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
492492 0 0
493493 −0.618034 −0.618034
494494 0 0
495495 0 0
496496 0 0
497497 0.951057 0.309017i 0.951057 0.309017i
498498 0 0
499499 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 0 0
502502 1.30902 + 0.951057i 1.30902 + 0.951057i
503503 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
504504 0 0
505505 0 0
506506 −1.53884 0.500000i −1.53884 0.500000i
507507 0 0
508508 −0.309017 + 0.951057i −0.309017 + 0.951057i
509509 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0.190983 0.587785i 0.190983 0.587785i
518518 1.61803i 1.61803i
519519 0 0
520520 0 0
521521 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
522522 0 0
523523 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
524524 1.00000i 1.00000i
525525 0 0
526526 1.61803 1.61803
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 2.61803 2.61803
533533 0 0
534534 0 0
535535 0 0
536536 0.951057 1.30902i 0.951057 1.30902i
537537 0 0
538538 1.30902 0.951057i 1.30902 0.951057i
539539 0.951057 1.30902i 0.951057 1.30902i
540540 0 0
541541 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
542542 −1.53884 0.500000i −1.53884 0.500000i
543543 0 0
544544 0.309017 0.951057i 0.309017 0.951057i
545545 0 0
546546 0 0
547547 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
548548 0.951057 1.30902i 0.951057 1.30902i
549549 0 0
550550 0 0
551551 0.618034i 0.618034i
552552 0 0
553553 −0.309017 0.951057i −0.309017 0.951057i
554554 0 0
555555 0 0
556556 0.500000 1.53884i 0.500000 1.53884i
557557 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 1.30902 0.951057i 1.30902 0.951057i
563563 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0.951057 + 1.30902i 0.951057 + 1.30902i
567567 0 0
568568 0.618034 0.618034
569569 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
570570 0 0
571571 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
572572 0 0
573573 0 0
574574 −2.61803 −2.61803
575575 0 0
576576 0 0
577577 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
578578 0 0
579579 0 0
580580 0 0
581581 2.48990 + 0.809017i 2.48990 + 0.809017i
582582 0 0
583583 0.500000 1.53884i 0.500000 1.53884i
584584 0 0
585585 0 0
586586 1.30902 + 0.951057i 1.30902 + 0.951057i
587587 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 0 0
596596 −2.48990 + 0.809017i −2.48990 + 0.809017i
597597 0 0
598598 0 0
599599 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 −0.951057 0.309017i −0.951057 0.309017i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
614614 0.587785 0.809017i 0.587785 0.809017i
615615 0 0
616616 1.30902 0.951057i 1.30902 0.951057i
617617 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
618618 0 0
619619 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
620620 0 0
621621 0 0
622622 −0.500000 1.53884i −0.500000 1.53884i
623623 0.951057 1.30902i 0.951057 1.30902i
624624 0 0
625625 0 0
626626 2.61803i 2.61803i
627627 0 0
628628 −0.309017 0.951057i −0.309017 0.951057i
629629 0.587785 0.190983i 0.587785 0.190983i
630630 0 0
631631 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
632632 0.618034i 0.618034i
633633 0 0
634634 2.11803 1.53884i 2.11803 1.53884i
635635 0 0
636636 0 0
637637 0 0
638638 0.587785 + 0.809017i 0.587785 + 0.809017i
639639 0 0
640640 0 0
641641 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
642642 0 0
643643 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
644644 2.48990 + 0.809017i 2.48990 + 0.809017i
645645 0 0
646646 0.500000 + 1.53884i 0.500000 + 1.53884i
647647 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 1.30902 + 0.951057i 1.30902 + 0.951057i
653653 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 −0.500000 + 1.53884i −0.500000 + 1.53884i
659659 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
660660 0 0
661661 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
662662 0 0
663663 0 0
664664 1.30902 + 0.951057i 1.30902 + 0.951057i
665665 0 0
666666 0 0
667667 −0.190983 + 0.587785i −0.190983 + 0.587785i
668668 0 0
669669 0 0
670670 0 0
671671 0.951057 0.309017i 0.951057 0.309017i
672672 0 0
673673 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
674674 0 0
675675 0 0
676676 1.61803 1.61803
677677 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
678678 0 0
679679 −0.500000 1.53884i −0.500000 1.53884i
680680 0 0
681681 0 0
682682 0 0
683683 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
