Properties

Label 338.4.c.k.191.2
Level $338$
Weight $4$
Character 338.191
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(191,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.2
Root \(0.900969 - 1.56052i\) of defining polynomial
Character \(\chi\) \(=\) 338.191
Dual form 338.4.c.k.315.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(1.83244 - 3.17387i) q^{3} +(-2.00000 - 3.46410i) q^{4} +8.53079 q^{5} +(3.66487 + 6.34775i) q^{6} +(2.10052 + 3.63821i) q^{7} +8.00000 q^{8} +(6.78435 + 11.7508i) q^{9} +(-8.53079 + 14.7758i) q^{10} +(32.6863 - 56.6143i) q^{11} -14.6595 q^{12} -8.40209 q^{14} +(15.6321 - 27.0757i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(13.4510 + 23.2977i) q^{17} -27.1374 q^{18} +(6.68648 + 11.5813i) q^{19} +(-17.0616 - 29.5515i) q^{20} +15.3963 q^{21} +(65.3726 + 113.229i) q^{22} +(-79.9645 + 138.503i) q^{23} +(14.6595 - 25.3910i) q^{24} -52.2255 q^{25} +148.679 q^{27} +(8.40209 - 14.5529i) q^{28} +(150.644 - 260.923i) q^{29} +(31.2643 + 54.1513i) q^{30} -73.0232 q^{31} +(-16.0000 - 27.7128i) q^{32} +(-119.791 - 207.484i) q^{33} -53.8038 q^{34} +(17.9191 + 31.0368i) q^{35} +(27.1374 - 47.0033i) q^{36} +(59.3904 - 102.867i) q^{37} -26.7459 q^{38} +68.2464 q^{40} +(216.451 - 374.903i) q^{41} +(-15.3963 + 26.6672i) q^{42} +(178.254 + 308.745i) q^{43} -261.490 q^{44} +(57.8759 + 100.244i) q^{45} +(-159.929 - 277.005i) q^{46} +588.614 q^{47} +(29.3190 + 50.7820i) q^{48} +(162.676 - 281.762i) q^{49} +(52.2255 - 90.4573i) q^{50} +98.5921 q^{51} -269.462 q^{53} +(-148.679 + 257.520i) q^{54} +(278.840 - 482.965i) q^{55} +(16.8042 + 29.1057i) q^{56} +49.0102 q^{57} +(301.288 + 521.846i) q^{58} +(-115.170 - 199.480i) q^{59} -125.057 q^{60} +(190.408 + 329.796i) q^{61} +(73.0232 - 126.480i) q^{62} +(-28.5014 + 49.3658i) q^{63} +64.0000 q^{64} +479.164 q^{66} +(-217.924 + 377.456i) q^{67} +(53.8038 - 93.1909i) q^{68} +(293.060 + 507.595i) q^{69} -71.6765 q^{70} +(-32.9811 - 57.1249i) q^{71} +(54.2748 + 94.0067i) q^{72} +885.517 q^{73} +(118.781 + 205.735i) q^{74} +(-95.7000 + 165.757i) q^{75} +(26.7459 - 46.3253i) q^{76} +274.633 q^{77} -385.463 q^{79} +(-68.2464 + 118.206i) q^{80} +(89.2679 - 154.616i) q^{81} +(432.901 + 749.807i) q^{82} -254.207 q^{83} +(-30.7926 - 53.3344i) q^{84} +(114.747 + 198.748i) q^{85} -713.016 q^{86} +(-552.091 - 956.250i) q^{87} +(261.490 - 452.914i) q^{88} +(186.306 - 322.692i) q^{89} -231.504 q^{90} +639.716 q^{92} +(-133.810 + 231.766i) q^{93} +(-588.614 + 1019.51i) q^{94} +(57.0410 + 98.7979i) q^{95} -117.276 q^{96} +(-656.942 - 1137.86i) q^{97} +(325.351 + 563.525i) q^{98} +887.020 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 12 q^{3} - 12 q^{4} - 24 q^{5} + 24 q^{6} - 27 q^{7} + 48 q^{8} - 9 q^{9} + 24 q^{10} + 82 q^{11} - 96 q^{12} + 108 q^{14} - 90 q^{15} - 48 q^{16} + 90 q^{17} + 36 q^{18} + 130 q^{19} + 48 q^{20}+ \cdots + 4114 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 1.83244 3.17387i 0.352653 0.610812i −0.634061 0.773283i \(-0.718613\pi\)
0.986713 + 0.162471i \(0.0519464\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 8.53079 0.763017 0.381509 0.924365i \(-0.375405\pi\)
0.381509 + 0.924365i \(0.375405\pi\)
\(6\) 3.66487 + 6.34775i 0.249363 + 0.431910i
\(7\) 2.10052 + 3.63821i 0.113418 + 0.196445i 0.917146 0.398551i \(-0.130487\pi\)
−0.803729 + 0.594996i \(0.797154\pi\)
\(8\) 8.00000 0.353553
\(9\) 6.78435 + 11.7508i 0.251272 + 0.435216i
\(10\) −8.53079 + 14.7758i −0.269767 + 0.467251i
\(11\) 32.6863 56.6143i 0.895935 1.55180i 0.0632915 0.997995i \(-0.479840\pi\)
0.832643 0.553810i \(-0.186826\pi\)
\(12\) −14.6595 −0.352653
\(13\) 0 0
\(14\) −8.40209 −0.160397
\(15\) 15.6321 27.0757i 0.269080 0.466061i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 13.4510 + 23.2977i 0.191902 + 0.332384i 0.945881 0.324515i \(-0.105201\pi\)
−0.753979 + 0.656899i \(0.771868\pi\)
\(18\) −27.1374 −0.355352
\(19\) 6.68648 + 11.5813i 0.0807360 + 0.139839i 0.903566 0.428448i \(-0.140940\pi\)
−0.822830 + 0.568287i \(0.807606\pi\)
\(20\) −17.0616 29.5515i −0.190754 0.330396i
\(21\) 15.3963 0.159988
\(22\) 65.3726 + 113.229i 0.633522 + 1.09729i
\(23\) −79.9645 + 138.503i −0.724946 + 1.25564i 0.234050 + 0.972225i \(0.424802\pi\)
−0.958996 + 0.283419i \(0.908531\pi\)
\(24\) 14.6595 25.3910i 0.124682 0.215955i
\(25\) −52.2255 −0.417804
\(26\) 0 0
\(27\) 148.679 1.05975
\(28\) 8.40209 14.5529i 0.0567088 0.0982225i
\(29\) 150.644 260.923i 0.964616 1.67076i 0.253973 0.967211i \(-0.418262\pi\)
0.710643 0.703553i \(-0.248404\pi\)
\(30\) 31.2643 + 54.1513i 0.190268 + 0.329555i
\(31\) −73.0232 −0.423076 −0.211538 0.977370i \(-0.567847\pi\)
−0.211538 + 0.977370i \(0.567847\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) −119.791 207.484i −0.631908 1.09450i
\(34\) −53.8038 −0.271390
\(35\) 17.9191 + 31.0368i 0.0865396 + 0.149891i
\(36\) 27.1374 47.0033i 0.125636 0.217608i
\(37\) 59.3904 102.867i 0.263885 0.457061i −0.703386 0.710808i \(-0.748330\pi\)
0.967271 + 0.253746i \(0.0816629\pi\)
\(38\) −26.7459 −0.114178
\(39\) 0 0
\(40\) 68.2464 0.269767
\(41\) 216.451 374.903i 0.824486 1.42805i −0.0778262 0.996967i \(-0.524798\pi\)
0.902312 0.431084i \(-0.141869\pi\)
\(42\) −15.3963 + 26.6672i −0.0565643 + 0.0979723i
\(43\) 178.254 + 308.745i 0.632174 + 1.09496i 0.987106 + 0.160065i \(0.0511704\pi\)
−0.354933 + 0.934892i \(0.615496\pi\)
\(44\) −261.490 −0.895935
\(45\) 57.8759 + 100.244i 0.191725 + 0.332078i
\(46\) −159.929 277.005i −0.512614 0.887874i
\(47\) 588.614 1.82677 0.913385 0.407096i \(-0.133459\pi\)
0.913385 + 0.407096i \(0.133459\pi\)
\(48\) 29.3190 + 50.7820i 0.0881632 + 0.152703i
\(49\) 162.676 281.762i 0.474273 0.821465i
\(50\) 52.2255 90.4573i 0.147716 0.255852i
\(51\) 98.5921 0.270699
\(52\) 0 0
\(53\) −269.462 −0.698366 −0.349183 0.937054i \(-0.613541\pi\)
−0.349183 + 0.937054i \(0.613541\pi\)
\(54\) −148.679 + 257.520i −0.374679 + 0.648963i
\(55\) 278.840 482.965i 0.683614 1.18405i
\(56\) 16.8042 + 29.1057i 0.0400992 + 0.0694538i
\(57\) 49.0102 0.113887
\(58\) 301.288 + 521.846i 0.682087 + 1.18141i
\(59\) −115.170 199.480i −0.254133 0.440171i 0.710527 0.703670i \(-0.248457\pi\)
−0.964660 + 0.263499i \(0.915123\pi\)
\(60\) −125.057 −0.269080
\(61\) 190.408 + 329.796i 0.399659 + 0.692230i 0.993684 0.112217i \(-0.0357951\pi\)
−0.594024 + 0.804447i \(0.702462\pi\)
\(62\) 73.0232 126.480i 0.149580 0.259080i
\(63\) −28.5014 + 49.3658i −0.0569974 + 0.0987223i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 479.164 0.893652
\(67\) −217.924 + 377.456i −0.397368 + 0.688262i −0.993400 0.114699i \(-0.963410\pi\)
0.596032 + 0.802961i \(0.296743\pi\)
\(68\) 53.8038 93.1909i 0.0959510 0.166192i
\(69\) 293.060 + 507.595i 0.511308 + 0.885612i
\(70\) −71.6765 −0.122385
\(71\) −32.9811 57.1249i −0.0551287 0.0954857i 0.837144 0.546982i \(-0.184224\pi\)
