Properties

Label 338.4.e.h.23.1
Level $338$
Weight $4$
Character 338.23
Analytic conductor $19.943$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(23,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.1
Root \(-0.385418 + 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 338.23
Dual form 338.4.e.h.147.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 + 1.00000i) q^{2} +(-0.202907 - 0.351445i) q^{3} +(2.00000 - 3.46410i) q^{4} +6.36227i q^{5} +(0.702889 + 0.405813i) q^{6} +(-2.20892 - 1.27532i) q^{7} +8.00000i q^{8} +(13.4177 - 23.2401i) q^{9} +(-6.36227 - 11.0198i) q^{10} +(-22.6214 + 13.0605i) q^{11} -1.62325 q^{12} +5.10129 q^{14} +(2.23599 - 1.29095i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-46.8543 + 81.1540i) q^{17} +53.6706i q^{18} +(32.2446 + 18.6164i) q^{19} +(22.0396 + 12.7245i) q^{20} +1.03509i q^{21} +(26.1209 - 45.2428i) q^{22} +(-52.4630 - 90.8686i) q^{23} +(2.81156 - 1.62325i) q^{24} +84.5215 q^{25} -21.8471 q^{27} +(-8.83570 + 5.10129i) q^{28} +(-124.772 - 216.112i) q^{29} +(-2.58189 + 4.47197i) q^{30} +278.993i q^{31} +(27.7128 + 16.0000i) q^{32} +(9.18006 + 5.30011i) q^{33} -187.417i q^{34} +(8.11395 - 14.0538i) q^{35} +(-53.6706 - 92.9603i) q^{36} +(9.43976 - 5.45005i) q^{37} -74.4658 q^{38} -50.8982 q^{40} +(-321.621 + 185.688i) q^{41} +(-1.03509 - 1.79282i) q^{42} +(-206.859 + 358.290i) q^{43} +104.484i q^{44} +(147.860 + 85.3668i) q^{45} +(181.737 + 104.926i) q^{46} -238.631i q^{47} +(-3.24651 + 5.62311i) q^{48} +(-168.247 - 291.413i) q^{49} +(-146.396 + 84.5215i) q^{50} +38.0282 q^{51} -424.907 q^{53} +(37.8403 - 21.8471i) q^{54} +(-83.0942 - 143.923i) q^{55} +(10.2026 - 17.6714i) q^{56} -15.1096i q^{57} +(432.224 + 249.544i) q^{58} +(-670.696 - 387.226i) q^{59} -10.3276i q^{60} +(61.7113 - 106.887i) q^{61} +(-278.993 - 483.229i) q^{62} +(-59.2772 + 34.2237i) q^{63} -64.0000 q^{64} -21.2004 q^{66} +(-763.491 + 440.802i) q^{67} +(187.417 + 324.616i) q^{68} +(-21.2902 + 36.8757i) q^{69} +32.4558i q^{70} +(-102.854 - 59.3826i) q^{71} +(185.921 + 107.341i) q^{72} -209.319i q^{73} +(-10.9001 + 18.8795i) q^{74} +(-17.1500 - 29.7046i) q^{75} +(128.978 - 74.4658i) q^{76} +66.6253 q^{77} -532.358 q^{79} +(88.1582 - 50.8982i) q^{80} +(-357.844 - 619.804i) q^{81} +(371.375 - 643.241i) q^{82} -376.511i q^{83} +(3.58564 + 2.07017i) q^{84} +(-516.324 - 298.100i) q^{85} -827.436i q^{86} +(-50.6342 + 87.7010i) q^{87} +(-104.484 - 180.971i) q^{88} +(-36.9218 + 21.3168i) q^{89} -341.467 q^{90} -419.704 q^{92} +(98.0505 - 56.6095i) q^{93} +(238.631 + 413.321i) q^{94} +(-118.443 + 205.149i) q^{95} -12.9860i q^{96} +(-553.666 - 319.659i) q^{97} +(582.825 + 336.494i) q^{98} +700.963i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{3} + 24 q^{4} - 18 q^{9} - 48 q^{10} + 192 q^{12} + 216 q^{14} - 96 q^{16} - 180 q^{17} + 328 q^{22} + 38 q^{23} + 244 q^{25} - 276 q^{27} + 202 q^{29} + 360 q^{30} + 916 q^{35} + 72 q^{36}+ \cdots + 3658 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 + 1.00000i −0.612372 + 0.353553i
\(3\) −0.202907 0.351445i −0.0390494 0.0676355i 0.845840 0.533436i \(-0.179100\pi\)
−0.884890 + 0.465801i \(0.845766\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 6.36227i 0.569059i 0.958667 + 0.284529i \(0.0918374\pi\)
−0.958667 + 0.284529i \(0.908163\pi\)
\(6\) 0.702889 + 0.405813i 0.0478255 + 0.0276121i
\(7\) −2.20892 1.27532i −0.119271 0.0688610i 0.439178 0.898400i \(-0.355270\pi\)
−0.558448 + 0.829539i \(0.688603\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 13.4177 23.2401i 0.496950 0.860743i
\(10\) −6.36227 11.0198i −0.201193 0.348476i
\(11\) −22.6214 + 13.0605i −0.620055 + 0.357989i −0.776890 0.629636i \(-0.783204\pi\)
0.156835 + 0.987625i \(0.449871\pi\)
\(12\) −1.62325 −0.0390494
\(13\) 0 0
\(14\) 5.10129 0.0973841
\(15\) 2.23599 1.29095i 0.0384886 0.0222214i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −46.8543 + 81.1540i −0.668461 + 1.15781i 0.309874 + 0.950778i \(0.399713\pi\)
−0.978335 + 0.207030i \(0.933620\pi\)
\(18\) 53.6706i 0.702794i
\(19\) 32.2446 + 18.6164i 0.389338 + 0.224784i 0.681873 0.731470i \(-0.261166\pi\)
−0.292535 + 0.956255i \(0.594499\pi\)
\(20\) 22.0396 + 12.7245i 0.246410 + 0.142265i
\(21\) 1.03509i 0.0107559i
\(22\) 26.1209 45.2428i 0.253136 0.438445i
\(23\) −52.4630 90.8686i −0.475622 0.823801i 0.523988 0.851725i \(-0.324443\pi\)
−0.999610 + 0.0279247i \(0.991110\pi\)
\(24\) 2.81156 1.62325i 0.0239128 0.0138060i
\(25\) 84.5215 0.676172
\(26\) 0 0
\(27\) −21.8471 −0.155721
\(28\) −8.83570 + 5.10129i −0.0596354 + 0.0344305i
\(29\) −124.772 216.112i −0.798953 1.38383i −0.920299 0.391216i \(-0.872054\pi\)
0.121346 0.992610i \(-0.461279\pi\)
\(30\) −2.58189 + 4.47197i −0.0157129 + 0.0272156i
\(31\) 278.993i 1.61641i 0.588904 + 0.808203i \(0.299559\pi\)
−0.588904 + 0.808203i \(0.700441\pi\)
\(32\) 27.7128 + 16.0000i 0.153093 + 0.0883883i
\(33\) 9.18006 + 5.30011i 0.0484256 + 0.0279585i
\(34\) 187.417i 0.945346i
\(35\) 8.11395 14.0538i 0.0391860 0.0678721i
\(36\) −53.6706 92.9603i −0.248475 0.430372i
\(37\) 9.43976 5.45005i 0.0419429 0.0242157i −0.478882 0.877879i \(-0.658958\pi\)
0.520825 + 0.853664i \(0.325624\pi\)
\(38\) −74.4658 −0.317893
\(39\) 0 0
\(40\) −50.8982 −0.201193
\(41\) −321.621 + 185.688i −1.22509 + 0.707306i −0.965999 0.258547i \(-0.916756\pi\)
−0.259091 + 0.965853i \(0.583423\pi\)
\(42\) −1.03509 1.79282i −0.00380279 0.00658663i
\(43\) −206.859 + 358.290i −0.733621 + 1.27067i 0.221705 + 0.975114i \(0.428838\pi\)
−0.955326 + 0.295555i \(0.904496\pi\)
\(44\) 104.484i 0.357989i
\(45\) 147.860 + 85.3668i 0.489814 + 0.282794i
\(46\) 181.737 + 104.926i 0.582515 + 0.336315i
\(47\) 238.631i 0.740595i −0.928913 0.370297i \(-0.879256\pi\)
0.928913 0.370297i \(-0.120744\pi\)
\(48\) −3.24651 + 5.62311i −0.00976235 + 0.0169089i
\(49\) −168.247 291.413i −0.490516 0.849599i
\(50\) −146.396 + 84.5215i −0.414069 + 0.239063i
\(51\) 38.0282 0.104412
\(52\) 0 0
\(53\) −424.907 −1.10124 −0.550618 0.834757i \(-0.685608\pi\)
−0.550618 + 0.834757i \(0.685608\pi\)
\(54\) 37.8403 21.8471i 0.0953594 0.0550558i
\(55\) −83.0942 143.923i −0.203717 0.352848i
\(56\) 10.2026 17.6714i 0.0243460 0.0421686i
\(57\) 15.1096i 0.0351108i
\(58\) 432.224 + 249.544i 0.978513 + 0.564945i
\(59\) −670.696 387.226i −1.47995 0.854451i −0.480210 0.877154i \(-0.659439\pi\)
−0.999742 + 0.0227031i \(0.992773\pi\)
\(60\) 10.3276i 0.0222214i
\(61\) 61.7113 106.887i 0.129530 0.224352i −0.793965 0.607964i \(-0.791987\pi\)
0.923495 + 0.383612i \(0.125320\pi\)
\(62\) −278.993 483.229i −0.571486 0.989842i
\(63\) −59.2772 + 34.2237i −0.118543 + 0.0684410i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −21.2004 −0.0395393
\(67\) −763.491 + 440.802i −1.39217 + 0.803769i −0.993555 0.113350i \(-0.963842\pi\)
−0.398614 + 0.917119i \(0.630509\pi\)
\(68\) 187.417 + 324.616i 0.334230 + 0.578904i
\(69\) −21.2902 + 36.8757i −0.0371455 + 0.0643378i
