Properties

Label 338.4.e.h.23.4
Level $338$
Weight $4$
Character 338.23
Analytic conductor $19.943$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(23,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.4
Root \(0.385418 - 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 338.23
Dual form 338.4.e.h.147.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(-0.202907 - 0.351445i) q^{3} +(2.00000 - 3.46410i) q^{4} -6.36227i q^{5} +(-0.702889 - 0.405813i) q^{6} +(2.20892 + 1.27532i) q^{7} -8.00000i q^{8} +(13.4177 - 23.2401i) q^{9} +(-6.36227 - 11.0198i) q^{10} +(22.6214 - 13.0605i) q^{11} -1.62325 q^{12} +5.10129 q^{14} +(-2.23599 + 1.29095i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-46.8543 + 81.1540i) q^{17} -53.6706i q^{18} +(-32.2446 - 18.6164i) q^{19} +(-22.0396 - 12.7245i) q^{20} -1.03509i q^{21} +(26.1209 - 45.2428i) q^{22} +(-52.4630 - 90.8686i) q^{23} +(-2.81156 + 1.62325i) q^{24} +84.5215 q^{25} -21.8471 q^{27} +(8.83570 - 5.10129i) q^{28} +(-124.772 - 216.112i) q^{29} +(-2.58189 + 4.47197i) q^{30} -278.993i q^{31} +(-27.7128 - 16.0000i) q^{32} +(-9.18006 - 5.30011i) q^{33} +187.417i q^{34} +(8.11395 - 14.0538i) q^{35} +(-53.6706 - 92.9603i) q^{36} +(-9.43976 + 5.45005i) q^{37} -74.4658 q^{38} -50.8982 q^{40} +(321.621 - 185.688i) q^{41} +(-1.03509 - 1.79282i) q^{42} +(-206.859 + 358.290i) q^{43} -104.484i q^{44} +(-147.860 - 85.3668i) q^{45} +(-181.737 - 104.926i) q^{46} +238.631i q^{47} +(-3.24651 + 5.62311i) q^{48} +(-168.247 - 291.413i) q^{49} +(146.396 - 84.5215i) q^{50} +38.0282 q^{51} -424.907 q^{53} +(-37.8403 + 21.8471i) q^{54} +(-83.0942 - 143.923i) q^{55} +(10.2026 - 17.6714i) q^{56} +15.1096i q^{57} +(-432.224 - 249.544i) q^{58} +(670.696 + 387.226i) q^{59} +10.3276i q^{60} +(61.7113 - 106.887i) q^{61} +(-278.993 - 483.229i) q^{62} +(59.2772 - 34.2237i) q^{63} -64.0000 q^{64} -21.2004 q^{66} +(763.491 - 440.802i) q^{67} +(187.417 + 324.616i) q^{68} +(-21.2902 + 36.8757i) q^{69} -32.4558i q^{70} +(102.854 + 59.3826i) q^{71} +(-185.921 - 107.341i) q^{72} +209.319i q^{73} +(-10.9001 + 18.8795i) q^{74} +(-17.1500 - 29.7046i) q^{75} +(-128.978 + 74.4658i) q^{76} +66.6253 q^{77} -532.358 q^{79} +(-88.1582 + 50.8982i) q^{80} +(-357.844 - 619.804i) q^{81} +(371.375 - 643.241i) q^{82} +376.511i q^{83} +(-3.58564 - 2.07017i) q^{84} +(516.324 + 298.100i) q^{85} +827.436i q^{86} +(-50.6342 + 87.7010i) q^{87} +(-104.484 - 180.971i) q^{88} +(36.9218 - 21.3168i) q^{89} -341.467 q^{90} -419.704 q^{92} +(-98.0505 + 56.6095i) q^{93} +(238.631 + 413.321i) q^{94} +(-118.443 + 205.149i) q^{95} +12.9860i q^{96} +(553.666 + 319.659i) q^{97} +(-582.825 - 336.494i) q^{98} -700.963i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{3} + 24 q^{4} - 18 q^{9} - 48 q^{10} + 192 q^{12} + 216 q^{14} - 96 q^{16} - 180 q^{17} + 328 q^{22} + 38 q^{23} + 244 q^{25} - 276 q^{27} + 202 q^{29} + 360 q^{30} + 916 q^{35} + 72 q^{36}+ \cdots + 3658 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) −0.202907 0.351445i −0.0390494 0.0676355i 0.845840 0.533436i \(-0.179100\pi\)