−0.892273 + 0.451497i \(0.850890\pi\)
\(72\) 54.2748 + 94.0067i 0.0888381 + 0.153872i
\(73\) 885.517 1.41975 0.709876 0.704326i \(-0.248751\pi\)
0.709876 + 0.704326i \(0.248751\pi\)
\(74\) 118.781 + 205.735i 0.186595 + 0.323191i
\(75\) −95.7000 + 165.757i −0.147340 + 0.255200i
\(76\) 26.7459 46.3253i 0.0403680 0.0699194i
\(77\) 274.633 0.406459
\(78\) 0 0
\(79\) −385.463 −0.548962 −0.274481 0.961592i \(-0.588506\pi\)
−0.274481 + 0.961592i \(0.588506\pi\)
\(80\) −68.2464 + 118.206i −0.0953772 + 0.165198i
\(81\) 89.2679 154.616i 0.122452 0.212094i
\(82\) 432.901 + 749.807i 0.582999 + 1.00978i
\(83\) −254.207 −0.336179 −0.168089 0.985772i \(-0.553760\pi\)
−0.168089 + 0.985772i \(0.553760\pi\)
\(84\) −30.7926 53.3344i −0.0399970 0.0692769i
\(85\) 114.747 + 198.748i 0.146425 + 0.253615i
\(86\) −713.016 −0.894029
\(87\) −552.091 956.250i −0.680349 1.17840i
\(88\) 261.490 452.914i 0.316761 0.548646i
\(89\) 186.306 322.692i 0.221892 0.384329i −0.733490 0.679700i \(-0.762110\pi\)
0.955383 + 0.295371i \(0.0954433\pi\)
\(90\) −231.504 −0.271140
\(91\) 0 0
\(92\) 639.716 0.724946
\(93\) −133.810 + 231.766i −0.149199 + 0.258420i
\(94\) −588.614 + 1019.51i −0.645861 + 1.11866i
\(95\) 57.0410 + 98.7979i 0.0616030 + 0.106699i
\(96\) −117.276 −0.124682
\(97\) −656.942 1137.86i −0.687653 1.19105i −0.972595 0.232506i \(-0.925308\pi\)
0.284942 0.958545i \(-0.408026\pi\)
\(98\) 325.351 + 563.525i 0.335362 + 0.580863i
\(99\) 887.020 0.900494
\(100\) 104.451 + 180.915i 0.104451 + 0.180915i
\(101\) −731.861 + 1267.62i −0.721019 + 1.24884i 0.239573 + 0.970878i \(0.422993\pi\)
−0.960592 + 0.277963i \(0.910341\pi\)
\(102\) −98.5921 + 170.767i −0.0957066 + 0.165769i
\(103\) 210.886 0.201740 0.100870 0.994900i \(-0.467837\pi\)
0.100870 + 0.994900i \(0.467837\pi\)
\(104\) 0 0
\(105\) 131.343 0.122074
\(106\) 269.462 466.722i 0.246910 0.427660i
\(107\) −195.531 + 338.669i −0.176660 + 0.305985i −0.940735 0.339144i \(-0.889863\pi\)
0.764074 + 0.645128i \(0.223196\pi\)
\(108\) −297.358 515.040i −0.264938 0.458886i
\(109\) 1331.40 1.16996 0.584978 0.811049i \(-0.301103\pi\)
0.584978 + 0.811049i \(0.301103\pi\)
\(110\) 557.680 + 965.930i 0.483388 + 0.837253i
\(111\) −217.658 376.996i −0.186119 0.322368i
\(112\) −67.2167 −0.0567088
\(113\) 355.956 + 616.534i 0.296332 + 0.513263i 0.975294 0.220911i \(-0.0709031\pi\)
−0.678962 + 0.734174i \(0.737570\pi\)
\(114\) −49.0102 + 84.8882i −0.0402652 + 0.0697413i
\(115\) −682.161 + 1181.54i −0.553146 + 0.958078i
\(116\) −1205.15 −0.964616
\(117\) 0 0
\(118\) 460.679 0.359398
\(119\) −56.5081 + 97.8748i −0.0435301 + 0.0753964i
\(120\) 125.057 216.605i 0.0951342 0.164777i
\(121\) −1471.29 2548.34i −1.10540 1.91461i
\(122\) −761.631 −0.565204
\(123\) −793.264 1373.97i −0.581514 1.00721i
\(124\) 146.046 + 252.960i 0.105769 + 0.183197i
\(125\) −1511.87 −1.08181
\(126\) −57.0027 98.7316i −0.0403032 0.0698072i
\(127\) 585.852 1014.73i 0.409338 0.708995i −0.585477 0.810689i \(-0.699093\pi\)
0.994816 + 0.101694i \(0.0324262\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 1306.56 0.891751
\(130\) 0 0
\(131\) −1128.61 −0.752726 −0.376363 0.926472i \(-0.622825\pi\)
−0.376363 + 0.926472i \(0.622825\pi\)
\(132\) −479.164 + 829.937i −0.315954 + 0.547248i
\(133\) −28.0902 + 48.6537i −0.0183138 + 0.0317204i
\(134\) −435.848 754.911i −0.280982 0.486675i
\(135\) 1268.35 0.808610
\(136\) 107.608 + 186.382i 0.0678476 + 0.117516i
\(137\) 873.967 + 1513.76i 0.545022 + 0.944006i 0.998606 + 0.0527923i \(0.0168121\pi\)
−0.453583 + 0.891214i \(0.649855\pi\)
\(138\) −1172.24 −0.723099
\(139\) −838.268 1451.92i −0.511518 0.885975i −0.999911 0.0133509i \(-0.995750\pi\)
0.488393 0.872624i \(-0.337583\pi\)
\(140\) 71.6765 124.147i 0.0432698 0.0749455i
\(141\) 1078.60 1868.19i 0.644216 1.11581i
\(142\) 131.924 0.0779637
\(143\) 0 0
\(144\) −217.099 −0.125636
\(145\) 1285.11 2225.88i 0.736019 1.27482i
\(146\) −885.517 + 1533.76i −0.501958 + 0.869417i
\(147\) −596.186 1032.62i −0.334507 0.579384i
\(148\) −475.124 −0.263885
\(149\) 448.481 + 776.791i 0.246584 + 0.427095i 0.962576 0.271013i \(-0.0873587\pi\)
−0.715992 + 0.698108i \(0.754025\pi\)
\(150\) −191.400 331.515i −0.104185 0.180454i
\(151\) −2078.28 −1.12005 −0.560027 0.828475i \(-0.689209\pi\)
−0.560027 + 0.828475i \(0.689209\pi\)
\(152\) 53.4918 + 92.6506i 0.0285445 + 0.0494405i
\(153\) −182.512 + 316.120i −0.0964393 + 0.167038i
\(154\) −274.633 + 475.679i −0.143705 + 0.248904i
\(155\) −622.946 −0.322814
\(156\) 0 0
\(157\) −3494.75 −1.77650 −0.888252 0.459357i \(-0.848080\pi\)
−0.888252 + 0.459357i \(0.848080\pi\)
\(158\) 385.463 667.642i 0.194087 0.336169i
\(159\) −493.772 + 855.238i −0.246281 + 0.426571i
\(160\) −136.493 236.412i −0.0674419 0.116813i
\(161\) −671.869 −0.328887
\(162\) 178.536 + 309.233i 0.0865870 + 0.149973i
\(163\) 225.627 + 390.797i 0.108420 + 0.187789i 0.915130 0.403158i \(-0.132088\pi\)
−0.806710 + 0.590947i \(0.798754\pi\)
\(164\) −1731.61 −0.824486
\(165\) −1021.91 1770.01i −0.482157 0.835120i
\(166\) 254.207 440.299i 0.118857 0.205867i
\(167\) −1601.68 + 2774.18i −0.742164 + 1.28547i 0.209344 + 0.977842i \(0.432867\pi\)
−0.951508 + 0.307624i \(0.900466\pi\)
\(168\) 123.170 0.0565643
\(169\) 0 0
\(170\) −458.989 −0.207076
\(171\) −90.7268 + 157.143i −0.0405734 + 0.0702752i
\(172\) 713.016 1234.98i 0.316087 0.547478i
\(173\) −949.691 1644.91i −0.417362 0.722893i 0.578311 0.815816i \(-0.303712\pi\)
−0.995673 + 0.0929237i \(0.970379\pi\)
\(174\) 2208.36 0.962159
\(175\) −109.701 190.008i −0.0473864 0.0820756i
\(176\) 522.980 + 905.829i 0.223984 + 0.387951i
\(177\) −844.165 −0.358482
\(178\) 372.612 + 645.384i 0.156902 + 0.271762i
\(179\) −1325.45 + 2295.74i −0.553455 + 0.958612i 0.444567 + 0.895746i \(0.353358\pi\)
−0.998022 + 0.0628664i \(0.979976\pi\)
\(180\) 231.504 400.976i 0.0958625 0.166039i
\(181\) −2289.94 −0.940387 −0.470194 0.882563i \(-0.655816\pi\)
−0.470194 + 0.882563i \(0.655816\pi\)
\(182\) 0 0
\(183\) 1395.64 0.563764
\(184\) −639.716 + 1108.02i −0.256307 + 0.443937i
\(185\) 506.648 877.539i 0.201349 0.348746i
\(186\) −267.621 463.533i −0.105500 0.182731i
\(187\) 1758.65 0.687727
\(188\) −1177.23 2039.02i −0.456693 0.791015i
\(189\) 312.304 + 540.926i 0.120195 + 0.208183i
\(190\) −228.164 −0.0871198
\(191\) 169.157 + 292.988i 0.0640825 + 0.110994i 0.896287 0.443475i \(-0.146255\pi\)
−0.832204 + 0.554469i \(0.812921\pi\)
\(192\) 117.276 203.128i 0.0440816 0.0763515i
\(193\) −1342.03 + 2324.46i −0.500524 + 0.866933i 0.499476 + 0.866328i \(0.333526\pi\)
−1.00000 0.000605201i \(0.999807\pi\)
\(194\) 2627.77 0.972489
\(195\) 0 0
\(196\) −1301.40 −0.474273
\(197\) −948.620 + 1643.06i −0.343078 + 0.594229i −0.985003 0.172539i \(-0.944803\pi\)
0.641925 + 0.766768i \(0.278136\pi\)
\(198\) −887.020 + 1536.36i −0.318373 + 0.551438i