\(70\) 32.4558i 0.0554173i
\(71\) −102.854 59.3826i −0.171922 0.0992593i 0.411570 0.911378i \(-0.364981\pi\)
−0.583492 + 0.812119i \(0.698314\pi\)
\(72\) 185.921 + 107.341i 0.304319 + 0.175698i
\(73\) 209.319i 0.335602i −0.985821 0.167801i \(-0.946333\pi\)
0.985821 0.167801i \(-0.0536666\pi\)
\(74\) −10.9001 + 18.8795i −0.0171231 + 0.0296581i
\(75\) −17.1500 29.7046i −0.0264041 0.0457332i
\(76\) 128.978 74.4658i 0.194669 0.112392i
\(77\) 66.6253 0.0986059
\(78\) 0 0
\(79\) −532.358 −0.758164 −0.379082 0.925363i \(-0.623760\pi\)
−0.379082 + 0.925363i \(0.623760\pi\)
\(80\) 88.1582 50.8982i 0.123205 0.0711324i
\(81\) −357.844 619.804i −0.490869 0.850211i
\(82\) 371.375 643.241i 0.500141 0.866270i
\(83\) 376.511i 0.497921i −0.968514 0.248960i \(-0.919911\pi\)
0.968514 0.248960i \(-0.0800889\pi\)
\(84\) 3.58564 + 2.07017i 0.00465745 + 0.00268898i
\(85\) −516.324 298.100i −0.658861 0.380393i
\(86\) 827.436i 1.03750i
\(87\) −50.6342 + 87.7010i −0.0623972 + 0.108075i
\(88\) −104.484 180.971i −0.126568 0.219223i
\(89\) −36.9218 + 21.3168i −0.0439742 + 0.0253885i −0.521826 0.853052i \(-0.674749\pi\)
0.477852 + 0.878441i \(0.341416\pi\)
\(90\) −341.467 −0.399931
\(91\) 0 0
\(92\) −419.704 −0.475622
\(93\) 98.0505 56.6095i 0.109326 0.0631196i
\(94\) 238.631 + 413.321i 0.261840 + 0.453520i
\(95\) −118.443 + 205.149i −0.127916 + 0.221556i
\(96\) 12.9860i 0.0138060i
\(97\) −553.666 319.659i −0.579550 0.334603i 0.181405 0.983409i \(-0.441936\pi\)
−0.760954 + 0.648805i \(0.775269\pi\)
\(98\) 582.825 + 336.494i 0.600757 + 0.346847i
\(99\) 700.963i 0.711611i
\(100\) 169.043 292.791i 0.169043 0.292791i
\(101\) 237.419 + 411.222i 0.233902 + 0.405130i 0.958953 0.283565i \(-0.0915172\pi\)
−0.725051 + 0.688695i \(0.758184\pi\)
\(102\) −65.8667 + 38.0282i −0.0639390 + 0.0369152i
\(103\) 1100.53 1.05280 0.526402 0.850236i \(-0.323541\pi\)
0.526402 + 0.850236i \(0.323541\pi\)
\(104\) 0 0
\(105\) −6.58550 −0.00612075
\(106\) 735.961 424.907i 0.674367 0.389346i
\(107\) 285.191 + 493.966i 0.257668 + 0.446294i 0.965617 0.259970i \(-0.0837126\pi\)
−0.707949 + 0.706264i \(0.750379\pi\)
\(108\) −43.6942 + 75.6805i −0.0389303 + 0.0674293i
\(109\) 593.029i 0.521118i −0.965458 0.260559i \(-0.916093\pi\)
0.965458 0.260559i \(-0.0839069\pi\)
\(110\) 287.847 + 166.188i 0.249501 + 0.144050i
\(111\) −3.83078 2.21170i −0.00327569 0.00189122i
\(112\) 40.8103i 0.0344305i
\(113\) −919.559 + 1592.72i −0.765529 + 1.32594i 0.174437 + 0.984668i \(0.444189\pi\)
−0.939966 + 0.341267i \(0.889144\pi\)
\(114\) 15.1096 + 26.1706i 0.0124135 + 0.0215009i
\(115\) 578.131 333.784i 0.468791 0.270657i
\(116\) −998.178 −0.798953
\(117\) 0 0
\(118\) 1548.91 1.20838
\(119\) 206.995 119.509i 0.159456 0.0920617i
\(120\) 10.3276 + 17.8879i 0.00785645 + 0.0136078i
\(121\) −324.348 + 561.788i −0.243688 + 0.422080i
\(122\) 246.845i 0.183183i
\(123\) 130.518 + 75.3545i 0.0956781 + 0.0552398i
\(124\) 966.459 + 557.985i 0.699924 + 0.404101i
\(125\) 1333.03i 0.953841i
\(126\) 68.4474 118.554i 0.0483951 0.0838227i
\(127\) 1234.26 + 2137.79i 0.862382 + 1.49369i 0.869623 + 0.493716i \(0.164362\pi\)
−0.00724155 + 0.999974i \(0.502305\pi\)
\(128\) 110.851 64.0000i 0.0765466 0.0441942i
\(129\) 167.892 0.114590
\(130\) 0 0
\(131\) 2279.82 1.52053 0.760264 0.649615i \(-0.225070\pi\)
0.760264 + 0.649615i \(0.225070\pi\)
\(132\) 36.7202 21.2004i 0.0242128 0.0139793i
\(133\) −47.4840 82.2446i −0.0309578 0.0536204i
\(134\) 881.604 1526.98i 0.568351 0.984412i
\(135\) 138.997i 0.0886146i
\(136\) −649.232 374.834i −0.409347 0.236336i
\(137\) −380.453 219.654i −0.237257 0.136981i 0.376658 0.926352i \(-0.377073\pi\)
−0.613916 + 0.789372i \(0.710406\pi\)
\(138\) 85.1607i 0.0525316i
\(139\) 1089.47 1887.02i 0.664803 1.15147i −0.314536 0.949246i \(-0.601849\pi\)
0.979339 0.202227i \(-0.0648178\pi\)
\(140\) −32.4558 56.2151i −0.0195930 0.0339360i
\(141\) −83.8657 + 48.4199i −0.0500905 + 0.0289198i
\(142\) 237.530 0.140374
\(143\) 0 0
\(144\) −429.365 −0.248475
\(145\) 1374.96 793.835i 0.787479 0.454651i
\(146\) 209.319 + 362.552i 0.118653 + 0.205514i
\(147\) −68.2769 + 118.259i −0.0383087 + 0.0663527i
\(148\) 43.6004i 0.0242157i
\(149\) −2484.17 1434.24i −1.36585 0.788572i −0.375453 0.926842i \(-0.622513\pi\)
−0.990395 + 0.138269i \(0.955846\pi\)
\(150\) 59.4092 + 34.2999i 0.0323383 + 0.0186705i
\(151\) 2202.00i 1.18673i 0.804933 + 0.593366i \(0.202201\pi\)
−0.804933 + 0.593366i \(0.797799\pi\)
\(152\) −148.932 + 257.957i −0.0794733 + 0.137652i
\(153\) 1257.35 + 2177.79i 0.664383 + 1.15075i
\(154\) −115.398 + 66.6253i −0.0603835 + 0.0348624i
\(155\) −1775.03 −0.919830
\(156\) 0 0
\(157\) 865.139 0.439781 0.219890 0.975525i \(-0.429430\pi\)
0.219890 + 0.975525i \(0.429430\pi\)
\(158\) 922.071 532.358i 0.464278 0.268051i
\(159\) 86.2165 + 149.331i 0.0430026 + 0.0744827i
\(160\) −101.796 + 176.316i −0.0502982 + 0.0871190i
\(161\) 267.629i 0.131007i
\(162\) 1239.61 + 715.688i 0.601190 + 0.347097i
\(163\) 918.712 + 530.419i 0.441467 + 0.254881i 0.704220 0.709982i \(-0.251297\pi\)
−0.262753 + 0.964863i \(0.584630\pi\)
\(164\) 1485.50i 0.707306i
\(165\) −33.7207 + 58.4060i −0.0159100 + 0.0275570i
\(166\) 376.511 + 652.136i 0.176042 + 0.304913i
\(167\) −1215.97 + 702.043i −0.563443 + 0.325304i −0.754526 0.656270i \(-0.772133\pi\)
0.191083 + 0.981574i \(0.438800\pi\)
\(168\) −8.28069 −0.00380279
\(169\) 0 0
\(170\) 1192.40 0.537958
\(171\) 865.295 499.578i 0.386963 0.223413i
\(172\) 827.436 + 1433.16i 0.366810 + 0.635334i
\(173\) 511.110 885.268i 0.224618 0.389050i −0.731587 0.681749i \(-0.761220\pi\)
0.956205 + 0.292698i \(0.0945532\pi\)
\(174\) 202.537i 0.0882430i
\(175\) −186.702 107.792i −0.0806475 0.0465619i
\(176\) 361.942 + 208.967i 0.155014 + 0.0894972i
\(177\) 314.283i 0.133463i
\(178\) 42.6336 73.8436i 0.0179524 0.0310945i
\(179\) 209.112 + 362.192i 0.0873169 + 0.151237i 0.906376 0.422472i \(-0.138837\pi\)
−0.819059 + 0.573709i \(0.805504\pi\)
\(180\) 591.439 341.467i 0.244907 0.141397i
\(181\) 2816.05 1.15644 0.578219 0.815882i \(-0.303748\pi\)
0.578219 + 0.815882i \(0.303748\pi\)
\(182\) 0 0
\(183\) −50.0865 −0.0202322
\(184\) 726.949 419.704i 0.291258 0.168158i
\(185\) 34.6747 + 60.0584i 0.0137802 + 0.0238680i
\(186\) −113.219 + 196.101i −0.0446323 + 0.0773055i
\(187\) 2447.75i 0.957206i
\(188\) −826.643 477.263i −0.320687 0.185149i
\(189\) 48.2586 + 27.8621i 0.0185730 + 0.0107231i
\(190\) 473.772i 0.180900i
\(191\) −807.053 + 1397.86i −0.305740 + 0.529557i −0.977426 0.211279i \(-0.932237\pi\)
0.671686 + 0.740836i \(0.265570\pi\)
\(192\) 12.9860 + 22.4925i 0.00488117 + 0.00845444i
\(193\) 2131.39 1230.56i 0.794926 0.458951i −0.0467677 0.998906i \(-0.514892\pi\)
0.841694 + 0.539955i \(0.181559\pi\)
\(194\) 1278.64 0.473200
\(195\) 0 0
\(196\) −1345.98 −0.490516
\(197\) 2984.24 1722.95i 1.07928 0.623123i 0.148579 0.988901i \(-0.452530\pi\)
0.930702 + 0.365777i \(0.119197\pi\)
\(198\) −700.963 1214.10i −0.251592 0.435771i