684684 0 0
685685 0 0
686686 −0.951057 + 1.30902i −0.951057 + 1.30902i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
692692 0.951057 + 0.309017i 0.951057 + 0.309017i
693693 0 0
694694 0.500000 1.53884i 0.500000 1.53884i
695695 0 0
696696 0 0
697697 −0.309017 0.951057i −0.309017 0.951057i
698698 0 0
699699 0 0
700700 0 0
701701 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
702702 0 0
703703 −0.190983 0.587785i −0.190983 0.587785i
704704 −1.53884 + 0.500000i −1.53884 + 0.500000i
705705 0 0
706706 0.809017 2.48990i 0.809017 2.48990i
707707 1.61803i 1.61803i
708708 0 0
709709 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
710710 0 0
711711 0 0
712712 0.809017 0.587785i 0.809017 0.587785i
713713 0 0
714714 0 0
715715 0 0
716716 0.587785 + 0.809017i 0.587785 + 0.809017i
717717 0 0
718718 1.61803 1.61803
719719 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −1.61803 −1.61803
725725 0 0
726726 0 0
727727 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
734734 −0.951057 1.30902i −0.951057 1.30902i
735735 0 0
736736 −0.809017 0.587785i −0.809017 0.587785i
737737 −0.951057 1.30902i −0.951057 1.30902i
738738 0 0
739739 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
740740 0 0
741741 0 0
742742 −1.30902 + 4.02874i −1.30902 + 4.02874i
743743 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0 0
745745 0 0
746746 1.53884 0.500000i 1.53884 0.500000i
747747 0 0
748748 1.30902 + 0.951057i 1.30902 + 0.951057i
749749 0 0
750750 0 0
751751 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0.951057 + 0.309017i 0.951057 + 0.309017i
759759 0 0
760760 0 0
761761 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
762762 0 0
763763 −1.30902 + 0.951057i −1.30902 + 0.951057i
764764 1.53884 2.11803i 1.53884 2.11803i
765765 0 0
766766 −0.809017 + 0.587785i −0.809017 + 0.587785i
767767 0 0
768768 0 0
769769 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
770770 0 0
771771 0 0
772772 0.500000 + 1.53884i 0.500000 + 1.53884i
773773 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
774774 0 0
775775 0 0
776776 1.00000i 1.00000i
777777 0 0
778778 0 0
779779 −0.951057 + 0.309017i −0.951057 + 0.309017i
780780 0 0
781781 0.190983 0.587785i 0.190983 0.587785i
782782 1.61803i 1.61803i
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −2.48990 0.809017i −2.48990 0.809017i
795795 0 0
796796 0 0
797797 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
798798 0 0
799799 −0.618034 −0.618034
800800 0 0
801801 0 0
802802 2.11803 + 1.53884i 2.11803 + 1.53884i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −0.309017 + 0.951057i −0.309017 + 0.951057i
809809 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
810810 0 0
811811 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
812812 −0.951057 1.30902i −0.951057 1.30902i
813813 0 0
814814 −0.809017 0.587785i −0.809017 0.587785i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
822822 0 0
823823 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
828828 0 0
829829 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
830830 0 0
831831 0 0
832832 0 0
833833 −1.53884 0.500000i −1.53884 0.500000i
834834 0 0
835835 0 0
836836 0.951057 1.30902i 0.951057 1.30902i
837837 0 0
838838 −2.11803 + 1.53884i −2.11803 + 1.53884i
839839 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
840840 0 0
841841 −0.500000 + 0.363271i −0.500000 + 0.363271i
842842 1.53884 + 0.500000i 1.53884 + 0.500000i
843843 0 0
844844 −0.809017 + 2.48990i −0.809017 + 2.48990i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0.618034i 0.618034i
852852 0 0
853853 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
854854 −2.48990 + 0.809017i −2.48990 + 0.809017i
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
864864 0 0
865865 0 0
866866 −0.951057 1.30902i −0.951057 1.30902i
867867 0 0
868868 0 0
869869 −0.587785 0.190983i −0.587785 0.190983i
870870 0 0
871871 0 0
872872 −0.951057 + 0.309017i −0.951057 + 0.309017i
873873 0 0
874874 1.61803 1.61803
875875 0 0
876876 0 0
877877 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
878878 −1.53884 + 0.500000i −1.53884 + 0.500000i
879879 0 0
880880 0 0
881881 −1.90211 0.618034i −1.90211 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 0.309017i 0.900000π-0.900000\pi
882882 0 0
883883 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
884884 0 0
885885 0 0
886886 −1.30902 0.951057i −1.30902 0.951057i