\(199\) 1207.80 + 2091.97i 0.430245 + 0.745207i 0.996894 0.0787527i \(-0.0250937\pi\)
−0.566649 + 0.823959i \(0.691760\pi\)
\(200\) −417.804 −0.147716
\(201\) 798.665 + 1383.33i 0.280266 + 0.485435i
\(202\) −1463.72 2535.24i −0.509837 0.883064i
\(203\) 1265.72 0.437618
\(204\) −197.184 341.533i −0.0676748 0.117216i
\(205\) 1846.50 3198.22i 0.629097 1.08963i
\(206\) −210.886 + 365.265i −0.0713258 + 0.123540i
\(207\) −2170.03 −0.728635
\(208\) 0 0
\(209\) 874.225 0.289337
\(210\) −131.343 + 227.492i −0.0431596 + 0.0747546i
\(211\) −1334.21 + 2310.92i −0.435312 + 0.753982i −0.997321 0.0731491i \(-0.976695\pi\)
0.562009 + 0.827131i \(0.310028\pi\)
\(212\) 538.924 + 933.443i 0.174592 + 0.302402i
\(213\) −241.743 −0.0777651
\(214\) −391.061 677.338i −0.124918 0.216364i
\(215\) 1520.65 + 2633.84i 0.482360 + 0.835471i
\(216\) 1189.43 0.374679
\(217\) −153.387 265.674i −0.0479842 0.0831112i
\(218\) −1331.40 + 2306.06i −0.413642 + 0.716449i
\(219\) 1622.65 2810.52i 0.500680 0.867202i
\(220\) −2230.72 −0.683614
\(221\) 0 0
\(222\) 870.634 0.263212
\(223\) 143.179 247.993i 0.0429953 0.0744701i −0.843727 0.536773i \(-0.819643\pi\)
0.886722 + 0.462303i \(0.152977\pi\)
\(224\) 67.2167 116.423i 0.0200496 0.0347269i
\(225\) −354.316 613.694i −0.104983 0.181835i
\(226\) −1423.82 −0.419077
\(227\) −2600.62 4504.41i −0.760393 1.31704i −0.942648 0.333788i \(-0.891673\pi\)
0.182255 0.983251i \(-0.441660\pi\)
\(228\) −98.0204 169.776i −0.0284718 0.0493145i
\(229\) 890.458 0.256957 0.128478 0.991712i \(-0.458991\pi\)
0.128478 + 0.991712i \(0.458991\pi\)
\(230\) −1364.32 2363.08i −0.391134 0.677463i
\(231\) 503.248 871.651i 0.143339 0.248270i
\(232\) 1205.15 2087.38i 0.341043 0.590704i
\(233\) 4753.11 1.33642 0.668212 0.743971i \(-0.267060\pi\)
0.668212 + 0.743971i \(0.267060\pi\)
\(234\) 0 0
\(235\) 5021.35 1.39386
\(236\) −460.679 + 797.919i −0.127066 + 0.220085i
\(237\) −706.337 + 1223.41i −0.193593 + 0.335313i
\(238\) −113.016 195.750i −0.0307805 0.0533133i
\(239\) −2292.62 −0.620491 −0.310245 0.950656i \(-0.600411\pi\)
−0.310245 + 0.950656i \(0.600411\pi\)
\(240\) 250.114 + 433.211i 0.0672700 + 0.116515i
\(241\) −987.604 1710.58i −0.263972 0.457212i 0.703322 0.710871i \(-0.251699\pi\)
−0.967294 + 0.253659i \(0.918366\pi\)
\(242\) 5885.14 1.56327
\(243\) 1680.01 + 2909.87i 0.443510 + 0.768182i
\(244\) 761.631 1319.18i 0.199830 0.346115i
\(245\) 1387.75 2403.66i 0.361879 0.626792i
\(246\) 3173.06 0.822385
\(247\) 0 0
\(248\) −584.186 −0.149580
\(249\) −465.818 + 806.821i −0.118554 + 0.205342i
\(250\) 1511.87 2618.64i 0.382477 0.662470i
\(251\) 3732.87 + 6465.52i 0.938711 + 1.62590i 0.767879 + 0.640595i \(0.221312\pi\)
0.170833 + 0.985300i \(0.445354\pi\)
\(252\) 228.011 0.0569974
\(253\) 5227.49 + 9054.27i 1.29901 + 2.24995i
\(254\) 1171.70 + 2029.45i 0.289446 + 0.501335i
\(255\) 841.069 0.206548
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 277.483 480.615i 0.0673499 0.116653i −0.830384 0.557191i \(-0.811879\pi\)
0.897734 + 0.440538i \(0.145212\pi\)
\(258\) −1306.56 + 2263.02i −0.315282 + 0.546084i
\(259\) 499.004 0.119717
\(260\) 0 0
\(261\) 4088.08 0.969525
\(262\) 1128.61 1954.81i 0.266129 0.460949i
\(263\) 996.534 1726.05i 0.233646 0.404687i −0.725232 0.688504i \(-0.758268\pi\)
0.958878 + 0.283817i \(0.0916010\pi\)
\(264\) −958.329 1659.87i −0.223413 0.386963i
\(265\) −2298.72 −0.532866
\(266\) −56.1804 97.3074i −0.0129498 0.0224297i
\(267\) −682.789 1182.63i −0.156502 0.271069i
\(268\) 1743.39 0.397368
\(269\) 2603.88 + 4510.06i 0.590191 + 1.02224i 0.994206 + 0.107489i \(0.0342811\pi\)
−0.404015 + 0.914752i \(0.632386\pi\)
\(270\) −1268.35 + 2196.85i −0.285887 + 0.495170i
\(271\) −2042.45 + 3537.63i −0.457823 + 0.792972i −0.998846 0.0480356i \(-0.984704\pi\)
0.541023 + 0.841008i \(0.318037\pi\)
\(272\) −430.430 −0.0959510
\(273\) 0 0
\(274\) −3495.87 −0.770778
\(275\) −1707.06 + 2956.71i −0.374325 + 0.648351i
\(276\) 1172.24 2030.38i 0.255654 0.442806i
\(277\) −218.996 379.313i −0.0475026 0.0822769i 0.841296 0.540574i \(-0.181793\pi\)
−0.888799 + 0.458297i \(0.848460\pi\)
\(278\) 3353.07 0.723395
\(279\) −495.415 858.083i −0.106307 0.184129i
\(280\) 143.353 + 248.295i 0.0305964 + 0.0529945i
\(281\) 5462.34 1.15963 0.579815 0.814748i \(-0.303125\pi\)
0.579815 + 0.814748i \(0.303125\pi\)
\(282\) 2157.20 + 3736.38i 0.455529 + 0.789000i
\(283\) 398.338 689.941i 0.0836704 0.144921i −0.821153 0.570707i \(-0.806669\pi\)
0.904824 + 0.425786i \(0.140002\pi\)
\(284\) −131.924 + 228.500i −0.0275643 + 0.0477428i
\(285\) 418.096 0.0868978
\(286\) 0 0
\(287\) 1818.64 0.374045
\(288\) 217.099 376.027i 0.0444191 0.0769361i
\(289\) 2094.64 3628.03i 0.426347 0.738455i
\(290\) 2570.22 + 4451.76i 0.520444 + 0.901436i
\(291\) −4815.22 −0.970011
\(292\) −1771.03 3067.52i −0.354938 0.614771i
\(293\) −848.662 1469.93i −0.169213 0.293085i 0.768931 0.639332i \(-0.220789\pi\)
−0.938143 + 0.346247i \(0.887456\pi\)
\(294\) 2384.74 0.473065
\(295\) −982.490 1701.72i −0.193908 0.335858i
\(296\) 475.124 822.938i 0.0932973 0.161596i
\(297\) 4859.77 8417.37i 0.949469 1.64453i
\(298\) −1793.92 −0.348722
\(299\) 0 0
\(300\) 765.600 0.147340
\(301\) −748.853 + 1297.05i −0.143399 + 0.248375i
\(302\) 2078.28 3599.69i 0.395999 0.685890i
\(303\) 2682.18 + 4645.67i 0.508538 + 0.880814i
\(304\) −213.967 −0.0403680
\(305\) 1624.33 + 2813.42i 0.304947 + 0.528184i
\(306\) −365.024 632.240i −0.0681929 0.118114i
\(307\) −9385.86 −1.74488 −0.872442 0.488718i \(-0.837465\pi\)
−0.872442 + 0.488718i \(0.837465\pi\)
\(308\) −549.266 951.357i −0.101615 0.176002i
\(309\) 386.435 669.325i 0.0711441 0.123225i
\(310\) 622.946 1078.97i 0.114132 0.197683i
\(311\) −3282.65 −0.598527 −0.299264 0.954170i \(-0.596741\pi\)
−0.299264 + 0.954170i \(0.596741\pi\)
\(312\) 0 0
\(313\) −5924.67 −1.06991 −0.534955 0.844880i \(-0.679672\pi\)
−0.534955 + 0.844880i \(0.679672\pi\)
\(314\) 3494.75 6053.08i 0.628089 1.08788i
\(315\) −243.139 + 421.130i −0.0434900 + 0.0753269i
\(316\) 770.927 + 1335.28i 0.137241 + 0.237708i
\(317\) −6467.88 −1.14597 −0.572985 0.819566i \(-0.694215\pi\)
−0.572985 + 0.819566i \(0.694215\pi\)
\(318\) −987.544 1710.48i −0.174147 0.301631i
\(319\) −9847.98 17057.2i −1.72847 2.99379i
\(320\) 545.971 0.0953772
\(321\) 716.595 + 1241.18i 0.124599 + 0.215813i
\(322\) 671.869 1163.71i 0.116279 0.201401i
\(323\) −179.879 + 311.560i −0.0309868 + 0.0536707i
\(324\) −714.143 −0.122452
\(325\) 0 0
\(326\) −902.508 −0.153329
\(327\) 2439.71 4225.70i 0.412588 0.714624i
\(328\) 1731.61 2999.23i 0.291500 0.504892i
\(329\) 1236.40 + 2141.50i 0.207188 + 0.358860i
\(330\) 4087.65 0.681872
\(331\) 1754.62 + 3039.09i 0.291368 + 0.504664i 0.974133 0.225974i \(-0.0725563\pi\)
−0.682766 + 0.730637i \(0.739223\pi\)
\(332\) 508.414 + 880.599i 0.0840447 + 0.145570i
\(333\) 1611.70 0.265227
\(334\) −3203.35 5548.37i −0.524789 0.908962i