\(199\) 1102.51 1909.61i 0.392739 0.680243i −0.600071 0.799947i \(-0.704861\pi\)
0.992810 + 0.119704i \(0.0381944\pi\)
\(200\) 676.172i 0.239063i
\(201\) 309.835 + 178.883i 0.108727 + 0.0627734i
\(202\) −822.445 474.839i −0.286470 0.165394i
\(203\) 636.500i 0.220067i
\(204\) 76.0563 131.733i 0.0261030 0.0452117i
\(205\) −1181.40 2046.24i −0.402499 0.697149i
\(206\) −1906.18 + 1100.53i −0.644708 + 0.372222i
\(207\) −2815.72 −0.945441
\(208\) 0 0
\(209\) −972.558 −0.321881
\(210\) 11.4064 6.58550i 0.00374818 0.00216401i
\(211\) 466.596 + 808.169i 0.152236 + 0.263681i 0.932049 0.362332i \(-0.118019\pi\)
−0.779813 + 0.626012i \(0.784686\pi\)
\(212\) −849.815 + 1471.92i −0.275309 + 0.476849i
\(213\) 48.1964i 0.0155041i
\(214\) −987.932 570.383i −0.315578 0.182199i
\(215\) −2279.54 1316.09i −0.723085 0.417473i
\(216\) 174.777i 0.0550558i
\(217\) 355.806 616.274i 0.111307 0.192790i
\(218\) 593.029 + 1027.16i 0.184243 + 0.319118i
\(219\) −73.5641 + 42.4723i −0.0226986 + 0.0131051i
\(220\) −664.754 −0.203717
\(221\) 0 0
\(222\) 8.84681 0.00267459
\(223\) −5511.05 + 3181.81i −1.65492 + 0.955469i −0.679915 + 0.733290i \(0.737984\pi\)
−0.975006 + 0.222179i \(0.928683\pi\)
\(224\) −40.8103 70.6856i −0.0121730 0.0210843i
\(225\) 1134.08 1964.28i 0.336024 0.582010i
\(226\) 3678.23i 1.08262i
\(227\) 718.377 + 414.755i 0.210046 + 0.121270i 0.601333 0.798999i \(-0.294637\pi\)
−0.391287 + 0.920269i \(0.627970\pi\)
\(228\) −52.3412 30.2192i −0.0152034 0.00877770i
\(229\) 5789.35i 1.67062i −0.549782 0.835308i \(-0.685289\pi\)
0.549782 0.835308i \(-0.314711\pi\)
\(230\) −667.568 + 1156.26i −0.191383 + 0.331485i
\(231\) −13.5187 23.4151i −0.00385050 0.00666926i
\(232\) 1728.89 998.178i 0.489256 0.282472i
\(233\) −320.751 −0.0901849 −0.0450924 0.998983i \(-0.514358\pi\)
−0.0450924 + 0.998983i \(0.514358\pi\)
\(234\) 0 0
\(235\) 1518.24 0.421442
\(236\) −2682.78 + 1548.91i −0.739976 + 0.427225i
\(237\) 108.019 + 187.094i 0.0296058 + 0.0512788i
\(238\) −239.017 + 413.990i −0.0650974 + 0.112752i
\(239\) 3582.11i 0.969487i 0.874656 + 0.484744i \(0.161087\pi\)
−0.874656 + 0.484744i \(0.838913\pi\)
\(240\) −35.7758 20.6552i −0.00962215 0.00555535i
\(241\) 4226.41 + 2440.12i 1.12966 + 0.652207i 0.943848 0.330379i \(-0.107177\pi\)
0.185808 + 0.982586i \(0.440510\pi\)
\(242\) 1297.39i 0.344627i
\(243\) −440.153 + 762.368i −0.116197 + 0.201259i
\(244\) −246.845 427.548i −0.0647649 0.112176i
\(245\) 1854.05 1070.43i 0.483472 0.279133i
\(246\) −301.418 −0.0781208
\(247\) 0 0
\(248\) −2231.94 −0.571486
\(249\) −132.323 + 76.3965i −0.0336772 + 0.0194435i
\(250\) −1333.03 2308.88i −0.337234 0.584106i
\(251\) −1490.11 + 2580.95i −0.374721 + 0.649036i −0.990285 0.139051i \(-0.955595\pi\)
0.615564 + 0.788087i \(0.288928\pi\)
\(252\) 273.790i 0.0684410i
\(253\) 2373.57 + 1370.38i 0.589823 + 0.340535i
\(254\) −4275.59 2468.51i −1.05620 0.609796i
\(255\) 241.946i 0.0594165i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −1927.96 3339.33i −0.467950 0.810513i 0.531379 0.847134i \(-0.321674\pi\)
−0.999329 + 0.0366210i \(0.988341\pi\)
\(258\) −290.798 + 167.892i −0.0701716 + 0.0405136i
\(259\) −27.8023 −0.00667008
\(260\) 0 0
\(261\) −6696.60 −1.58816
\(262\) −3948.77 + 2279.82i −0.931129 + 0.537588i
\(263\) 2215.59 + 3837.51i 0.519464 + 0.899738i 0.999744 + 0.0226228i \(0.00720168\pi\)
−0.480280 + 0.877115i \(0.659465\pi\)
\(264\) −42.4009 + 73.4405i −0.00988482 + 0.0171210i
\(265\) 2703.38i 0.626668i
\(266\) 164.489 + 94.9679i 0.0379154 + 0.0218904i
\(267\) 14.9834 + 8.65065i 0.00343433 + 0.00198281i
\(268\) 3526.42i 0.803769i
\(269\) −630.667 + 1092.35i −0.142946 + 0.247589i −0.928605 0.371071i \(-0.878991\pi\)
0.785659 + 0.618660i \(0.212324\pi\)
\(270\) 138.997 + 240.750i 0.0313300 + 0.0542651i
\(271\) −5370.00 + 3100.37i −1.20371 + 0.694960i −0.961377 0.275234i \(-0.911245\pi\)
−0.242329 + 0.970194i \(0.577911\pi\)
\(272\) 1499.34 0.334230
\(273\) 0 0
\(274\) 878.618 0.193720
\(275\) −1911.99 + 1103.89i −0.419264 + 0.242062i
\(276\) 85.1607 + 147.503i 0.0185727 + 0.0321689i
\(277\) −578.785 + 1002.48i −0.125544 + 0.217449i −0.921946 0.387319i \(-0.873401\pi\)
0.796401 + 0.604769i \(0.206734\pi\)
\(278\) 4357.88i 0.940173i
\(279\) 6483.81 + 3743.43i 1.39131 + 0.803273i
\(280\) 112.430 + 64.9116i 0.0239964 + 0.0138543i
\(281\) 6322.71i 1.34228i −0.741330 0.671141i \(-0.765805\pi\)
0.741330 0.671141i \(-0.234195\pi\)
\(282\) 96.8397 167.731i 0.0204494 0.0354193i
\(283\) −4654.17 8061.26i −0.977604 1.69326i −0.671060 0.741403i \(-0.734161\pi\)
−0.306544 0.951857i \(-0.599173\pi\)
\(284\) −411.414 + 237.530i −0.0859611 + 0.0496297i
\(285\) 96.1314 0.0199801
\(286\) 0 0
\(287\) 947.247 0.194823
\(288\) 743.682 429.365i 0.152159 0.0878492i
\(289\) −1934.14 3350.04i −0.393679 0.681872i
\(290\) −1587.67 + 2749.93i −0.321487 + 0.556832i
\(291\) 259.444i 0.0522642i
\(292\) −725.103 418.638i −0.145320 0.0839006i
\(293\) −438.378 253.098i −0.0874073 0.0504646i 0.455659 0.890154i \(-0.349404\pi\)
−0.543067 + 0.839690i \(0.682737\pi\)
\(294\) 273.108i 0.0541767i
\(295\) 2463.64 4267.15i 0.486233 0.842180i
\(296\) 43.6004 + 75.5181i 0.00856156 + 0.0148291i
\(297\) 494.211 285.333i 0.0965557 0.0557465i
\(298\) 5736.95 1.11521
\(299\) 0 0
\(300\) −137.200 −0.0264041
\(301\) 913.871 527.624i 0.174999 0.101036i
\(302\) −2202.00 3813.98i −0.419573 0.726722i
\(303\) 96.3479 166.879i 0.0182675 0.0316402i
\(304\) 595.726i 0.112392i
\(305\) 680.045 + 392.624i 0.127670 + 0.0737101i
\(306\) −4355.58 2514.70i −0.813700 0.469790i
\(307\) 4094.64i 0.761217i −0.924736 0.380608i \(-0.875715\pi\)
0.924736 0.380608i \(-0.124285\pi\)
\(308\) 133.251 230.797i 0.0246515 0.0426976i
\(309\) −223.305 386.776i −0.0411113 0.0712069i
\(310\) 3074.44 1775.03i 0.563278 0.325209i
\(311\) −8705.00 −1.58719 −0.793594 0.608448i \(-0.791792\pi\)
−0.793594 + 0.608448i \(0.791792\pi\)
\(312\) 0 0
\(313\) −3144.78 −0.567903 −0.283951 0.958839i \(-0.591645\pi\)
−0.283951 + 0.958839i \(0.591645\pi\)
\(314\) −1498.46 + 865.139i −0.269310 + 0.155486i
\(315\) −217.741 377.138i −0.0389469 0.0674581i
\(316\) −1064.72 + 1844.14i −0.189541 + 0.328294i
\(317\) 9902.03i 1.75443i 0.480100 + 0.877214i \(0.340600\pi\)
−0.480100 + 0.877214i \(0.659400\pi\)
\(318\) −298.663 172.433i −0.0526672 0.0304074i
\(319\) 5645.04 + 3259.17i 0.990789 + 0.572032i
\(320\) 407.185i 0.0711324i
\(321\) 115.734 200.458i 0.0201236 0.0348550i
\(322\) −267.629 463.547i −0.0463180 0.0802251i
\(323\) −3021.60 + 1744.52i −0.520514 + 0.300519i
\(324\) −2862.75 −0.490869
\(325\) 0 0
\(326\) −2121.67 −0.360456
\(327\) −208.417 + 120.330i −0.0352461 + 0.0203494i
\(328\) −1485.50 2572.96i −0.250070 0.433135i
\(329\) −304.332 + 527.118i −0.0509981 + 0.0883312i
\(330\) 134.883i 0.0225002i
\(331\) −1702.93 983.184i −0.282783 0.163265i 0.351900 0.936038i \(-0.385536\pi\)
−0.634683 + 0.772773i \(0.718869\pi\)
