Properties

Label 338.4.a.e
Level 338338
Weight 44
Character orbit 338.a
Self dual yes
Analytic conductor 19.94319.943
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.942645581919.9426455819
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 26)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+3q3+4q411q5+6q619q7+8q818q922q10+38q11+12q1238q1433q15+16q1651q1736q1890q1944q20+684q99+O(q100) q + 2 q^{2} + 3 q^{3} + 4 q^{4} - 11 q^{5} + 6 q^{6} - 19 q^{7} + 8 q^{8} - 18 q^{9} - 22 q^{10} + 38 q^{11} + 12 q^{12} - 38 q^{14} - 33 q^{15} + 16 q^{16} - 51 q^{17} - 36 q^{18} - 90 q^{19} - 44 q^{20}+ \cdots - 684 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 3.00000 4.00000 −11.0000 6.00000 −19.0000 8.00000 −18.0000 −22.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.a.e 1
13.b even 2 1 26.4.a.a 1
13.c even 3 2 338.4.c.b 2
13.d odd 4 2 338.4.b.c 2
13.e even 6 2 338.4.c.f 2
13.f odd 12 4 338.4.e.b 4
39.d odd 2 1 234.4.a.g 1
52.b odd 2 1 208.4.a.c 1
65.d even 2 1 650.4.a.f 1
65.h odd 4 2 650.4.b.b 2
91.b odd 2 1 1274.4.a.b 1
104.e even 2 1 832.4.a.e 1
104.h odd 2 1 832.4.a.m 1
156.h even 2 1 1872.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.a 1 13.b even 2 1
208.4.a.c 1 52.b odd 2 1
234.4.a.g 1 39.d odd 2 1
338.4.a.e 1 1.a even 1 1 trivial
338.4.b.c 2 13.d odd 4 2
338.4.c.b 2 13.c even 3 2
338.4.c.f 2 13.e even 6 2
338.4.e.b 4 13.f odd 12 4
650.4.a.f 1 65.d even 2 1
650.4.b.b 2 65.h odd 4 2
832.4.a.e 1 104.e even 2 1
832.4.a.m 1 104.h odd 2 1
1274.4.a.b 1 91.b odd 2 1
1872.4.a.c 1 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(338))S_{4}^{\mathrm{new}}(\Gamma_0(338)):

T33 T_{3} - 3 Copy content Toggle raw display
T5+11 T_{5} + 11 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T+11 T + 11 Copy content Toggle raw display
77 T+19 T + 19 Copy content Toggle raw display
1111 T38 T - 38 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T+51 T + 51 Copy content Toggle raw display
1919 T+90 T + 90 Copy content Toggle raw display
2323 T+52 T + 52 Copy content Toggle raw display
2929 T+190 T + 190 Copy content Toggle raw display
3131 T+292 T + 292 Copy content Toggle raw display
3737 T441 T - 441 Copy content Toggle raw display
4141 T+312 T + 312 Copy content Toggle raw display
4343 T373 T - 373 Copy content Toggle raw display
4747 T41 T - 41 Copy content Toggle raw display
5353 T468 T - 468 Copy content Toggle raw display
5959 T+530 T + 530 Copy content Toggle raw display
6161 T592 T - 592 Copy content Toggle raw display
6767 T206 T - 206 Copy content Toggle raw display
7171 T863 T - 863 Copy content Toggle raw display
7373 T322 T - 322 Copy content Toggle raw display
7979 T+460 T + 460 Copy content Toggle raw display
8383 T+528 T + 528 Copy content Toggle raw display
8989 T+870 T + 870 Copy content Toggle raw display
9797 T346 T - 346 Copy content Toggle raw display
show more
show less