\(335\) −1859.07 + 3220.00i −0.303199 + 0.525156i
\(336\) −123.170 + 213.337i −0.0199985 + 0.0346384i
\(337\) −1834.82 −0.296584 −0.148292 0.988944i \(-0.547378\pi\)
−0.148292 + 0.988944i \(0.547378\pi\)
\(338\) 0 0
\(339\) 2609.07 0.418010
\(340\) 458.989 794.993i 0.0732123 0.126807i
\(341\) −2386.86 + 4134.16i −0.379048 + 0.656531i
\(342\) −181.454 314.287i −0.0286897 0.0496921i
\(343\) 2807.77 0.441999
\(344\) 1426.03 + 2469.96i 0.223507 + 0.387126i
\(345\) 2500.03 + 4330.19i 0.390137 + 0.675737i
\(346\) 3798.76 0.590239
\(347\) 3629.65 + 6286.74i 0.561527 + 0.972593i 0.997364 + 0.0725673i \(0.0231192\pi\)
−0.435837 + 0.900026i \(0.643547\pi\)
\(348\) −2208.36 + 3825.00i −0.340175 + 0.589200i
\(349\) −897.618 + 1554.72i −0.137674 + 0.238459i −0.926616 0.376009i \(-0.877296\pi\)
0.788942 + 0.614468i \(0.210629\pi\)
\(350\) 438.804 0.0670144
\(351\) 0 0
\(352\) −2091.92 −0.316761
\(353\) −2276.19 + 3942.47i −0.343199 + 0.594438i −0.985025 0.172412i \(-0.944844\pi\)
0.641826 + 0.766850i \(0.278177\pi\)
\(354\) 844.165 1462.14i 0.126743 0.219525i
\(355\) −281.355 487.321i −0.0420641 0.0728572i
\(356\) −1490.45 −0.221892
\(357\) 207.095 + 358.699i 0.0307020 + 0.0531775i
\(358\) −2650.89 4591.48i −0.391352 0.677841i
\(359\) −10165.4 −1.49445 −0.747227 0.664569i \(-0.768615\pi\)
−0.747227 + 0.664569i \(0.768615\pi\)
\(360\) 463.007 + 801.952i 0.0677850 + 0.117407i
\(361\) 3340.08 5785.19i 0.486963 0.843445i
\(362\) 2289.94 3966.30i 0.332477 0.575867i
\(363\) −10784.2 −1.55929
\(364\) 0 0
\(365\) 7554.16 1.08330
\(366\) −1395.64 + 2417.32i −0.199321 + 0.345233i
\(367\) 5200.78 9008.01i 0.739723 1.28124i −0.212897 0.977075i \(-0.568290\pi\)
0.952620 0.304163i \(-0.0983769\pi\)
\(368\) −1279.43 2216.04i −0.181237 0.313911i
\(369\) 5873.91 0.828681
\(370\) 1013.30 + 1755.08i 0.142375 + 0.246601i
\(371\) −566.011 980.359i −0.0792070 0.137191i
\(372\) 1070.48 0.149199
\(373\) 3976.70 + 6887.85i 0.552027 + 0.956138i 0.998128 + 0.0611560i \(0.0194787\pi\)
−0.446101 + 0.894982i \(0.647188\pi\)
\(374\) −1758.65 + 3046.06i −0.243148 + 0.421145i
\(375\) −2770.42 + 4798.50i −0.381503 + 0.660783i
\(376\) 4708.91 0.645861
\(377\) 0 0
\(378\) −1249.22 −0.169981
\(379\) 4507.41 7807.06i 0.610897 1.05810i −0.380193 0.924907i \(-0.624142\pi\)
0.991090 0.133197i \(-0.0425243\pi\)
\(380\) 228.164 395.192i 0.0308015 0.0533497i
\(381\) −2147.07 3718.84i −0.288709 0.500058i
\(382\) −676.627 −0.0906263
\(383\) −1248.12 2161.81i −0.166517 0.288415i 0.770676 0.637227i \(-0.219919\pi\)
−0.937193 + 0.348812i \(0.886585\pi\)
\(384\) 234.552 + 406.256i 0.0311704 + 0.0539887i
\(385\) 2342.84 0.310135
\(386\) −2684.05 4648.91i −0.353924 0.613014i
\(387\) −2418.67 + 4189.26i −0.317695 + 0.550264i
\(388\) −2627.77 + 4551.43i −0.343827 + 0.595525i
\(389\) 10896.9 1.42029 0.710145 0.704056i \(-0.248629\pi\)
0.710145 + 0.704056i \(0.248629\pi\)
\(390\) 0 0
\(391\) −4302.40 −0.556475
\(392\) 1301.40 2254.10i 0.167681 0.290432i
\(393\) −2068.11 + 3582.07i −0.265451 + 0.459774i
\(394\) −1897.24 3286.12i −0.242593 0.420183i
\(395\) −3288.31 −0.418868
\(396\) −1774.04 3072.73i −0.225123 0.389925i
\(397\) 5443.57 + 9428.55i 0.688174 + 1.19195i 0.972428 + 0.233203i \(0.0749208\pi\)
−0.284254 + 0.958749i \(0.591746\pi\)
\(398\) −4831.21 −0.608459
\(399\) 102.947 + 178.310i 0.0129168 + 0.0223725i
\(400\) 417.804 723.658i 0.0522255 0.0904573i
\(401\) 4984.38 8633.20i 0.620718 1.07512i −0.368634 0.929575i \(-0.620174\pi\)
0.989352 0.145541i \(-0.0464922\pi\)
\(402\) −3194.66 −0.396356
\(403\) 0 0
\(404\) 5854.89 0.721019
\(405\) 761.526 1319.00i 0.0934334 0.161831i
\(406\) −1265.72 + 2192.30i −0.154721 + 0.267985i
\(407\) −3882.50 6724.70i −0.472847 0.818994i
\(408\) 788.737 0.0957066
\(409\) 2018.16 + 3495.56i 0.243989 + 0.422602i 0.961847 0.273588i \(-0.0882104\pi\)
−0.717858 + 0.696190i \(0.754877\pi\)
\(410\) 3692.99 + 6396.45i 0.444839 + 0.770483i
\(411\) 6405.96 0.768814
\(412\) −421.772 730.530i −0.0504350 0.0873559i
\(413\) 483.833 838.024i 0.0576462 0.0998462i
\(414\) 2170.03 3758.60i 0.257611 0.446196i
\(415\) −2168.59 −0.256510
\(416\) 0 0
\(417\) −6144.29 −0.721552
\(418\) −874.225 + 1514.20i −0.102296 + 0.177182i
\(419\) −7597.43 + 13159.1i −0.885821 + 1.53429i −0.0410504 + 0.999157i \(0.513070\pi\)
−0.844770 + 0.535129i \(0.820263\pi\)
\(420\) −262.685 454.985i −0.0305184 0.0528595i
\(421\) −10154.8 −1.17556 −0.587782 0.809019i \(-0.699999\pi\)
−0.587782 + 0.809019i \(0.699999\pi\)
\(422\) −2668.42 4621.84i −0.307812 0.533146i
\(423\) 3993.36 + 6916.71i 0.459017 + 0.795040i
\(424\) −2155.69 −0.246910
\(425\) −702.483 1216.74i −0.0801775 0.138872i
\(426\) 241.743 418.711i 0.0274941 0.0476212i
\(427\) −799.912 + 1385.49i −0.0906568 + 0.157022i
\(428\) 1564.24 0.176660
\(429\) 0 0
\(430\) −6082.59 −0.682159
\(431\) −3308.42 + 5730.35i −0.369747 + 0.640420i −0.989526 0.144356i \(-0.953889\pi\)
0.619779 + 0.784776i \(0.287222\pi\)
\(432\) −1189.43 + 2060.16i −0.132469 + 0.229443i
\(433\) −2848.80 4934.27i −0.316177 0.547635i 0.663510 0.748167i \(-0.269066\pi\)
−0.979687 + 0.200533i \(0.935733\pi\)
\(434\) 613.548 0.0678600
\(435\) −4709.77 8157.57i −0.519118 0.899139i
\(436\) −2662.81 4612.11i −0.292489 0.506606i
\(437\) −2138.73 −0.234117
\(438\) 3245.31 + 5621.04i 0.354034 + 0.613205i
\(439\) −218.004 + 377.593i −0.0237010 + 0.0410513i −0.877633 0.479334i \(-0.840878\pi\)
0.853932 + 0.520385i \(0.174212\pi\)
\(440\) 2230.72 3863.72i 0.241694 0.418626i
\(441\) 4414.59 0.476686
\(442\) 0 0
\(443\) 6609.58 0.708873 0.354436 0.935080i \(-0.384673\pi\)
0.354436 + 0.935080i \(0.384673\pi\)
\(444\) −870.634 + 1507.98i −0.0930596 + 0.161184i
\(445\) 1589.34 2752.82i 0.169308 0.293250i
\(446\) 286.358 + 495.986i 0.0304023 + 0.0526583i
\(447\) 3287.25 0.347833
\(448\) 134.433 + 232.846i 0.0141772 + 0.0245556i
\(449\) 4007.65 + 6941.46i 0.421231 + 0.729594i 0.996060 0.0886795i \(-0.0282647\pi\)
−0.574829 + 0.818274i \(0.694931\pi\)
\(450\) 1417.26 0.148468
\(451\) −14149.9 24508.4i −1.47737 2.55888i
\(452\) 1423.82 2466.14i 0.148166 0.256631i
\(453\) −3808.32 + 6596.20i −0.394990 + 0.684142i
\(454\) 10402.5 1.07536
\(455\) 0 0
\(456\) 392.082 0.0402652
\(457\) −2253.52 + 3903.21i −0.230668 + 0.399528i −0.958005 0.286752i \(-0.907424\pi\)
0.727337 + 0.686280i \(0.240758\pi\)
\(458\) −890.458 + 1542.32i −0.0908480 + 0.157353i
\(459\) 1999.88 + 3463.89i 0.203369 + 0.352245i
\(460\) 5457.29 0.553146
\(461\) 1051.78 + 1821.73i 0.106260 + 0.184048i 0.914252 0.405145i \(-0.132779\pi\)
−0.807992 + 0.589193i \(0.799446\pi\)
\(462\) 1006.50 + 1743.30i 0.101356 + 0.175554i
\(463\) −5468.28 −0.548883 −0.274441 0.961604i \(-0.588493\pi\)
−0.274441 + 0.961604i \(0.588493\pi\)
\(464\) 2410.30 + 4174.77i 0.241154 + 0.417691i
\(465\) −1141.51 + 1977.15i −0.113841 + 0.197179i