887887 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
888888 0 0
889889 −0.809017 0.587785i −0.809017 0.587785i
890890 0 0
891891 0 0
892892 0.809017 2.48990i 0.809017 2.48990i
893893 0.618034i 0.618034i
894894 0 0
895895 0 0
896896 2.48990 0.809017i 2.48990 0.809017i
897897 0 0
898898 0.809017 + 0.587785i 0.809017 + 0.587785i
899899 0 0
900900 0 0
901901 −1.61803 −1.61803
902902 −0.951057 + 1.30902i −0.951057 + 1.30902i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
908908 −2.48990 0.809017i −2.48990 0.809017i
909909 0 0
910910 0 0
911911 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
912912 0 0
913913 1.30902 0.951057i 1.30902 0.951057i
914914 0.951057 1.30902i 0.951057 1.30902i
915915 0 0
916916 0 0
917917 −0.951057 0.309017i −0.951057 0.309017i
918918 0 0
919919 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
920920 0 0
921921 0 0
922922 −0.500000 1.53884i −0.500000 1.53884i
923923 0 0
924924 0 0
925925 0 0
926926 1.61803i 1.61803i
927927 0 0
928928 0.190983 + 0.587785i 0.190983 + 0.587785i
929929 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
930930 0 0
931931 −0.500000 + 1.53884i −0.500000 + 1.53884i
932932 1.61803i 1.61803i
933933 0 0
934934 0.809017 0.587785i 0.809017 0.587785i
935935 0 0
936936 0 0
937937 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
938938 2.48990 + 3.42705i 2.48990 + 3.42705i
939939 0 0
940940 0 0
941941 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
942942 0 0
943943 −1.00000 −1.00000
944944 0 0
945945 0 0
946946 0 0
947947 −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 −1.30902 0.951057i −1.30902 0.951057i
953953 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
954954 0 0
955955 0 0
956956 2.48990 + 0.809017i 2.48990 + 0.809017i
957957 0 0
958958 0 0
959959 0.951057 + 1.30902i 0.951057 + 1.30902i
960960 0 0
961961 0.809017 + 0.587785i 0.809017 + 0.587785i
962962 0 0
963963 0 0
964964 0.809017 + 0.587785i 0.809017 + 0.587785i
965965 0 0
966966 0 0
967967 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
972972 0 0
973973 1.30902 + 0.951057i 1.30902 + 0.951057i
974974 1.61803i 1.61803i
975975 0 0
976976 0 0
977977 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
978978 0 0
979979 −0.309017 0.951057i −0.309017 0.951057i
980980 0 0
981981 0 0
982982 0 0
983983 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
984984 0 0
985985 0 0
986986 0.587785 0.809017i 0.587785 0.809017i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
992992 0 0
993993 0 0
994994 −0.500000 + 1.53884i −0.500000 + 1.53884i
995995 0 0
996996 0 0
997997 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
998998 0.951057 1.30902i 0.951057 1.30902i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3375.1.o.a.701.1 8
3.2 odd 2 inner 3375.1.o.a.701.2 8
5.2 odd 4 3375.1.m.a.674.2 8
5.3 odd 4 3375.1.m.b.674.1 8
5.4 even 2 675.1.o.a.566.2 yes 8
15.2 even 4 3375.1.m.b.674.2 8
15.8 even 4 3375.1.m.a.674.1 8
15.14 odd 2 675.1.o.a.566.1 yes 8
25.2 odd 20 3375.1.m.a.2699.2 8
25.11 even 5 inner 3375.1.o.a.2051.2 8
25.14 even 10 675.1.o.a.161.1 8
25.23 odd 20 3375.1.m.b.2699.1 8
45.4 even 6 2025.1.y.a.1241.2 16
45.14 odd 6 2025.1.y.a.1241.1 16
45.29 odd 6 2025.1.y.a.1916.2 16
45.34 even 6 2025.1.y.a.1916.1 16
75.2 even 20 3375.1.m.b.2699.2 8
75.11 odd 10 inner 3375.1.o.a.2051.1 8
75.14 odd 10 675.1.o.a.161.2 yes 8
75.23 even 20 3375.1.m.a.2699.1 8
225.14 odd 30 2025.1.y.a.836.1 16
225.139 even 30 2025.1.y.a.836.2 16
225.164 odd 30 2025.1.y.a.1511.2 16
225.214 even 30 2025.1.y.a.1511.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.1.o.a.161.1 8 25.14 even 10
675.1.o.a.161.2 yes 8 75.14 odd 10
675.1.o.a.566.1 yes 8 15.14 odd 2
675.1.o.a.566.2 yes 8 5.4 even 2
2025.1.y.a.836.1 16 225.14 odd 30
2025.1.y.a.836.2 16 225.139 even 30
2025.1.y.a.1241.1 16 45.14 odd 6
2025.1.y.a.1241.2 16 45.4 even 6
2025.1.y.a.1511.1 16 225.214 even 30
2025.1.y.a.1511.2 16 225.164 odd 30
2025.1.y.a.1916.1 16 45.34 even 6
2025.1.y.a.1916.2 16 45.29 odd 6
3375.1.m.a.674.1 8 15.8 even 4
3375.1.m.a.674.2 8 5.2 odd 4
3375.1.m.a.2699.1 8 75.23 even 20
3375.1.m.a.2699.2 8 25.2 odd 20
3375.1.m.b.674.1 8 5.3 odd 4
3375.1.m.b.674.2 8 15.2 even 4
3375.1.m.b.2699.1 8 25.23 odd 20
3375.1.m.b.2699.2 8 75.2 even 20
3375.1.o.a.701.1 8 1.1 even 1 trivial
3375.1.o.a.701.2 8 3.2 odd 2 inner
3375.1.o.a.2051.1 8 75.11 odd 10 inner
3375.1.o.a.2051.2 8 25.11 even 5 inner