\(332\) −1304.27 753.022i −0.215606 0.124480i
\(333\) 292.508i 0.0481361i
\(334\) 1404.09 2431.95i 0.230025 0.398414i
\(335\) −2804.50 4857.54i −0.457392 0.792226i
\(336\) 14.3426 8.28069i 0.00232872 0.00134449i
\(337\) 9570.83 1.54705 0.773526 0.633765i \(-0.218491\pi\)
0.773526 + 0.633765i \(0.218491\pi\)
\(338\) 0 0
\(339\) 746.338 0.119574
\(340\) −2065.29 + 1192.40i −0.329430 + 0.190197i
\(341\) −3643.77 6311.20i −0.578655 1.00226i
\(342\) −999.156 + 1730.59i −0.157977 + 0.273624i
\(343\) 1733.15i 0.272832i
\(344\) −2866.32 1654.87i −0.449249 0.259374i
\(345\) −234.613 135.454i −0.0366120 0.0211380i
\(346\) 2044.44i 0.317658i
\(347\) 3227.11 5589.51i 0.499251 0.864728i −0.500748 0.865593i \(-0.666942\pi\)
1.00000 0.000864443i \(0.000275161\pi\)
\(348\) 202.537 + 350.804i 0.0311986 + 0.0540376i
\(349\) 2407.14 1389.76i 0.369201 0.213158i −0.303908 0.952701i \(-0.598292\pi\)
0.673109 + 0.739543i \(0.264958\pi\)
\(350\) 431.169 0.0658484
\(351\) 0 0
\(352\) −835.870 −0.126568
\(353\) 9653.88 5573.67i 1.45559 0.840387i 0.456803 0.889568i \(-0.348994\pi\)
0.998790 + 0.0491807i \(0.0156610\pi\)
\(354\) −314.283 544.354i −0.0471863 0.0817291i
\(355\) 377.808 654.383i 0.0564844 0.0978339i
\(356\) 170.535i 0.0253885i
\(357\) −84.0013 48.4982i −0.0124533 0.00718991i
\(358\) −724.384 418.223i −0.106941 0.0617424i
\(359\) 4313.27i 0.634111i 0.948407 + 0.317056i \(0.102694\pi\)
−0.948407 + 0.317056i \(0.897306\pi\)
\(360\) −682.934 + 1182.88i −0.0999828 + 0.173175i
\(361\) −2736.36 4739.51i −0.398944 0.690991i
\(362\) −4877.54 + 2816.05i −0.708171 + 0.408863i
\(363\) 263.250 0.0380634
\(364\) 0 0
\(365\) 1331.75 0.190977
\(366\) 86.7524 50.0865i 0.0123897 0.00715318i
\(367\) 3454.76 + 5983.81i 0.491381 + 0.851097i 0.999951 0.00992401i \(-0.00315896\pi\)
−0.508570 + 0.861021i \(0.669826\pi\)
\(368\) −839.408 + 1453.90i −0.118905 + 0.205950i
\(369\) 9965.98i 1.40598i
\(370\) −120.117 69.3494i −0.0168772 0.00974407i
\(371\) 938.588 + 541.894i 0.131345 + 0.0758322i
\(372\) 452.876i 0.0631196i
\(373\) −1158.10 + 2005.88i −0.160761 + 0.278447i −0.935142 0.354273i \(-0.884728\pi\)
0.774381 + 0.632720i \(0.218062\pi\)
\(374\) 2447.75 + 4239.63i 0.338423 + 0.586167i
\(375\) 468.487 270.481i 0.0645135 0.0372469i
\(376\) 1909.05 0.261840
\(377\) 0 0
\(378\) −111.448 −0.0151648
\(379\) −9866.69 + 5696.54i −1.33725 + 0.772062i −0.986399 0.164369i \(-0.947441\pi\)
−0.350852 + 0.936431i \(0.614108\pi\)
\(380\) 473.772 + 820.596i 0.0639578 + 0.110778i
\(381\) 500.877 867.545i 0.0673510 0.116655i
\(382\) 3228.21i 0.432381i
\(383\) 10351.4 + 5976.39i 1.38102 + 0.797335i 0.992281 0.124011i \(-0.0395759\pi\)
0.388744 + 0.921346i \(0.372909\pi\)
\(384\) −44.9849 25.9720i −0.00597819 0.00345151i
\(385\) 423.888i 0.0561126i
\(386\) −2461.12 + 4262.78i −0.324527 + 0.562098i
\(387\) 5551.12 + 9614.83i 0.729146 + 1.26292i
\(388\) −2214.67 + 1278.64i −0.289775 + 0.167302i
\(389\) −5282.24 −0.688484 −0.344242 0.938881i \(-0.611864\pi\)
−0.344242 + 0.938881i \(0.611864\pi\)
\(390\) 0 0
\(391\) 9832.46 1.27174
\(392\) 2331.30 1345.98i 0.300379 0.173424i
\(393\) −462.591 801.231i −0.0593757 0.102842i
\(394\) −3445.91 + 5968.48i −0.440615 + 0.763167i
\(395\) 3387.01i 0.431440i
\(396\) 2428.21 + 1401.93i 0.308137 + 0.177903i
\(397\) 7890.86 + 4555.79i 0.997559 + 0.575941i 0.907525 0.419997i \(-0.137969\pi\)
0.0900341 + 0.995939i \(0.471302\pi\)
\(398\) 4410.05i 0.555416i
\(399\) −19.2696 + 33.3760i −0.00241776 + 0.00418769i
\(400\) −676.172 1171.16i −0.0845215 0.146396i
\(401\) 432.633 249.781i 0.0538770 0.0311059i −0.472820 0.881159i \(-0.656764\pi\)
0.526697 + 0.850053i \(0.323430\pi\)
\(402\) −715.533 −0.0887750
\(403\) 0 0
\(404\) 1899.35 0.233902
\(405\) 3943.36 2276.70i 0.483820 0.279334i
\(406\) −636.500 1102.45i −0.0778053 0.134763i
\(407\) −142.360 + 246.575i −0.0173379 + 0.0300302i
\(408\) 304.225i 0.0369152i
\(409\) −11087.9 6401.61i −1.34049 0.773934i −0.353614 0.935392i \(-0.615047\pi\)
−0.986880 + 0.161457i \(0.948381\pi\)
\(410\) 4092.48 + 2362.79i 0.492958 + 0.284610i
\(411\) 178.277i 0.0213960i
\(412\) 2201.07 3812.36i 0.263201 0.455877i
\(413\) 987.678 + 1710.71i 0.117677 + 0.203822i
\(414\) 4876.98 2815.72i 0.578962 0.334264i
\(415\) 2395.47 0.283346
\(416\) 0 0
\(417\) −884.242 −0.103841
\(418\) 1684.52 972.558i 0.197111 0.113802i
\(419\) 3684.14 + 6381.11i 0.429551 + 0.744004i 0.996833 0.0795194i \(-0.0253386\pi\)
−0.567282 + 0.823523i \(0.692005\pi\)
\(420\) −13.1710 + 22.8128i −0.00153019 + 0.00265036i
\(421\) 15266.9i 1.76737i −0.468080 0.883686i \(-0.655054\pi\)
0.468080 0.883686i \(-0.344946\pi\)
\(422\) −1616.34 933.193i −0.186450 0.107647i
\(423\) −5545.81 3201.87i −0.637462 0.368039i
\(424\) 3399.26i 0.389346i
\(425\) −3960.19 + 6859.25i −0.451994 + 0.782877i
\(426\) −48.1964 83.4787i −0.00548152 0.00949426i
\(427\) −272.631 + 157.404i −0.0308982 + 0.0178391i
\(428\) 2281.53 0.257668
\(429\) 0 0
\(430\) 5264.37 0.590397
\(431\) −18.1367 + 10.4712i −0.00202694 + 0.00117026i −0.501013 0.865440i \(-0.667039\pi\)
0.498986 + 0.866610i \(0.333706\pi\)
\(432\) 174.777 + 302.722i 0.0194652 + 0.0337146i
\(433\) 3729.06 6458.92i 0.413873 0.716849i −0.581436 0.813592i \(-0.697509\pi\)
0.995309 + 0.0967427i \(0.0308424\pi\)
\(434\) 1423.22i 0.157412i
\(435\) −557.978 322.149i −0.0615011 0.0355077i
\(436\) −2054.31 1186.06i −0.225651 0.130280i
\(437\) 3906.70i 0.427649i
\(438\) 84.9445 147.128i 0.00926668 0.0160504i
\(439\) 4507.17 + 7806.65i 0.490012 + 0.848726i 0.999934 0.0114946i \(-0.00365891\pi\)
−0.509922 + 0.860221i \(0.670326\pi\)
\(440\) 1151.39 664.754i 0.124751 0.0720248i
\(441\) −9029.93 −0.975049
\(442\) 0 0
\(443\) 1787.12 0.191668 0.0958339 0.995397i \(-0.469448\pi\)
0.0958339 + 0.995397i \(0.469448\pi\)
\(444\) −15.3231 + 8.84681i −0.00163785 + 0.000945610i
\(445\) −135.623 234.907i −0.0144476 0.0250239i
\(446\) 6363.62 11022.1i 0.675619 1.17021i
\(447\) 1164.06i 0.123173i
\(448\) 141.371 + 81.6207i 0.0149088 + 0.00860762i
\(449\) −3932.57 2270.47i −0.413340 0.238642i 0.278884 0.960325i \(-0.410036\pi\)
−0.692224 + 0.721683i \(0.743369\pi\)
\(450\) 4536.32i 0.475209i
\(451\) 4850.34 8401.03i 0.506416 0.877138i
\(452\) 3678.23 + 6370.89i 0.382765 + 0.662968i
\(453\) 773.882 446.801i 0.0802652 0.0463411i
\(454\) −1659.02 −0.171501
\(455\) 0 0
\(456\) 120.877 0.0124135
\(457\) 5952.95 3436.93i 0.609337 0.351801i −0.163369 0.986565i \(-0.552236\pi\)
0.772706 + 0.634764i \(0.218903\pi\)
\(458\) 5789.35 + 10027.4i 0.590652 + 1.02304i
\(459\) 1023.63 1772.98i 0.104093 0.180295i
\(460\) 2670.27i 0.270657i
\(461\) −8061.47 4654.29i −0.814447 0.470221i 0.0340507 0.999420i \(-0.489159\pi\)
−0.848498 + 0.529199i \(0.822493\pi\)
\(462\) 46.8302 + 27.0374i 0.00471588 + 0.00272271i
\(463\) 14763.5i 1.48190i 0.671560 + 0.740950i \(0.265625\pi\)
−0.671560 + 0.740950i \(0.734375\pi\)
\(464\) −1996.36 + 3457.79i −0.199738 + 0.345957i