\(466\) −4753.11 + 8232.63i −0.472497 + 0.818389i
\(467\) −6043.79 −0.598872 −0.299436 0.954116i \(-0.596799\pi\)
−0.299436 + 0.954116i \(0.596799\pi\)
\(468\) 0 0
\(469\) −1831.02 −0.180274
\(470\) −5021.35 + 8697.23i −0.492803 + 0.853560i
\(471\) −6403.90 + 11091.9i −0.626489 + 1.08511i
\(472\) −921.358 1595.84i −0.0898495 0.155624i
\(473\) 23305.8 2.26555
\(474\) −1412.67 2446.82i −0.136891 0.237102i
\(475\) −349.205 604.841i −0.0337318 0.0584253i
\(476\) 452.065 0.0435301
\(477\) −1828.12 3166.40i −0.175480 0.303940i
\(478\) 2292.62 3970.94i 0.219377 0.379972i
\(479\) −4240.65 + 7345.02i −0.404510 + 0.700632i −0.994264 0.106951i \(-0.965891\pi\)
0.589754 + 0.807583i \(0.299225\pi\)
\(480\) −1000.46 −0.0951342
\(481\) 0 0
\(482\) 3950.42 0.373312
\(483\) −1231.16 + 2132.43i −0.115983 + 0.200888i
\(484\) −5885.14 + 10193.4i −0.552699 + 0.957303i
\(485\) −5604.24 9706.83i −0.524691 0.908792i
\(486\) −6720.05 −0.627218
\(487\) −3311.68 5735.99i −0.308145 0.533722i 0.669812 0.742531i \(-0.266375\pi\)
−0.977957 + 0.208809i \(0.933041\pi\)
\(488\) 1523.26 + 2638.37i 0.141301 + 0.244740i
\(489\) 1653.79 0.152939
\(490\) 2775.50 + 4807.31i 0.255887 + 0.443209i
\(491\) −8189.68 + 14184.9i −0.752739 + 1.30378i 0.193751 + 0.981051i \(0.437935\pi\)
−0.946490 + 0.322732i \(0.895399\pi\)
\(492\) −3173.06 + 5495.90i −0.290757 + 0.503606i
\(493\) 8105.21 0.740447
\(494\) 0 0
\(495\) 7566.99 0.687093
\(496\) 584.186 1011.84i 0.0528845 0.0915986i
\(497\) 138.555 239.985i 0.0125051 0.0216595i
\(498\) −931.637 1613.64i −0.0838306 0.145199i
\(499\) 7915.70 0.710131 0.355065 0.934841i \(-0.384459\pi\)
0.355065 + 0.934841i \(0.384459\pi\)
\(500\) 3023.75 + 5237.29i 0.270452 + 0.468437i
\(501\) 5869.94 + 10167.0i 0.523452 + 0.906646i
\(502\) −14931.5 −1.32754
\(503\) 239.755 + 415.269i 0.0212528 + 0.0368110i 0.876456 0.481482i \(-0.159901\pi\)
−0.855203 + 0.518293i \(0.826568\pi\)
\(504\) −228.011 + 394.926i −0.0201516 + 0.0349036i
\(505\) −6243.36 + 10813.8i −0.550150 + 0.952888i
\(506\) −20909.9 −1.83708
\(507\) 0 0
\(508\) −4686.82 −0.409338
\(509\) 596.164 1032.59i 0.0519145 0.0899186i −0.838900 0.544285i \(-0.816801\pi\)
0.890815 + 0.454366i \(0.150134\pi\)
\(510\) −841.069 + 1456.77i −0.0730258 + 0.126484i
\(511\) 1860.05 + 3221.70i 0.161025 + 0.278903i
\(512\) 512.000 0.0441942
\(513\) 994.140 + 1721.90i 0.0855602 + 0.148195i
\(514\) 554.966 + 961.229i 0.0476236 + 0.0824864i
\(515\) 1799.02 0.153931
\(516\) −2613.11 4526.04i −0.222938 0.386140i
\(517\) 19239.6 33324.0i 1.63667 2.83479i
\(518\) −499.004 + 864.300i −0.0423262 + 0.0733111i
\(519\) −6961.00 −0.588736
\(520\) 0 0
\(521\) −23238.5 −1.95412 −0.977062 0.212955i \(-0.931691\pi\)
−0.977062 + 0.212955i \(0.931691\pi\)
\(522\) −4088.08 + 7080.77i −0.342779 + 0.593710i
\(523\) 5513.14 9549.03i 0.460942 0.798375i −0.538066 0.842903i \(-0.680845\pi\)
0.999008 + 0.0445277i \(0.0141783\pi\)
\(524\) 2257.22 + 3909.62i 0.188181 + 0.325940i
\(525\) −804.080 −0.0668437
\(526\) 1993.07 + 3452.10i 0.165213 + 0.286157i
\(527\) −982.231 1701.27i −0.0811891 0.140624i
\(528\) 3833.32 0.315954
\(529\) −6705.15 11613.7i −0.551093 0.954522i
\(530\) 2298.72 3981.51i 0.188397 0.326312i
\(531\) 1562.70 2706.68i 0.127713 0.221205i
\(532\) 224.722 0.0183138
\(533\) 0 0
\(534\) 2731.16 0.221327
\(535\) −1668.03 + 2889.11i −0.134795 + 0.233472i
\(536\) −1743.39 + 3019.65i −0.140491 + 0.243337i
\(537\) 4857.59 + 8413.59i 0.390355 + 0.676114i
\(538\) −10415.5 −0.834657
\(539\) −10634.5 18419.5i −0.849835 1.47196i
\(540\) −2536.70 4393.70i −0.202152 0.350138i
\(541\) −8987.70 −0.714254 −0.357127 0.934056i \(-0.616244\pi\)
−0.357127 + 0.934056i \(0.616244\pi\)
\(542\) −4084.90 7075.25i −0.323730 0.560716i
\(543\) −4196.17 + 7267.99i −0.331630 + 0.574400i
\(544\) 430.430 745.527i 0.0339238 0.0587578i
\(545\) 11357.9 0.892697
\(546\) 0 0
\(547\) −10734.8 −0.839101 −0.419550 0.907732i \(-0.637812\pi\)
−0.419550 + 0.907732i \(0.637812\pi\)
\(548\) 3495.87 6055.02i 0.272511 0.472003i
\(549\) −2583.59 + 4474.90i −0.200847 + 0.347876i
\(550\) −3414.12 5913.42i −0.264688 0.458453i
\(551\) 4029.11 0.311517
\(552\) 2344.48 + 4060.76i 0.180775 + 0.313111i
\(553\) −809.675 1402.40i −0.0622620 0.107841i
\(554\) 875.985 0.0671788
\(555\) −1856.80 3216.07i −0.142012 0.245972i
\(556\) −3353.07 + 5807.69i −0.255759 + 0.442987i
\(557\) 6614.13 11456.0i 0.503141 0.871466i −0.496852 0.867835i \(-0.665511\pi\)
0.999993 0.00363111i \(-0.00115582\pi\)
\(558\) 1981.66 0.150341
\(559\) 0 0
\(560\) −573.412 −0.0432698
\(561\) 3222.61 5581.72i 0.242529 0.420072i
\(562\) −5462.34 + 9461.06i −0.409991 + 0.710126i
\(563\) −5366.98 9295.89i −0.401761 0.695870i 0.592178 0.805807i \(-0.298268\pi\)
−0.993939 + 0.109937i \(0.964935\pi\)
\(564\) −8628.79 −0.644216
\(565\) 3036.59 + 5259.53i 0.226107 + 0.391628i
\(566\) 796.676 + 1379.88i 0.0591639 + 0.102475i
\(567\) 750.037 0.0555531
\(568\) −263.849 457.000i −0.0194909 0.0337593i
\(569\) −2656.73 + 4601.58i −0.195739 + 0.339031i −0.947143 0.320813i \(-0.896044\pi\)
0.751403 + 0.659843i \(0.229377\pi\)
\(570\) −418.096 + 724.164i −0.0307230 + 0.0532138i
\(571\) 4629.37 0.339287 0.169644 0.985505i \(-0.445738\pi\)
0.169644 + 0.985505i \(0.445738\pi\)
\(572\) 0 0
\(573\) 1239.88 0.0903954
\(574\) −1818.64 + 3149.97i −0.132245 + 0.229055i
\(575\) 4176.19 7233.37i 0.302886 0.524613i
\(576\) 434.198 + 752.053i 0.0314090 + 0.0544020i
\(577\) 504.750 0.0364177 0.0182088 0.999834i \(-0.494204\pi\)
0.0182088 + 0.999834i \(0.494204\pi\)
\(578\) 4189.29 + 7256.06i 0.301473 + 0.522167i
\(579\) 4918.36 + 8518.84i 0.353022 + 0.611453i
\(580\) −10280.9 −0.736019
\(581\) −533.968 924.859i −0.0381286 0.0660407i
\(582\) 4815.22 8340.21i 0.342951 0.594008i
\(583\) −8807.70 + 15255.4i −0.625691 + 1.08373i
\(584\) 7084.14 0.501958
\(585\) 0 0
\(586\) 3394.65 0.239303
\(587\) 2766.47 4791.66i 0.194522 0.336922i −0.752222 0.658910i \(-0.771018\pi\)
0.946744 + 0.321988i \(0.104351\pi\)
\(588\) −2384.74 + 4130.50i −0.167254 + 0.289692i
\(589\) −488.268 845.705i −0.0341575 0.0591624i
\(590\) 3929.96 0.274227
\(591\) 3476.57 + 6021.60i 0.241975 + 0.419113i
\(592\) 950.247 + 1645.88i 0.0659711 + 0.114265i
\(593\) 18079.8 1.25202 0.626009 0.779816i \(-0.284687\pi\)
0.626009 + 0.779816i \(0.284687\pi\)
\(594\) 9719.54 + 16834.7i 0.671376 + 1.16286i
\(595\) −482.059 + 834.950i −0.0332143 + 0.0575288i
\(596\) 1793.92 3107.16i 0.123292 0.213548i
\(597\) 8852.88 0.606909
\(598\) 0 0
\(599\) −1837.55 −0.125342 −0.0626712 0.998034i \(-0.519962\pi\)
−0.0626712 + 0.998034i \(0.519962\pi\)
\(600\) −765.600 + 1326.06i −0.0520925 + 0.0902268i
\(601\) 11743.6 20340.6i 0.797060 1.38055i −0.124463 0.992224i \(-0.539721\pi\)
0.921523 0.388324i \(-0.126946\pi\)
\(602\) −1497.71 2594.10i −0.101399 0.175627i
\(603\) −5913.89 −0.399390