\(465\) 360.165 + 623.824i 0.0359188 + 0.0622132i
\(466\) 555.556 320.751i 0.0552267 0.0318852i
\(467\) −7397.81 −0.733040 −0.366520 0.930410i \(-0.619451\pi\)
−0.366520 + 0.930410i \(0.619451\pi\)
\(468\) 0 0
\(469\) 2248.66 0.221393
\(470\) −2629.66 + 1518.24i −0.258079 + 0.149002i
\(471\) −175.542 304.048i −0.0171732 0.0297448i
\(472\) 3097.81 5365.57i 0.302094 0.523242i
\(473\) 10806.7i 1.05051i
\(474\) −374.188 216.038i −0.0362596 0.0209345i
\(475\) 2725.36 + 1573.49i 0.263259 + 0.151993i
\(476\) 956.069i 0.0920617i
\(477\) −5701.26 + 9874.88i −0.547260 + 0.947882i
\(478\) −3582.11 6204.40i −0.342765 0.593687i
\(479\) 10708.4 6182.49i 1.02146 0.589740i 0.106933 0.994266i \(-0.465897\pi\)
0.914526 + 0.404526i \(0.132564\pi\)
\(480\) 82.6206 0.00785645
\(481\) 0 0
\(482\) −9760.48 −0.922360
\(483\) 94.0568 54.3037i 0.00886073 0.00511575i
\(484\) 1297.39 + 2247.15i 0.121844 + 0.211040i
\(485\) 2033.76 3522.58i 0.190409 0.329798i
\(486\) 1760.61i 0.164327i
\(487\) −7315.63 4223.68i −0.680704 0.393005i 0.119416 0.992844i \(-0.461898\pi\)
−0.800120 + 0.599840i \(0.795231\pi\)
\(488\) 855.096 + 493.690i 0.0793205 + 0.0457957i
\(489\) 430.502i 0.0398118i
\(490\) −2140.87 + 3708.09i −0.197377 + 0.341866i
\(491\) 7091.49 + 12282.8i 0.651801 + 1.12895i 0.982686 + 0.185281i \(0.0593196\pi\)
−0.330884 + 0.943671i \(0.607347\pi\)
\(492\) 522.072 301.418i 0.0478390 0.0276199i
\(493\) 23384.4 2.13627
\(494\) 0 0
\(495\) −4459.72 −0.404949
\(496\) 3865.84 2231.94i 0.349962 0.202051i
\(497\) 151.464 + 262.343i 0.0136702 + 0.0236775i
\(498\) 152.793 264.645i 0.0137486 0.0238133i
\(499\) 14029.9i 1.25865i −0.777143 0.629324i \(-0.783332\pi\)
0.777143 0.629324i \(-0.216668\pi\)
\(500\) 4617.76 + 2666.07i 0.413025 + 0.238460i
\(501\) 493.459 + 284.899i 0.0440042 + 0.0254058i
\(502\) 5960.44i 0.529935i
\(503\) −4874.22 + 8442.40i −0.432069 + 0.748366i −0.997051 0.0767373i \(-0.975550\pi\)
0.564982 + 0.825103i \(0.308883\pi\)
\(504\) −273.790 474.217i −0.0241975 0.0419114i
\(505\) −2616.31 + 1510.53i −0.230543 + 0.133104i
\(506\) −5481.53 −0.481589
\(507\) 0 0
\(508\) 9874.05 0.862382
\(509\) 9933.06 5734.85i 0.864981 0.499397i −0.000696453 1.00000i \(-0.500222\pi\)
0.865677 + 0.500603i \(0.166888\pi\)
\(510\) −241.946 419.062i −0.0210069 0.0363850i
\(511\) −266.950 + 462.370i −0.0231099 + 0.0400275i
\(512\) 512.000i 0.0441942i
\(513\) −704.451 406.715i −0.0606282 0.0350037i
\(514\) 6678.66 + 3855.93i 0.573119 + 0.330891i
\(515\) 7001.89i 0.599107i
\(516\) 335.784 581.596i 0.0286474 0.0496188i
\(517\) 3116.64 + 5398.17i 0.265125 + 0.459209i
\(518\) 48.1550 27.8023i 0.00408457 0.00235823i
\(519\) −414.830 −0.0350848
\(520\) 0 0
\(521\) −8428.10 −0.708717 −0.354359 0.935110i \(-0.615301\pi\)
−0.354359 + 0.935110i \(0.615301\pi\)
\(522\) 11598.9 6696.60i 0.972545 0.561499i
\(523\) 8586.33 + 14872.0i 0.717885 + 1.24341i 0.961836 + 0.273626i \(0.0882230\pi\)
−0.243951 + 0.969788i \(0.578444\pi\)
\(524\) 4559.65 7897.54i 0.380132 0.658408i
\(525\) 87.4870i 0.00727285i
\(526\) −7675.02 4431.18i −0.636211 0.367316i
\(527\) −22641.4 13072.0i −1.87149 1.08050i
\(528\) 169.604i 0.0139793i
\(529\) 578.763 1002.45i 0.0475683 0.0823907i
\(530\) 2703.38 + 4682.39i 0.221561 + 0.383754i
\(531\) −17998.3 + 10391.3i −1.47093 + 0.849239i
\(532\) −379.872 −0.0309578
\(533\) 0 0
\(534\) −34.6026 −0.00280412
\(535\) −3142.75 + 1814.46i −0.253968 + 0.146628i
\(536\) −3526.42 6107.93i −0.284175 0.492206i
\(537\) 84.8602 146.982i 0.00681935 0.0118115i
\(538\) 2522.67i 0.202156i
\(539\) 7611.97 + 4394.77i 0.608294 + 0.351199i
\(540\) −481.500 277.994i −0.0383712 0.0221536i
\(541\) 3228.20i 0.256546i 0.991739 + 0.128273i \(0.0409434\pi\)
−0.991739 + 0.128273i \(0.959057\pi\)
\(542\) 6200.75 10740.0i 0.491411 0.851149i
\(543\) −571.395 989.685i −0.0451582 0.0782163i
\(544\) −2596.93 + 1499.34i −0.204673 + 0.118168i
\(545\) 3773.01 0.296547
\(546\) 0 0
\(547\) 6923.31 0.541169 0.270584 0.962696i \(-0.412783\pi\)
0.270584 + 0.962696i \(0.412783\pi\)
\(548\) −1521.81 + 878.618i −0.118629 + 0.0684903i
\(549\) −1656.04 2868.35i −0.128740 0.222984i
\(550\) 2207.78 3823.99i 0.171164 0.296464i
\(551\) 9291.26i 0.718368i
\(552\) −295.005 170.321i −0.0227469 0.0131329i
\(553\) 1175.94 + 678.928i 0.0904267 + 0.0522079i
\(554\) 2315.14i 0.177547i
\(555\) 14.0715 24.3725i 0.00107622 0.00186406i
\(556\) −4357.88 7548.07i −0.332401 0.575736i
\(557\) 15306.0 8836.91i 1.16434 0.672229i 0.211996 0.977271i \(-0.432004\pi\)
0.952339 + 0.305041i \(0.0986703\pi\)
\(558\) −14973.7 −1.13600
\(559\) 0 0
\(560\) −259.647 −0.0195930
\(561\) −860.250 + 496.666i −0.0647411 + 0.0373783i
\(562\) 6322.71 + 10951.3i 0.474568 + 0.821976i
\(563\) −1221.09 + 2115.00i −0.0914085 + 0.158324i −0.908104 0.418745i \(-0.862470\pi\)
0.816696 + 0.577069i \(0.195804\pi\)
\(564\) 387.359i 0.0289198i
\(565\) −10133.3 5850.48i −0.754535 0.435631i
\(566\) 16122.5 + 9308.35i 1.19732 + 0.691270i
\(567\) 1825.47i 0.135207i
\(568\) 475.060 822.829i 0.0350935 0.0607837i
\(569\) 3487.06 + 6039.77i 0.256916 + 0.444992i 0.965414 0.260721i \(-0.0839603\pi\)
−0.708498 + 0.705713i \(0.750627\pi\)
\(570\) −166.504 + 96.1314i −0.0122353 + 0.00706404i
\(571\) −5061.39 −0.370950 −0.185475 0.982649i \(-0.559382\pi\)
−0.185475 + 0.982649i \(0.559382\pi\)
\(572\) 0 0
\(573\) 655.026 0.0477558
\(574\) −1640.68 + 947.247i −0.119304 + 0.0688804i
\(575\) −4434.25 7680.35i −0.321602 0.557031i
\(576\) −858.730 + 1487.36i −0.0621188 + 0.107593i
\(577\) 3849.90i 0.277771i 0.990308 + 0.138885i \(0.0443519\pi\)
−0.990308 + 0.138885i \(0.955648\pi\)
\(578\) 6700.07 + 3868.29i 0.482156 + 0.278373i
\(579\) −864.946 499.377i −0.0620828 0.0358435i
\(580\) 6350.68i 0.454651i
\(581\) −480.173 + 831.684i −0.0342873 + 0.0593874i
\(582\) −259.444 449.370i −0.0184782 0.0320052i
\(583\) 9612.00 5549.49i 0.682827 0.394230i
\(584\) 1674.55 0.118653
\(585\) 0 0
\(586\) 1012.39 0.0713677
\(587\) −10117.0 + 5841.06i −0.711369 + 0.410709i −0.811568 0.584258i \(-0.801385\pi\)
0.100199 + 0.994967i \(0.468052\pi\)
\(588\) 273.108 + 473.036i 0.0191544 + 0.0331763i
\(589\) −5193.85 + 8996.01i −0.363343 + 0.629328i
\(590\) 9854.56i 0.687637i
\(591\) −1211.04 699.197i −0.0842906 0.0486652i
\(592\) −151.036 87.2008i −0.0104857 0.00605394i
\(593\) 14539.7i 1.00687i 0.864033 + 0.503435i \(0.167931\pi\)
−0.864033 + 0.503435i \(0.832069\pi\)
\(594\) −570.666 + 988.423i −0.0394187 + 0.0682752i
\(595\) 760.347 + 1316.96i 0.0523885 + 0.0907396i
\(596\) −9936.69 + 5736.95i −0.682924 + 0.394286i
\(597\) −894.827 −0.0613448
\(598\) 0 0
\(599\) 8414.92 0.573997 0.286998 0.957931i \(-0.407343\pi\)
0.286998 + 0.957931i \(0.407343\pi\)
\(600\) 237.637 137.200i 0.0161691 0.00933526i
\(601\) −9135.37 15822.9i −0.620032 1.07393i −0.989479 0.144675i \(-0.953786\pi\)
0.369447 0.929252i \(-0.379547\pi\)
\(602\) −1055.25 + 1827.74i −0.0714430 + 0.123743i
\(603\) 23658.1i 1.59773i
\(604\) 7627.96 + 4404.01i 0.513870 + 0.296683i
\(605\) −3574.25 2063.59i −0.240188 0.138673i
\(606\) 385.392i 0.0258341i
\(607\) 2833.59 4907.93i 0.189476 0.328182i −0.755600 0.655034i \(-0.772654\pi\)
0.945076 + 0.326851i \(0.105988\pi\)
\(608\) 595.726 + 1031.83i 0.0397367 + 0.0688259i
\(609\) 223.694 129.150i 0.0148843 0.00859347i
\(610\) −1570.50 −0.104242
\(611\) 0 0
\(612\) 10058.8 0.664383
\(613\) −12585.6 + 7266.32i −0.829248 + 0.478767i −0.853595 0.520937i \(-0.825583\pi\)
0.0243470 + 0.999704i \(0.492249\pi\)
\(614\) 4094.64 + 7092.13i 0.269131 + 0.466148i
\(615\) −479.426 + 830.390i −0.0314347 + 0.0544465i
\(616\) 533.002i 0.0348624i
\(617\) 9919.56 + 5727.06i 0.647239 + 0.373684i 0.787398 0.616445i \(-0.211428\pi\)
−0.140158 + 0.990129i \(0.544761\pi\)
\(618\) 773.553 + 446.611i 0.0503509 + 0.0290701i
\(619\) 10052.7i 0.652751i −0.945240 0.326376i \(-0.894173\pi\)
0.945240 0.326376i \(-0.105827\pi\)
\(620\) −3550.05 + 6148.88i −0.229957 + 0.398298i
\(621\) 1146.16 + 1985.21i 0.0740644 + 0.128283i
\(622\) 15077.5 8705.00i 0.971950 0.561155i
\(623\) 108.743 0.00699311
\(624\) 0 0
\(625\) 2084.07 0.133380
\(626\) 5446.92 3144.78i 0.347768 0.200784i
\(627\) 197.338 + 341.800i 0.0125693 + 0.0217706i
\(628\) 1730.28 2996.93i 0.109945 0.190431i
\(629\) 1021.43i 0.0647491i
\(630\) 754.275 + 435.481i 0.0477001 + 0.0275396i
\(631\) 10433.6 + 6023.82i 0.658247 + 0.380039i 0.791609 0.611028i \(-0.209244\pi\)
−0.133362 + 0.991067i \(0.542577\pi\)
\(632\) 4258.86i 0.268051i
\(633\) 189.351 327.966i 0.0118895 0.0205931i
\(634\) −9902.03 17150.8i −0.620284 1.07436i
\(635\) −13601.2 + 7852.67i −0.849997 + 0.490746i
\(636\) 689.732 0.0430026
\(637\) 0 0
\(638\) −13036.7 −0.808976
\(639\) −2760.11 + 1593.55i −0.170874 + 0.0986539i
\(640\) 407.185 + 705.266i 0.0251491 + 0.0435595i
\(641\) −10575.4 + 18317.1i −0.651643 + 1.12868i 0.331082 + 0.943602i \(0.392586\pi\)
−0.982724 + 0.185076i \(0.940747\pi\)
\(642\) 462.938i 0.0284590i
\(643\) −13275.7 7664.72i −0.814217 0.470089i 0.0342009 0.999415i \(-0.489111\pi\)
−0.848418 + 0.529326i \(0.822445\pi\)
\(644\) 927.095 + 535.258i 0.0567277 + 0.0327518i
\(645\) 1068.18i 0.0652083i
\(646\) 3489.04 6043.19i 0.212499 0.368059i
\(647\) −7259.97 12574.6i −0.441142 0.764080i 0.556633 0.830759i \(-0.312093\pi\)
−0.997774 + 0.0666787i \(0.978760\pi\)
\(648\) 4958.43 2862.75i 0.300595 0.173549i
\(649\) 20229.4 1.22354
\(650\) 0 0
\(651\) −288.781 −0.0173859
\(652\) 3674.85 2121.67i 0.220733 0.127440i
\(653\) −13807.8 23915.8i −0.827475 1.43323i −0.900013 0.435863i \(-0.856443\pi\)
0.0725376 0.997366i \(-0.476890\pi\)
\(654\) 240.659 416.834i 0.0143892 0.0249228i
\(655\) 14504.9i 0.865270i
\(656\) 5145.93 + 2971.00i 0.306273 + 0.176827i
\(657\) −4864.59 2808.57i −0.288867 0.166778i
\(658\) 1217.33i 0.0721222i
\(659\) 6949.24 12036.4i 0.410780 0.711492i −0.584195 0.811613i \(-0.698590\pi\)
0.994975 + 0.100121i \(0.0319231\pi\)
\(660\) 134.883 + 233.624i 0.00795502 + 0.0137785i
\(661\) −15020.6 + 8672.14i −0.883862 + 0.510298i −0.871930 0.489631i \(-0.837132\pi\)
−0.0119324 + 0.999929i \(0.503798\pi\)
\(662\) 3932.74 0.230892
\(663\) 0 0
\(664\) 3012.09 0.176042
\(665\) 523.263 302.106i 0.0305132 0.0176168i
\(666\) 292.508 + 506.638i 0.0170187 + 0.0294772i
\(667\) −13091.9 + 22675.8i −0.759998 + 1.31636i
\(668\) 5616.35i 0.325304i
\(669\) 2236.46 + 1291.22i 0.129247 + 0.0746210i
\(670\) 9715.08 + 5609.00i 0.560189 + 0.323425i
\(671\) 3223.91i 0.185481i
\(672\) −16.5614 + 28.6851i −0.000950698 + 0.00164666i
\(673\) −1328.00 2300.15i −0.0760631 0.131745i 0.825485 0.564424i \(-0.190902\pi\)
−0.901548 + 0.432679i \(0.857568\pi\)
\(674\) −16577.2 + 9570.83i −0.947372 + 0.546965i
\(675\) −1846.55 −0.105294
\(676\) 0 0
\(677\) −18853.1 −1.07029 −0.535143 0.844761i \(-0.679742\pi\)
−0.535143 + 0.844761i \(0.679742\pi\)
\(678\) −1292.70 + 746.338i −0.0732237 + 0.0422757i
\(679\) 815.338 + 1412.21i 0.0460822 + 0.0798167i
\(680\) 2384.80 4130.59i 0.134489 0.232942i
\(681\) 336.626i 0.0189421i
\(682\) 12622.4 + 7287.55i 0.708705 + 0.409171i
\(683\) −1455.14 840.126i −0.0815218 0.0470666i 0.458685 0.888599i \(-0.348321\pi\)
−0.540207 + 0.841532i \(0.681654\pi\)
\(684\) 3996.62i 0.223413i
\(685\) 1397.50 2420.54i 0.0779501 0.135013i
\(686\) −1733.15 3001.90i −0.0964606 0.167075i
\(687\) −2034.64 + 1174.70i −0.112993 + 0.0652365i
\(688\) 6619.49 0.366810
\(689\) 0 0
\(690\) 541.816 0.0298936
\(691\) −9472.95 + 5469.21i −0.521516 + 0.301098i −0.737555 0.675287i \(-0.764020\pi\)
0.216038 + 0.976385i \(0.430686\pi\)
\(692\) −2044.44 3541.07i −0.112309 0.194525i
\(693\) 893.955 1548.38i 0.0490022 0.0848743i
\(694\) 12908.4i 0.706048i
\(695\) 12005.7 + 6931.50i 0.655256 + 0.378312i
\(696\) −701.608 405.074i −0.0382103 0.0220607i
\(697\) 34801.0i 1.89122i
\(698\) −2779.52 + 4814.28i −0.150726 + 0.261064i
\(699\) 65.0824 + 112.726i 0.00352166 + 0.00609970i
\(700\) −746.806 + 431.169i −0.0403238 + 0.0232809i
\(701\) −19632.4 −1.05778 −0.528892 0.848689i \(-0.677392\pi\)
−0.528892 + 0.848689i \(0.677392\pi\)
\(702\) 0 0
\(703\) 405.842 0.0217733
\(704\) 1447.77 835.870i 0.0775069 0.0447486i
\(705\) −308.060 533.576i −0.0164571 0.0285045i
\(706\) −11147.3 + 19307.8i −0.594243 + 1.02926i
\(707\) 1211.15i 0.0644269i
\(708\) 1088.71 + 628.566i 0.0577912 + 0.0333658i
\(709\) −16868.3 9738.89i −0.893513 0.515870i −0.0184228 0.999830i \(-0.505865\pi\)
−0.875090 + 0.483960i \(0.839198\pi\)
\(710\) 1511.23i 0.0798810i
\(711\) −7142.99 + 12372.0i −0.376770 + 0.652584i
\(712\) −170.535 295.374i −0.00897620 0.0155472i
\(713\) 25351.7 14636.8i 1.33160 0.768797i
\(714\) 193.993 0.0101681
\(715\) 0 0
\(716\) 1672.89 0.0873169
\(717\) 1258.91 726.834i 0.0655718 0.0378579i
\(718\) −4313.27 7470.81i −0.224192 0.388312i
\(719\) −201.611 + 349.201i −0.0104573 + 0.0181126i −0.871207 0.490916i \(-0.836662\pi\)
0.860749 + 0.509029i \(0.169995\pi\)
\(720\) 2731.74i 0.141397i
\(721\) −2430.99 1403.54i −0.125569 0.0724971i
\(722\) 9479.02 + 5472.71i 0.488604 + 0.282096i
\(723\) 1980.47i 0.101873i
\(724\) 5632.10 9755.08i 0.289110 0.500752i
\(725\) −10545.9 18266.1i −0.540229 0.935704i
\(726\) −455.962 + 263.250i −0.0233090 + 0.0134575i
\(727\) 29051.3 1.48206 0.741028 0.671474i \(-0.234339\pi\)
0.741028 + 0.671474i \(0.234339\pi\)
\(728\) 0 0
\(729\) −18966.3 −0.963589
\(730\) −2306.65 + 1331.75i −0.116949 + 0.0675207i
\(731\) −19384.4 33574.8i −0.980793 1.69878i
\(732\) −100.173 + 173.505i −0.00505806 + 0.00876082i
\(733\) 25289.5i 1.27434i 0.770724 + 0.637169i \(0.219895\pi\)
−0.770724 + 0.637169i \(0.780105\pi\)
\(734\) −11967.6 6909.51i −0.601816 0.347459i
\(735\) −752.396 434.396i −0.0377586 0.0217999i
\(736\) 3357.63i 0.168158i
\(737\) 11514.2 19943.1i 0.575481 0.996762i
\(738\) −9965.98 17261.6i −0.497090 0.860986i
\(739\) 219.893 126.956i 0.0109458 0.00631953i −0.494517 0.869168i \(-0.664655\pi\)
0.505463 + 0.862848i \(0.331322\pi\)