\(604\) 4156.56 + 7199.37i 0.280013 + 0.484997i
\(605\) −12551.2 21739.4i −0.843438 1.46088i
\(606\) −10728.7 −0.719182
\(607\) 8155.42 + 14125.6i 0.545335 + 0.944548i 0.998586 + 0.0531648i \(0.0169309\pi\)
−0.453251 + 0.891383i \(0.649736\pi\)
\(608\) 213.967 370.602i 0.0142722 0.0247202i
\(609\) 2319.36 4017.25i 0.154327 0.267302i
\(610\) −6497.32 −0.431260
\(611\) 0 0
\(612\) 1460.09 0.0964393
\(613\) 4226.56 7320.61i 0.278481 0.482344i −0.692526 0.721393i \(-0.743502\pi\)
0.971008 + 0.239049i \(0.0768357\pi\)
\(614\) 9385.86 16256.8i 0.616910 1.06852i
\(615\) −6767.18 11721.1i −0.443705 0.768520i
\(616\) 2197.06 0.143705
\(617\) −6705.17 11613.7i −0.437504 0.757779i 0.559992 0.828498i \(-0.310804\pi\)
−0.997496 + 0.0707186i \(0.977471\pi\)
\(618\) 772.870 + 1338.65i 0.0503065 + 0.0871334i
\(619\) 890.135 0.0577990 0.0288995 0.999582i \(-0.490800\pi\)
0.0288995 + 0.999582i \(0.490800\pi\)
\(620\) 1245.89 + 2157.95i 0.0807036 + 0.139783i
\(621\) −11889.1 + 20592.5i −0.768263 + 1.33067i
\(622\) 3282.65 5685.72i 0.211611 0.366522i
\(623\) 1565.36 0.100666
\(624\) 0 0
\(625\) −6369.30 −0.407635
\(626\) 5924.67 10261.8i 0.378271 0.655184i
\(627\) 1601.96 2774.68i 0.102035 0.176730i
\(628\) 6989.49 + 12106.2i 0.444126 + 0.769249i
\(629\) 3195.43 0.202560
\(630\) −486.278 842.259i −0.0307521 0.0532641i
\(631\) −5291.22 9164.66i −0.333819 0.578192i 0.649438 0.760415i \(-0.275004\pi\)
−0.983257 + 0.182222i \(0.941671\pi\)
\(632\) −3083.71 −0.194087
\(633\) 4889.71 + 8469.22i 0.307028 + 0.531787i
\(634\) 6467.88 11202.7i 0.405161 0.701760i
\(635\) 4997.78 8656.42i 0.312332 0.540975i
\(636\) 3950.17 0.246281
\(637\) 0 0
\(638\) 39391.9 2.44442
\(639\) 447.510 775.111i 0.0277046 0.0479858i
\(640\) −545.971 + 945.649i −0.0337209 + 0.0584064i
\(641\) −13442.1 23282.4i −0.828286 1.43463i −0.899382 0.437164i \(-0.855983\pi\)
0.0710952 0.997470i \(-0.477351\pi\)
\(642\) −2866.38 −0.176210
\(643\) 2845.56 + 4928.66i 0.174523 + 0.302282i 0.939996 0.341186i \(-0.110828\pi\)
−0.765473 + 0.643468i \(0.777495\pi\)
\(644\) 1343.74 + 2327.42i 0.0822216 + 0.142412i
\(645\) 11146.0 0.680422
\(646\) −359.758 623.119i −0.0219110 0.0379509i
\(647\) −904.896 + 1567.33i −0.0549847 + 0.0952364i −0.892208 0.451625i \(-0.850844\pi\)
0.837223 + 0.546862i \(0.184178\pi\)
\(648\) 714.143 1236.93i 0.0432935 0.0749865i
\(649\) −15057.9 −0.910745
\(650\) 0 0
\(651\) −1124.29 −0.0676871
\(652\) 902.508 1563.19i 0.0542100 0.0938945i
\(653\) −4729.58 + 8191.88i −0.283435 + 0.490923i −0.972228 0.234034i \(-0.924807\pi\)
0.688794 + 0.724957i \(0.258141\pi\)
\(654\) 4879.42 + 8451.41i 0.291744 + 0.505315i
\(655\) −9627.94 −0.574343
\(656\) 3463.21 + 5998.46i 0.206121 + 0.357013i
\(657\) 6007.66 + 10405.6i 0.356744 + 0.617899i
\(658\) −4945.59 −0.293008
\(659\) −507.660 879.293i −0.0300085 0.0519763i 0.850631 0.525763i \(-0.176220\pi\)
−0.880640 + 0.473787i \(0.842887\pi\)
\(660\) −4087.65 + 7080.02i −0.241078 + 0.417560i
\(661\) 11824.2 20480.2i 0.695778 1.20512i −0.274140 0.961690i \(-0.588393\pi\)
0.969918 0.243433i \(-0.0782734\pi\)
\(662\) −7018.49 −0.412056
\(663\) 0 0
\(664\) −2033.66 −0.118857
\(665\) −239.632 + 415.055i −0.0139737 + 0.0242032i
\(666\) −1611.70 + 2791.55i −0.0937720 + 0.162418i
\(667\) 24092.3 + 41729.2i 1.39859 + 2.42243i
\(668\) 12813.4 0.742164
\(669\) −524.732 908.863i −0.0303248 0.0525242i
\(670\) −3718.13 6439.99i −0.214394 0.371341i
\(671\) 24894.9 1.43228
\(672\) −246.341 426.675i −0.0141411 0.0244931i
\(673\) −8873.48 + 15369.3i −0.508243 + 0.880303i 0.491711 + 0.870758i \(0.336372\pi\)
−0.999954 + 0.00954455i \(0.996962\pi\)
\(674\) 1834.82 3178.00i 0.104858 0.181620i
\(675\) −7764.85 −0.442769
\(676\) 0 0
\(677\) 10754.2 0.610511 0.305256 0.952270i \(-0.401258\pi\)
0.305256 + 0.952270i \(0.401258\pi\)
\(678\) −2609.07 + 4519.04i −0.147789 + 0.255977i
\(679\) 2759.84 4780.19i 0.155984 0.270172i
\(680\) 917.978 + 1589.99i 0.0517689 + 0.0896664i
\(681\) −19061.9 −1.07262
\(682\) −4773.71 8268.31i −0.268028 0.464238i
\(683\) −11990.9 20768.8i −0.671768 1.16354i −0.977402 0.211387i \(-0.932202\pi\)
0.305635 0.952149i \(-0.401131\pi\)
\(684\) 725.815 0.0405734
\(685\) 7455.63 + 12913.5i 0.415862 + 0.720293i
\(686\) −2807.77 + 4863.21i −0.156270 + 0.270668i
\(687\) 1631.71 2826.20i 0.0906166 0.156953i
\(688\) −5704.13 −0.316087
\(689\) 0 0
\(690\) −10000.1 −0.551737
\(691\) 14500.7 25116.0i 0.798312 1.38272i −0.122403 0.992480i \(-0.539060\pi\)
0.920715 0.390236i \(-0.127607\pi\)
\(692\) −3798.76 + 6579.65i −0.208681 + 0.361446i
\(693\) 1863.21 + 3227.17i 0.102132 + 0.176898i
\(694\) −14518.6 −0.794119
\(695\) −7151.09 12386.1i −0.390297 0.676014i
\(696\) −4416.73 7650.00i −0.240540 0.416627i
\(697\) 11645.9 0.632882
\(698\) −1795.24 3109.44i −0.0973505 0.168616i
\(699\) 8709.78 15085.8i 0.471293 0.816304i
\(700\) −438.804 + 760.030i −0.0236932 + 0.0410378i
\(701\) −31031.5 −1.67196 −0.835979 0.548761i \(-0.815100\pi\)
−0.835979 + 0.548761i \(0.815100\pi\)
\(702\) 0 0
\(703\) 1588.45 0.0852199
\(704\) 2091.92 3623.31i 0.111992 0.193976i
\(705\) 9201.30 15937.1i 0.491548 0.851386i
\(706\) −4552.38 7884.94i −0.242678 0.420331i
\(707\) −6149.16 −0.327105
\(708\) 1688.33 + 2924.27i 0.0896206 + 0.155227i
\(709\) −2191.29 3795.43i −0.116073 0.201044i 0.802135 0.597143i \(-0.203697\pi\)
−0.918208 + 0.396098i \(0.870364\pi\)
\(710\) 1125.42 0.0594877
\(711\) −2615.12 4529.52i −0.137939 0.238917i
\(712\) 1490.45 2581.54i 0.0784508 0.135881i
\(713\) 5839.27 10113.9i 0.306707 0.531232i
\(714\) −828.380 −0.0434192
\(715\) 0 0
\(716\) 10603.6 0.553455
\(717\) −4201.08 + 7276.49i −0.218818 + 0.379004i
\(718\) 10165.4 17607.0i 0.528369 0.915162i
\(719\) 14382.3 + 24910.9i 0.745994 + 1.29210i 0.949729 + 0.313073i \(0.101358\pi\)
−0.203735 + 0.979026i \(0.565308\pi\)
\(720\) −1852.03 −0.0958625
\(721\) 442.971 + 767.248i 0.0228808 + 0.0396308i
\(722\) 6680.16 + 11570.4i 0.344335 + 0.596406i
\(723\) −7238.89 −0.372361
\(724\) 4579.88 + 7932.59i 0.235097 + 0.407200i
\(725\) −7867.46 + 13626.8i −0.403021 + 0.698052i
\(726\) 10784.2 18678.7i 0.551291 0.954864i
\(727\) 25408.5 1.29621 0.648107 0.761549i \(-0.275561\pi\)
0.648107 + 0.761549i \(0.275561\pi\)
\(728\) 0 0
\(729\) 17134.5 0.870525
\(730\) −7554.16 + 13084.2i −0.383003 + 0.663381i
\(731\) −4795.37 + 8305.82i −0.242631 + 0.420249i
\(732\) −2791.28 4834.64i −0.140941 0.244117i
\(733\) 22341.8 1.12580 0.562902 0.826524i \(-0.309685\pi\)
0.562902 + 0.826524i \(0.309685\pi\)
\(734\) 10401.6 + 18016.0i 0.523063 + 0.905972i
\(735\) −5085.94 8809.10i −0.255235 0.442080i
\(736\) 5117.73 0.256307
\(737\) 14246.3 + 24675.2i 0.712032 + 1.23328i
\(738\) −5873.91 + 10173.9i −0.292983 + 0.507461i
\(739\) −4105.45 + 7110.84i −0.204359 + 0.353960i −0.949928 0.312468i \(-0.898844\pi\)
0.745569 + 0.666428i \(0.232178\pi\)
\(740\) −4053.18 −0.201349