\(740\) 277.398 0.0137802
\(741\) 0 0
\(742\) −2167.58 −0.107243
\(743\) −11174.8 + 6451.78i −0.551768 + 0.318564i −0.749835 0.661625i \(-0.769867\pi\)
0.198066 + 0.980189i \(0.436534\pi\)
\(744\) 452.876 + 784.404i 0.0223162 + 0.0386527i
\(745\) 9125.01 15805.0i 0.448744 0.777248i
\(746\) 4632.39i 0.227351i
\(747\) −8750.14 5051.89i −0.428582 0.247442i
\(748\) −8479.27 4895.51i −0.414482 0.239301i
\(749\) 1454.84i 0.0709731i
\(750\) −540.962 + 936.974i −0.0263375 + 0.0456179i
\(751\) −16912.6 29293.5i −0.821771 1.42335i −0.904362 0.426766i \(-0.859653\pi\)
0.0825911 0.996584i \(-0.473680\pi\)
\(752\) −3306.57 + 1909.05i −0.160343 + 0.0925743i
\(753\) 1209.41 0.0585305
\(754\) 0 0
\(755\) −14009.7 −0.675320
\(756\) 193.034 111.448i 0.00928649 0.00536156i
\(757\) 16928.8 + 29321.5i 0.812796 + 1.40780i 0.910899 + 0.412629i \(0.135389\pi\)
−0.0981029 + 0.995176i \(0.531277\pi\)
\(758\) 11393.1 19733.4i 0.545930 0.945579i
\(759\) 1112.24i 0.0531907i
\(760\) −1641.19 947.543i −0.0783320 0.0452250i
\(761\) 10255.2 + 5920.81i 0.488501 + 0.282036i 0.723952 0.689850i \(-0.242324\pi\)
−0.235452 + 0.971886i \(0.575657\pi\)
\(762\) 2003.51i 0.0952487i
\(763\) −756.304 + 1309.96i −0.0358847 + 0.0621542i
\(764\) 3228.21 + 5591.43i 0.152870 + 0.264778i
\(765\) −13855.7 + 7999.60i −0.654842 + 0.378073i
\(766\) −23905.6 −1.12760
\(767\) 0 0
\(768\) 103.888 0.00488117
\(769\) −8494.96 + 4904.57i −0.398356 + 0.229991i −0.685775 0.727814i \(-0.740536\pi\)
0.287418 + 0.957805i \(0.407203\pi\)
\(770\) −423.888 734.196i −0.0198388 0.0343618i
\(771\) −782.393 + 1355.15i −0.0365463 + 0.0633001i
\(772\) 9844.47i 0.458951i
\(773\) 23488.0 + 13560.8i 1.09289 + 0.630982i 0.934345 0.356369i \(-0.115985\pi\)
0.158548 + 0.987351i \(0.449319\pi\)
\(774\) −19229.7 11102.2i −0.893018 0.515584i
\(775\) 23580.9i 1.09297i
\(776\) 2557.28 4429.33i 0.118300 0.204902i
\(777\) 5.64127 + 9.77097i 0.000260463 + 0.000451134i
\(778\) 9149.11 5282.24i 0.421609 0.243416i
\(779\) −13827.4 −0.635966
\(780\) 0 0
\(781\) 3102.26 0.142135
\(782\) −17030.3 + 9832.46i −0.778777 + 0.449627i
\(783\) 2725.91 + 4721.41i 0.124414 + 0.215491i
\(784\) −2691.95 + 4662.60i −0.122629 + 0.212400i
\(785\) 5504.25i 0.250261i
\(786\) 1602.46 + 925.182i 0.0727201 + 0.0419849i
\(787\) −15982.9 9227.71i −0.723923 0.417957i 0.0922719 0.995734i \(-0.470587\pi\)
−0.816195 + 0.577777i \(0.803920\pi\)
\(788\) 13783.6i 0.623123i
\(789\) 899.115 1557.31i 0.0405695 0.0702684i
\(790\) 3387.01 + 5866.46i 0.152537 + 0.264202i
\(791\) 4062.47 2345.47i 0.182610 0.105430i
\(792\) −5607.71 −0.251592
\(793\) 0 0
\(794\) −18223.2 −0.814504
\(795\) −950.087 + 548.533i −0.0423850 + 0.0244710i
\(796\) −4410.05 7638.42i −0.196369 0.340122i
\(797\) −7025.68 + 12168.8i −0.312249 + 0.540831i −0.978849 0.204585i \(-0.934416\pi\)
0.666600 + 0.745416i \(0.267749\pi\)
\(798\) 77.0785i 0.00341923i
\(799\) 19365.9 + 11180.9i 0.857466 + 0.495058i
\(800\) 2342.33 + 1352.34i 0.103517 + 0.0597657i
\(801\) 1144.09i 0.0504673i
\(802\) −499.562 + 865.266i −0.0219952 + 0.0380968i
\(803\) 2733.81 + 4735.09i 0.120142 + 0.208092i
\(804\) 1239.34 715.533i 0.0543634 0.0313867i
\(805\) −1702.73 −0.0745507
\(806\) 0 0
\(807\) 511.866 0.0223278
\(808\) −3289.78 + 1899.35i −0.143235 + 0.0826968i
\(809\) 12193.2 + 21119.3i 0.529902 + 0.917818i 0.999392 + 0.0348794i \(0.0111047\pi\)
−0.469489 + 0.882938i \(0.655562\pi\)
\(810\) −4553.40 + 7886.72i −0.197519 + 0.342112i
\(811\) 34306.9i 1.48542i −0.669612 0.742711i \(-0.733540\pi\)
0.669612 0.742711i \(-0.266460\pi\)
\(812\) 2204.90 + 1273.00i 0.0952916 + 0.0550167i
\(813\) 2179.22 + 1258.17i 0.0940080 + 0.0542756i
\(814\) 569.442i 0.0245196i
\(815\) −3374.67 + 5845.10i −0.145042 + 0.251221i
\(816\) −304.225 526.934i −0.0130515 0.0226058i
\(817\) −13340.2 + 7701.95i −0.571253 + 0.329813i
\(818\) 25606.4 1.09451
\(819\) 0 0
\(820\) −9451.17 −0.402499
\(821\) 2835.84 1637.27i 0.120550 0.0695995i −0.438513 0.898725i \(-0.644495\pi\)
0.559062 + 0.829126i \(0.311161\pi\)
\(822\) −178.277 308.785i −0.00756464 0.0131023i
\(823\) 8607.39 14908.4i 0.364562 0.631440i −0.624144 0.781310i \(-0.714552\pi\)
0.988706 + 0.149869i \(0.0478853\pi\)
\(824\) 8804.26i 0.372222i
\(825\) 775.912 + 447.973i 0.0327440 + 0.0189048i
\(826\) −3421.42 1975.36i −0.144124 0.0832099i
\(827\) 40718.9i 1.71213i −0.516864 0.856067i \(-0.672901\pi\)
0.516864 0.856067i \(-0.327099\pi\)
\(828\) −5631.45 + 9753.95i −0.236360 + 0.409388i
\(829\) 813.632 + 1409.25i 0.0340876 + 0.0590414i 0.882566 0.470189i \(-0.155814\pi\)
−0.848478 + 0.529230i \(0.822481\pi\)
\(830\) −4149.07 + 2395.47i −0.173514 + 0.100178i
\(831\) 469.757 0.0196097
\(832\) 0 0
\(833\) 31532.4 1.31156
\(834\) 1531.55 884.242i 0.0635891 0.0367132i
\(835\) −4466.59 7736.36i −0.185117 0.320632i
\(836\) −1945.12 + 3369.04i −0.0804704 + 0.139379i
\(837\) 6095.18i 0.251709i
\(838\) −12762.2 7368.27i −0.526090 0.303738i
\(839\) 14827.4 + 8560.59i 0.610128 + 0.352258i 0.773016 0.634387i \(-0.218747\pi\)
−0.162887 + 0.986645i \(0.552081\pi\)
\(840\) 52.6840i 0.00216401i
\(841\) −18941.7 + 32808.0i −0.776650 + 1.34520i
\(842\) 15266.9 + 26443.1i 0.624861 + 1.08229i
\(843\) −2222.08 + 1282.92i −0.0907859 + 0.0524153i
\(844\) 3732.77 0.152236
\(845\) 0 0
\(846\) 12807.5 0.520485
\(847\) 1432.92 827.298i 0.0581296 0.0335612i
\(848\) 3399.26 + 5887.69i 0.137655 + 0.238425i
\(849\) −1888.73 + 3271.37i −0.0763497 + 0.132242i
\(850\) 15840.8i 0.639216i
\(851\) −990.477 571.852i −0.0398979 0.0230351i
\(852\) 166.957 + 96.3929i 0.00671346 + 0.00387602i
\(853\) 4791.65i 0.192336i −0.995365 0.0961682i \(-0.969341\pi\)
0.995365 0.0961682i \(-0.0306587\pi\)
\(854\) 314.807 545.262i 0.0126141 0.0218483i
\(855\) 3178.45 + 5505.24i 0.127135 + 0.220205i
\(856\) −3951.73 + 2281.53i −0.157789 + 0.0910994i
\(857\) −12689.7 −0.505802 −0.252901 0.967492i \(-0.581385\pi\)
−0.252901 + 0.967492i \(0.581385\pi\)
\(858\) 0 0
\(859\) −35646.1 −1.41586 −0.707932 0.706280i \(-0.750372\pi\)
−0.707932 + 0.706280i \(0.750372\pi\)
\(860\) −9118.16 + 5264.37i −0.361543 + 0.208737i
\(861\) −192.203 332.905i −0.00760773 0.0131770i
\(862\) 20.9424 36.2734i 0.000827497 0.00143327i
\(863\) 10664.4i 0.420650i −0.977631 0.210325i \(-0.932548\pi\)
0.977631 0.210325i \(-0.0674523\pi\)
\(864\) −605.444 349.553i −0.0238398 0.0137639i
\(865\) 5632.32 + 3251.82i 0.221393 + 0.127821i
\(866\) 14916.2i 0.585305i
\(867\) −784.901 + 1359.49i −0.0307458 + 0.0532534i
\(868\) −1423.22 2465.09i −0.0556536 0.0963949i
\(869\) 12042.7 6952.84i 0.470103 0.271414i
\(870\) 1288.59 0.0502155
\(871\) 0 0
\(872\) 4744.23 0.184243
\(873\) −14857.8 + 8578.16i −0.576015 + 0.332562i
\(874\) 3906.70 + 6766.60i 0.151197 + 0.261881i
\(875\) 1700.05 2944.57i 0.0656824 0.113765i
\(876\) 339.778i 0.0131051i
\(877\) −9538.83 5507.25i −0.367279 0.212048i 0.304990 0.952355i \(-0.401347\pi\)
−0.672269 + 0.740307i \(0.734680\pi\)
\(878\) −15613.3 9014.34i −0.600140 0.346491i
\(879\) 205.421i 0.00788245i
\(880\) −1329.51 + 2302.78i −0.0509292 + 0.0882120i
\(881\) −2271.51 3934.36i −0.0868660 0.150456i 0.819319 0.573338i \(-0.194352\pi\)
−0.906185 + 0.422882i \(0.861019\pi\)
\(882\) 15640.3 9029.93i 0.597093 0.344732i
\(883\) −28212.2 −1.07522 −0.537608 0.843195i \(-0.680672\pi\)
−0.537608 + 0.843195i \(0.680672\pi\)
\(884\) 0 0
\(885\) −1999.56 −0.0759484
\(886\) −3095.39 + 1787.12i −0.117372 + 0.0677648i
\(887\) 15348.0 + 26583.5i 0.580987 + 1.00630i 0.995363 + 0.0961927i \(0.0306665\pi\)
−0.414376 + 0.910106i \(0.636000\pi\)
\(888\) 17.6936 30.6462i 0.000668647 0.00115813i
\(889\) 6296.30i 0.237538i
\(890\) 469.813 + 271.247i 0.0176946 + 0.0102160i
\(891\) 16189.9 + 9347.22i 0.608732 + 0.351452i
\(892\) 25454.5i 0.955469i
\(893\) 4442.47 7694.58i 0.166474 0.288342i
\(894\) −1164.06 2016.22i −0.0435483 0.0754278i
\(895\) −2304.36 + 1330.42i −0.0860630 + 0.0496885i
\(896\) −326.483 −0.0121730
\(897\) 0 0
\(898\) 9081.89 0.337491
\(899\) 60293.6 34810.5i 2.23682 1.29143i
\(900\) −4536.32 7857.14i −0.168012 0.291005i
\(901\) 19908.7 34482.9i 0.736133 1.27502i
\(902\) 19401.3i 0.716180i
\(903\) −370.861 214.117i −0.0136672 0.00789076i
\(904\) −12741.8 7356.47i −0.468789 0.270655i
\(905\) 17916.5i 0.658082i
\(906\) −893.602 + 1547.76i −0.0327681 + 0.0567561i
\(907\) 15138.6 + 26220.9i 0.554211 + 0.959922i 0.997964 + 0.0637731i \(0.0203134\pi\)
−0.443753 + 0.896149i \(0.646353\pi\)
\(908\) 2873.51 1659.02i 0.105023 0.0606349i
\(909\) 12742.4 0.464951
\(910\) 0 0
\(911\) 18833.6 0.684946 0.342473 0.939528i \(-0.388736\pi\)
0.342473 + 0.939528i \(0.388736\pi\)
\(912\) −209.365 + 120.877i −0.00760171 + 0.00438885i
\(913\) 4917.41 + 8517.20i 0.178250 + 0.308738i
\(914\) −6873.87 + 11905.9i −0.248761 + 0.430866i
\(915\) 318.664i 0.0115133i
\(916\) −20054.9 11578.7i −0.723398 0.417654i
\(917\) −5035.96 2907.51i −0.181354 0.104705i
\(918\) 4094.52i 0.147210i
\(919\) 1279.32 2215.85i 0.0459206 0.0795367i −0.842152 0.539241i \(-0.818711\pi\)
0.888072 + 0.459704i \(0.152045\pi\)
\(920\) 2670.27 + 4625.05i 0.0956916 + 0.165743i
\(921\) −1439.04 + 830.830i −0.0514853 + 0.0297250i
\(922\) 18617.2 0.664993
\(923\) 0 0
\(924\) −108.150 −0.00385050
\(925\) 797.863 460.646i 0.0283606 0.0163740i
\(926\) −14763.5 25571.2i −0.523931 0.907475i
\(927\) 14766.6 25576.5i 0.523191 0.906193i
\(928\) 7985.42i 0.282472i
\(929\) −14196.7 8196.45i −0.501375 0.289469i 0.227906 0.973683i \(-0.426812\pi\)
−0.729281 + 0.684214i \(0.760145\pi\)
\(930\) −1247.65 720.330i −0.0439914 0.0253984i
\(931\) 12528.7i 0.441042i
\(932\) −641.501 + 1111.11i −0.0225462 + 0.0390512i
\(933\) 1766.30 + 3059.32i 0.0619787 + 0.107350i
\(934\) 12813.4 7397.81i 0.448894 0.259169i
\(935\) 15573.3 0.544707
\(936\) 0 0
\(937\) 24289.2 0.846845 0.423422 0.905932i \(-0.360829\pi\)
0.423422 + 0.905932i \(0.360829\pi\)
\(938\) −3894.79 + 2248.66i −0.135575 + 0.0782744i
\(939\) 638.097 + 1105.22i 0.0221763 + 0.0384104i
\(940\) 3036.47 5259.33i 0.105361 0.182490i
\(941\) 31263.6i 1.08306i −0.840680 0.541532i \(-0.817844\pi\)
0.840680 0.541532i \(-0.182156\pi\)
\(942\) 608.096 + 351.085i 0.0210328 + 0.0121433i
\(943\) 33746.4 + 19483.5i 1.16536 + 0.672820i
\(944\) 12391.2i 0.427225i
\(945\) −177.266 + 307.034i −0.00610208 + 0.0105691i
\(946\) 10806.7 + 18717.7i 0.371412 + 0.643305i
\(947\) 38179.5 22043.0i 1.31010 0.756389i 0.327991 0.944681i \(-0.393628\pi\)
0.982113 + 0.188292i \(0.0602951\pi\)
\(948\) 864.151 0.0296058
\(949\) 0 0
\(950\) −6293.96 −0.214950
\(951\) 3480.01 2009.19i 0.118662 0.0685093i
\(952\) 956.069 + 1655.96i 0.0325487 + 0.0563760i
\(953\) −317.041 + 549.131i −0.0107765 + 0.0186654i −0.871363 0.490638i \(-0.836764\pi\)
0.860587 + 0.509304i \(0.170097\pi\)
\(954\) 22805.0i 0.773942i
\(955\) −8893.55 5134.69i −0.301349 0.173984i
\(956\) 12408.8 + 7164.22i 0.419800 + 0.242372i
\(957\) 2645.23i 0.0893501i
\(958\) −12365.0 + 21416.8i −0.417009 + 0.722281i
\(959\) 560.261 + 970.400i 0.0188652 + 0.0326756i
\(960\) −143.103 + 82.6206i −0.00481108 + 0.00277768i
\(961\) −48045.9 −1.61277
\(962\) 0 0
\(963\) 15306.4 0.512193
\(964\) 16905.6 9760.48i 0.564828 0.326104i
\(965\) 7829.15 + 13560.5i 0.261170 + 0.452360i
\(966\) −108.607 + 188.114i −0.00361738 + 0.00626548i
\(967\) 58557.1i 1.94733i 0.227981 + 0.973666i \(0.426788\pi\)
−0.227981 + 0.973666i \(0.573212\pi\)
\(968\) −4494.30 2594.79i −0.149228 0.0861566i
\(969\) 1226.20 + 707.949i 0.0406515 + 0.0234702i
\(970\) 8135.04i 0.269279i
\(971\) 1667.84 2888.79i 0.0551222 0.0954745i −0.837148 0.546977i \(-0.815778\pi\)
0.892270 + 0.451503i \(0.149112\pi\)
\(972\) 1760.61 + 3049.47i 0.0580985 + 0.100629i
\(973\) −4813.11 + 2778.85i −0.158583 + 0.0915579i
\(974\) 16894.7 0.555793
\(975\) 0 0
\(976\) −1974.76 −0.0647649
\(977\) 20531.4 11853.8i 0.672323 0.388166i −0.124633 0.992203i \(-0.539775\pi\)
0.796956 + 0.604037i \(0.206442\pi\)
\(978\) 430.502 + 745.651i 0.0140756 + 0.0243796i
\(979\) 556.815 964.432i 0.0181776 0.0314846i
\(980\) 8563.47i 0.279133i
\(981\) −13782.0 7957.06i −0.448549 0.258970i
\(982\) −24565.6 14183.0i −0.798290 0.460893i
\(983\) 34833.6i 1.13023i 0.825011 + 0.565117i \(0.191169\pi\)
−0.825011 + 0.565117i \(0.808831\pi\)
\(984\) −602.836 + 1044.14i −0.0195302 + 0.0338273i
\(985\) 10961.9 + 18986.6i 0.354594 + 0.614175i
\(986\) −40503.0 + 23384.4i −1.30819 + 0.755286i
\(987\) 247.004 0.00796577
\(988\) 0 0
\(989\) 43409.8 1.39570
\(990\) 7724.46 4459.72i 0.247979 0.143171i
\(991\) −11978.8 20747.8i −0.383974 0.665062i 0.607652 0.794203i \(-0.292111\pi\)
−0.991626 + 0.129141i \(0.958778\pi\)
\(992\) −4463.88 + 7731.67i −0.142871 + 0.247461i
\(993\) 797.979i 0.0255016i
\(994\) −524.686 302.928i −0.0167425 0.00966628i
\(995\) 12149.4 + 7014.48i 0.387098 + 0.223491i
\(996\) 611.172i 0.0194435i
\(997\) 21680.9 37552.5i 0.688708 1.19288i −0.283547 0.958958i \(-0.591511\pi\)
0.972256 0.233920i \(-0.0751553\pi\)
\(998\) 14029.9 + 24300.5i 0.444999 + 0.770761i
\(999\) −206.231 + 119.068i −0.00653140 + 0.00377091i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.e.h.23.1 12
13.2 odd 12 338.4.a.j.1.3 3
13.3 even 3 338.4.b.f.337.3 6
13.4 even 6 inner 338.4.e.h.147.1 12
13.5 odd 4 338.4.c.l.315.1 6
13.6 odd 12 338.4.c.l.191.1 6
13.7 odd 12 338.4.c.k.191.1 6
13.8 odd 4 338.4.c.k.315.1 6
13.9 even 3 inner 338.4.e.h.147.4 12
13.10 even 6 338.4.b.f.337.6 6
13.11 odd 12 338.4.a.k.1.3 yes 3
13.12 even 2 inner 338.4.e.h.23.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.3 3 13.2 odd 12
338.4.a.k.1.3 yes 3 13.11 odd 12
338.4.b.f.337.3 6 13.3 even 3
338.4.b.f.337.6 6 13.10 even 6
338.4.c.k.191.1 6 13.7 odd 12
338.4.c.k.315.1 6 13.8 odd 4
338.4.c.l.191.1 6 13.6 odd 12
338.4.c.l.315.1 6 13.5 odd 4
338.4.e.h.23.1 12 1.1 even 1 trivial
338.4.e.h.23.4 12 13.12 even 2 inner
338.4.e.h.147.1 12 13.4 even 6 inner
338.4.e.h.147.4 12 13.9 even 3 inner