\(741\) 0 0
\(742\) 2264.04 0.112016
\(743\) −16376.1 + 28364.3i −0.808590 + 1.40052i 0.105251 + 0.994446i \(0.466435\pi\)
−0.913841 + 0.406073i \(0.866898\pi\)
\(744\) −1070.48 + 1854.13i −0.0527498 + 0.0913653i
\(745\) 3825.90 + 6626.65i 0.188148 + 0.325881i
\(746\) −15906.8 −0.780684
\(747\) −1724.63 2987.14i −0.0844724 0.146310i
\(748\) −3517.29 6092.13i −0.171932 0.297794i
\(749\) −1642.87 −0.0801455
\(750\) −5540.83 9597.00i −0.269763 0.467244i
\(751\) −4453.70 + 7714.04i −0.216402 + 0.374819i −0.953705 0.300742i \(-0.902766\pi\)
0.737303 + 0.675562i \(0.236099\pi\)
\(752\) −4708.91 + 8156.08i −0.228346 + 0.395507i
\(753\) 27361.0 1.32416
\(754\) 0 0
\(755\) −17729.4 −0.854620
\(756\) 1249.22 2163.71i 0.0600973 0.104092i
\(757\) 5372.32 9305.13i 0.257940 0.446765i −0.707750 0.706463i \(-0.750290\pi\)
0.965690 + 0.259698i \(0.0836231\pi\)
\(758\) 9014.81 + 15614.1i 0.431969 + 0.748193i
\(759\) 38316.2 1.83240
\(760\) 456.328 + 790.383i 0.0217799 + 0.0377240i
\(761\) −8498.89 14720.5i −0.404841 0.701206i 0.589462 0.807796i \(-0.299340\pi\)
−0.994303 + 0.106590i \(0.966007\pi\)
\(762\) 8588.30 0.408296
\(763\) 2796.64 + 4843.93i 0.132694 + 0.229832i
\(764\) 676.627 1171.95i 0.0320412 0.0554970i
\(765\) −1556.97 + 2696.75i −0.0735849 + 0.127453i
\(766\) 4992.48 0.235490
\(767\) 0 0
\(768\) −938.208 −0.0440816
\(769\) 9516.21 16482.6i 0.446246 0.772921i −0.551892 0.833916i \(-0.686094\pi\)
0.998138 + 0.0609948i \(0.0194273\pi\)
\(770\) −2342.84 + 4057.92i −0.109649 + 0.189918i
\(771\) −1016.94 1761.39i −0.0475022 0.0822763i
\(772\) 10736.2 0.500524
\(773\) 11875.3 + 20568.6i 0.552555 + 0.957053i 0.998089 + 0.0617879i \(0.0196802\pi\)
−0.445535 + 0.895265i \(0.646986\pi\)
\(774\) −4837.35 8378.53i −0.224644 0.389096i
\(775\) 3813.68 0.176763
\(776\) −5255.54 9102.86i −0.243122 0.421100i
\(777\) 914.393 1583.78i 0.0422184 0.0731244i
\(778\) −10896.9 + 18873.9i −0.502148 + 0.869746i
\(779\) 5789.17 0.266263
\(780\) 0 0
\(781\) −4312.12 −0.197567
\(782\) 4302.40 7451.97i 0.196743 0.340770i
\(783\) 22397.6 38793.8i 1.02225 1.77060i
\(784\) 2602.81 + 4508.20i 0.118568 + 0.205366i
\(785\) −29813.0 −1.35550
\(786\) −4136.21 7164.13i −0.187702 0.325109i
\(787\) 8912.97 + 15437.7i 0.403702 + 0.699232i 0.994169 0.107829i \(-0.0343900\pi\)
−0.590468 + 0.807061i \(0.701057\pi\)
\(788\) 7588.96 0.343078
\(789\) −3652.17 6325.75i −0.164792 0.285428i
\(790\) 3288.31 5695.52i 0.148092 0.256503i
\(791\) −1495.39 + 2590.09i −0.0672186 + 0.116426i
\(792\) 7096.16 0.318373
\(793\) 0 0
\(794\) −21774.3 −0.973225
\(795\) −4212.27 + 7295.86i −0.187917 + 0.325481i
\(796\) 4831.21 8367.90i 0.215123 0.372603i
\(797\) 13230.6 + 22916.1i 0.588020 + 1.01848i 0.994492 + 0.104817i \(0.0334257\pi\)
−0.406471 + 0.913663i \(0.633241\pi\)
\(798\) −411.788 −0.0182671
\(799\) 7917.42 + 13713.4i 0.350561 + 0.607190i
\(800\) 835.609 + 1447.32i 0.0369290 + 0.0639630i
\(801\) 5055.87 0.223021
\(802\) 9968.76 + 17266.4i 0.438914 + 0.760221i
\(803\) 28944.3 50132.9i 1.27201 2.20318i
\(804\) 3194.66 5533.31i 0.140133 0.242717i
\(805\) −5731.58 −0.250946
\(806\) 0 0
\(807\) 19085.8 0.832530
\(808\) −5854.89 + 10141.0i −0.254919 + 0.441532i
\(809\) −10936.7 + 18942.9i −0.475294 + 0.823234i −0.999600 0.0282967i \(-0.990992\pi\)
0.524305 + 0.851530i \(0.324325\pi\)
\(810\) 1523.05 + 2638.00i 0.0660674 + 0.114432i
\(811\) −39113.8 −1.69355 −0.846776 0.531949i \(-0.821460\pi\)
−0.846776 + 0.531949i \(0.821460\pi\)
\(812\) −2531.45 4384.60i −0.109404 0.189494i
\(813\) 7485.32 + 12965.0i 0.322905 + 0.559288i
\(814\) 15530.0 0.668706
\(815\) 1924.78 + 3333.81i 0.0827264 + 0.143286i
\(816\) −788.737 + 1366.13i −0.0338374 + 0.0586081i
\(817\) −2383.78 + 4128.83i −0.102078 + 0.176805i
\(818\) −8072.65 −0.345053
\(819\) 0 0
\(820\) −14772.0 −0.629097
\(821\) −13148.4 + 22773.7i −0.558931 + 0.968097i 0.438655 + 0.898655i \(0.355455\pi\)
−0.997586 + 0.0694411i \(0.977878\pi\)
\(822\) −6405.96 + 11095.4i −0.271817 + 0.470801i
\(823\) −12340.5 21374.4i −0.522678 0.905306i −0.999652 0.0263878i \(-0.991600\pi\)
0.476973 0.878918i \(-0.341734\pi\)
\(824\) 1687.09 0.0713258
\(825\) 6256.15 + 10836.0i 0.264014 + 0.457285i
\(826\) 967.667 + 1676.05i 0.0407620 + 0.0706019i
\(827\) 3081.68 0.129578 0.0647888 0.997899i \(-0.479363\pi\)
0.0647888 + 0.997899i \(0.479363\pi\)
\(828\) 4340.06 + 7517.20i 0.182159 + 0.315508i
\(829\) 4249.27 7359.95i 0.178026 0.308349i −0.763179 0.646188i \(-0.776362\pi\)
0.941204 + 0.337838i \(0.109696\pi\)
\(830\) 2168.59 3756.10i 0.0906901 0.157080i
\(831\) −1605.19 −0.0670076
\(832\) 0 0
\(833\) 8752.57 0.364056
\(834\) 6144.29 10642.2i 0.255107 0.441859i
\(835\) −13663.6 + 23666.0i −0.566284 + 0.980833i
\(836\) −1748.45 3028.40i −0.0723342 0.125286i
\(837\) −10857.0 −0.448356
\(838\) −15194.9 26318.3i −0.626370 1.08490i
\(839\) 9340.06 + 16177.5i 0.384332 + 0.665683i 0.991676 0.128756i \(-0.0410984\pi\)
−0.607344 + 0.794439i \(0.707765\pi\)
\(840\) 1050.74 0.0431596
\(841\) −33192.7 57491.4i −1.36097 2.35727i
\(842\) 10154.8 17588.5i 0.415625 0.719883i
\(843\) 10009.4 17336.8i 0.408947 0.708317i
\(844\) 10673.7 0.435312
\(845\) 0 0
\(846\) −15973.5 −0.649147
\(847\) 6180.94 10705.7i 0.250743 0.434300i
\(848\) 2155.69 3733.77i 0.0872958 0.151201i
\(849\) −1459.86 2528.55i −0.0590132 0.102214i
\(850\) 2809.93 0.113388
\(851\) 9498.26 + 16451.5i 0.382604 + 0.662690i
\(852\) 483.486 + 837.423i 0.0194413 + 0.0336733i
\(853\) −24129.9 −0.968574 −0.484287 0.874909i \(-0.660921\pi\)
−0.484287 + 0.874909i \(0.660921\pi\)
\(854\) −1599.82 2770.98i −0.0641040 0.111031i
\(855\) −773.972 + 1340.56i −0.0309582 + 0.0536212i
\(856\) −1564.24 + 2709.35i −0.0624588 + 0.108182i
\(857\) −7739.30 −0.308482 −0.154241 0.988033i \(-0.549293\pi\)
−0.154241 + 0.988033i \(0.549293\pi\)
\(858\) 0 0
\(859\) 4302.59 0.170899 0.0854496 0.996342i \(-0.472767\pi\)
0.0854496 + 0.996342i \(0.472767\pi\)
\(860\) 6082.59 10535.4i 0.241180 0.417736i
\(861\) 3332.54 5772.13i 0.131908 0.228471i
\(862\) −6616.84 11460.7i −0.261451 0.452846i
\(863\) 16253.2 0.641096 0.320548 0.947232i \(-0.396133\pi\)
0.320548 + 0.947232i \(0.396133\pi\)
\(864\) −2378.87 4120.32i −0.0936698 0.162241i
\(865\) −8101.62 14032.4i −0.318455 0.551580i
\(866\) 11395.2 0.447142
\(867\) −7676.61 13296.3i −0.300705 0.520836i
\(868\) −613.548 + 1062.70i −0.0239921 + 0.0415556i
\(869\) −12599.4 + 21822.7i −0.491834 + 0.851882i
\(870\) 18839.1 0.734144
\(871\) 0 0
\(872\) 10651.2 0.413642
\(873\) 8913.85 15439.2i 0.345576 0.598556i
\(874\) 2138.73 3704.38i 0.0827728 0.143367i
\(875\) −3175.73 5500.52i −0.122696 0.212516i
\(876\) −12981.2 −0.500680
\(877\) −4720.67 8176.43i −0.181762 0.314822i 0.760718 0.649082i \(-0.224847\pi\)
−0.942481 + 0.334260i \(0.891513\pi\)
\(878\) −436.007 755.186i −0.0167591 0.0290277i
\(879\) −6220.48 −0.238693
\(880\) 4461.44 + 7727.44i 0.170903 + 0.296014i
\(881\) 5936.22 10281.8i 0.227011 0.393194i −0.729910 0.683543i \(-0.760438\pi\)
0.956921 + 0.290349i \(0.0937714\pi\)
\(882\) −4414.59 + 7646.30i −0.168534 + 0.291910i
\(883\) −493.891 −0.0188231 −0.00941153 0.999956i \(-0.502996\pi\)
−0.00941153 + 0.999956i \(0.502996\pi\)
\(884\) 0 0
\(885\) −7201.40 −0.273528
\(886\) −6609.58 + 11448.1i −0.250624 + 0.434094i
\(887\) −10271.8 + 17791.3i −0.388832 + 0.673477i −0.992293 0.123916i \(-0.960455\pi\)
0.603461 + 0.797393i \(0.293788\pi\)
\(888\) −1741.27 3015.96i −0.0658031 0.113974i
\(889\) 4922.38 0.185705
\(890\) 3178.68 + 5505.64i 0.119719 + 0.207359i
\(891\) −5835.67 10107.7i −0.219419 0.380045i
\(892\) −1145.43 −0.0429953
\(893\) 3935.76 + 6816.93i 0.147486 + 0.255453i
\(894\) −3287.25 + 5693.68i −0.122978 + 0.213004i
\(895\) −11307.1 + 19584.5i −0.422296 + 0.731438i
\(896\) −537.734 −0.0200496
\(897\) 0 0
\(898\) −16030.6 −0.595711
\(899\) −11000.5 + 19053.4i −0.408106 + 0.706860i
\(900\) −1417.26 + 2454.77i −0.0524913 + 0.0909176i
\(901\) −3624.52 6277.85i −0.134018 0.232126i
\(902\) 56599.7 2.08932
\(903\) 2744.45 + 4753.53i 0.101140 + 0.175180i
\(904\) 2847.65 + 4932.27i 0.104769 + 0.181466i
\(905\) −19535.0 −0.717532
\(906\) −7616.64 13192.4i −0.279300 0.483762i
\(907\) 2693.30 4664.94i 0.0985994 0.170779i −0.812506 0.582953i \(-0.801897\pi\)
0.911105 + 0.412174i \(0.135230\pi\)
\(908\) −10402.5 + 18017.6i −0.380196 + 0.658520i
\(909\) −19860.8 −0.724688
\(910\) 0 0
\(911\) 31793.5 1.15627 0.578137 0.815940i \(-0.303780\pi\)
0.578137 + 0.815940i \(0.303780\pi\)
\(912\) −392.082 + 679.106i −0.0142359 + 0.0246573i
\(913\) −8309.08 + 14391.8i −0.301194 + 0.521684i
\(914\) −4507.03 7806.41i −0.163107 0.282509i
\(915\) 11905.9 0.430162
\(916\) −1780.92 3084.64i −0.0642392 0.111266i
\(917\) −2370.67 4106.12i −0.0853723 0.147869i
\(918\) −7999.51 −0.287607
\(919\) 21495.7 + 37231.6i 0.771575 + 1.33641i 0.936700 + 0.350134i \(0.113864\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(920\) −5457.29 + 9452.30i −0.195567 + 0.338732i
\(921\) −17199.0 + 29789.5i −0.615338 + 1.06580i
\(922\) −4207.10 −0.150275
\(923\) 0 0
\(924\) −4025.98 −0.143339
\(925\) −3101.70 + 5372.30i −0.110252 + 0.190962i
\(926\) 5468.28 9471.34i 0.194059 0.336121i
\(927\) 1430.72 + 2478.09i 0.0506916 + 0.0878004i
\(928\) −9641.21 −0.341043
\(929\) −20338.3 35227.0i −0.718277 1.24409i −0.961682 0.274168i \(-0.911598\pi\)
0.243405 0.969925i \(-0.421736\pi\)
\(930\) −2283.02 3954.30i −0.0804980 0.139427i
\(931\) 4350.91 0.153164
\(932\) −9506.22 16465.3i −0.334106 0.578688i
\(933\) −6015.25 + 10418.7i −0.211072 + 0.365588i
\(934\) 6043.79 10468.2i 0.211733 0.366733i
\(935\) 15002.6 0.524748
\(936\) 0 0
\(937\) 21008.3 0.732456 0.366228 0.930525i \(-0.380649\pi\)
0.366228 + 0.930525i \(0.380649\pi\)
\(938\) 1831.02 3171.42i 0.0637365 0.110395i
\(939\) −10856.6 + 18804.2i −0.377307 + 0.653515i
\(940\) −10042.7 17394.5i −0.348465 0.603558i
\(941\) −4525.50 −0.156777 −0.0783885 0.996923i \(-0.524977\pi\)
−0.0783885 + 0.996923i \(0.524977\pi\)
\(942\) −12807.8 22183.8i −0.442994 0.767289i
\(943\) 34616.7 + 59958.0i 1.19542 + 2.07052i
\(944\) 3685.43 0.127066
\(945\) 2664.20 + 4614.53i 0.0917106 + 0.158847i
\(946\) −23305.8 + 40366.9i −0.800991 + 1.38736i
\(947\) 13700.8 23730.5i 0.470134 0.814295i −0.529283 0.848445i \(-0.677539\pi\)
0.999417 + 0.0341499i \(0.0108724\pi\)
\(948\) 5650.70 0.193593
\(949\) 0 0
\(950\) 1396.82 0.0477040
\(951\) −11852.0 + 20528.2i −0.404129 + 0.699973i
\(952\) −452.065 + 782.999i −0.0153902 + 0.0266567i
\(953\) −13113.1 22712.6i −0.445725 0.772017i 0.552378 0.833594i \(-0.313721\pi\)
−0.998102 + 0.0615763i \(0.980387\pi\)
\(954\) 7312.49 0.248166
\(955\) 1443.04 + 2499.42i 0.0488960 + 0.0846904i
\(956\) 4585.24 + 7941.87i 0.155123 + 0.268680i
\(957\) −72183.2 −2.43819
\(958\) −8481.30 14690.0i −0.286032 0.495421i
\(959\) −3671.58 + 6359.36i −0.123630 + 0.214134i
\(960\) 1000.46 1732.84i 0.0336350 0.0582576i
\(961\) −24458.6 −0.821007
\(962\) 0 0
\(963\) −5306.19 −0.177559
\(964\) −3950.42 + 6842.32i −0.131986 + 0.228606i
\(965\) −11448.5 + 19829.5i −0.381909 + 0.661485i
\(966\) −2462.32 4264.86i −0.0820122 0.142049i
\(967\) 20843.6 0.693158 0.346579 0.938021i \(-0.387343\pi\)
0.346579 + 0.938021i \(0.387343\pi\)
\(968\) −11770.3 20386.7i −0.390817 0.676916i
\(969\) 659.234 + 1141.83i 0.0218552 + 0.0378542i
\(970\) 22417.0 0.742026
\(971\) −16288.6 28212.7i −0.538339 0.932430i −0.998994 0.0448508i \(-0.985719\pi\)
0.460655 0.887579i \(-0.347615\pi\)
\(972\) 6720.05 11639.5i 0.221755 0.384091i
\(973\) 3521.60 6099.59i 0.116030 0.200970i
\(974\) 13246.7 0.435782
\(975\) 0 0
\(976\) −6093.05 −0.199830
\(977\) 21932.0 37987.4i 0.718186 1.24394i −0.243531 0.969893i \(-0.578306\pi\)
0.961718 0.274042i \(-0.0883608\pi\)
\(978\) −1653.79 + 2864.45i −0.0540719 + 0.0936553i
\(979\) −12179.3 21095.2i −0.397602 0.688667i
\(980\) −11102.0 −0.361879
\(981\) 9032.70 + 15645.1i 0.293977 + 0.509184i
\(982\) −16379.4 28369.9i −0.532267 0.921914i
\(983\) −14758.8 −0.478875 −0.239437 0.970912i \(-0.576963\pi\)
−0.239437 + 0.970912i \(0.576963\pi\)
\(984\) −6346.12 10991.8i −0.205596 0.356103i
\(985\) −8092.48 + 14016.6i −0.261775 + 0.453407i
\(986\) −8105.21 + 14038.6i −0.261788 + 0.453430i
\(987\) 9062.49 0.292262
\(988\) 0 0
\(989\) −57016.0 −1.83317
\(990\) −7566.99 + 13106.4i −0.242924 + 0.420757i
\(991\) −24311.2 + 42108.2i −0.779284 + 1.34976i 0.153071 + 0.988215i \(0.451084\pi\)
−0.932355 + 0.361544i \(0.882250\pi\)
\(992\) 1168.37 + 2023.68i 0.0373950 + 0.0647700i
\(993\) 12860.9 0.411006
\(994\) 277.110 + 479.969i 0.00884246 + 0.0153156i
\(995\) 10303.5 + 17846.2i 0.328285 + 0.568606i
\(996\) 3726.55 0.118554
\(997\) 9406.17 + 16292.0i 0.298793 + 0.517525i 0.975860 0.218397i \(-0.0700827\pi\)
−0.677067 + 0.735921i \(0.736749\pi\)
\(998\) −7915.70 + 13710.4i −0.251069 + 0.434865i
\(999\) 8830.12 15294.2i 0.279652 0.484372i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.k.191.2 6
13.2 odd 12 338.4.e.h.23.2 12
13.3 even 3 inner 338.4.c.k.315.2 6
13.4 even 6 338.4.a.j.1.2 3
13.5 odd 4 338.4.e.h.147.5 12
13.6 odd 12 338.4.b.f.337.2 6
13.7 odd 12 338.4.b.f.337.5 6
13.8 odd 4 338.4.e.h.147.2 12
13.9 even 3 338.4.a.k.1.2 yes 3
13.10 even 6 338.4.c.l.315.2 6
13.11 odd 12 338.4.e.h.23.5 12
13.12 even 2 338.4.c.l.191.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.2 3 13.4 even 6
338.4.a.k.1.2 yes 3 13.9 even 3
338.4.b.f.337.2 6 13.6 odd 12
338.4.b.f.337.5 6 13.7 odd 12
338.4.c.k.191.2 6 1.1 even 1 trivial
338.4.c.k.315.2 6 13.3 even 3 inner
338.4.c.l.191.2 6 13.12 even 2
338.4.c.l.315.2 6 13.10 even 6
338.4.e.h.23.2 12 13.2 odd 12
338.4.e.h.23.5 12 13.11 odd 12
338.4.e.h.147.2 12 13.8 odd 4
338.4.e.h.147.5 12 13.5 odd 4