−0.884890 + 0.465801i \(0.845766\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 6.36227i 0.569059i −0.958667 0.284529i \(-0.908163\pi\)
0.958667 0.284529i \(-0.0918374\pi\)
\(6\) −0.702889 0.405813i −0.0478255 0.0276121i
\(7\) 2.20892 + 1.27532i 0.119271 + 0.0688610i 0.558448 0.829539i \(-0.311397\pi\)
−0.439178 + 0.898400i \(0.644730\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 13.4177 23.2401i 0.496950 0.860743i
\(10\) −6.36227 11.0198i −0.201193 0.348476i
\(11\) 22.6214 13.0605i 0.620055 0.357989i −0.156835 0.987625i \(-0.550129\pi\)
0.776890 + 0.629636i \(0.216796\pi\)
\(12\) −1.62325 −0.0390494
\(13\) 0 0
\(14\) 5.10129 0.0973841
\(15\) −2.23599 + 1.29095i −0.0384886 + 0.0222214i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −46.8543 + 81.1540i −0.668461 + 1.15781i 0.309874 + 0.950778i \(0.399713\pi\)
−0.978335 + 0.207030i \(0.933620\pi\)
\(18\) 53.6706i 0.702794i
\(19\) −32.2446 18.6164i −0.389338 0.224784i 0.292535 0.956255i \(-0.405501\pi\)
−0.681873 + 0.731470i \(0.738834\pi\)
\(20\) −22.0396 12.7245i −0.246410 0.142265i
\(21\) 1.03509i 0.0107559i
\(22\) 26.1209 45.2428i 0.253136 0.438445i
\(23\) −52.4630 90.8686i −0.475622 0.823801i 0.523988 0.851725i \(-0.324443\pi\)
−0.999610 + 0.0279247i \(0.991110\pi\)
\(24\) −2.81156 + 1.62325i −0.0239128 + 0.0138060i
\(25\) 84.5215 0.676172
\(26\) 0 0
\(27\) −21.8471 −0.155721
\(28\) 8.83570 5.10129i 0.0596354 0.0344305i
\(29\) −124.772 216.112i −0.798953 1.38383i −0.920299 0.391216i \(-0.872054\pi\)
0.121346 0.992610i \(-0.461279\pi\)
\(30\) −2.58189 + 4.47197i −0.0157129 + 0.0272156i
\(31\) 278.993i 1.61641i −0.588904 0.808203i \(-0.700441\pi\)
0.588904 0.808203i \(-0.299559\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) −9.18006 5.30011i −0.0484256 0.0279585i
\(34\) 187.417i 0.945346i
\(35\) 8.11395 14.0538i 0.0391860 0.0678721i
\(36\) −53.6706 92.9603i −0.248475 0.430372i
\(37\) −9.43976 + 5.45005i −0.0419429 + 0.0242157i −0.520825 0.853664i \(-0.674376\pi\)
0.478882 + 0.877879i \(0.341042\pi\)
\(38\) −74.4658 −0.317893
\(39\) 0 0
\(40\) −50.8982 −0.201193
\(41\) 321.621 185.688i 1.22509 0.707306i 0.259091 0.965853i \(-0.416577\pi\)
0.965999 + 0.258547i \(0.0832436\pi\)
\(42\) −1.03509 1.79282i −0.00380279 0.00658663i
\(43\) −206.859 + 358.290i −0.733621 + 1.27067i 0.221705 + 0.975114i \(0.428838\pi\)
−0.955326 + 0.295555i \(0.904496\pi\)
\(44\) 104.484i 0.357989i
\(45\) −147.860 85.3668i −0.489814 0.282794i
\(46\) −181.737 104.926i −0.582515 0.336315i
\(47\) 238.631i 0.740595i 0.928913 + 0.370297i \(0.120744\pi\)
−0.928913 + 0.370297i \(0.879256\pi\)
\(48\) −3.24651 + 5.62311i −0.00976235 + 0.0169089i
\(49\) −168.247 291.413i −0.490516 0.849599i
\(50\) 146.396 84.5215i 0.414069 0.239063i
\(51\) 38.0282 0.104412
\(52\) 0 0
\(53\) −424.907 −1.10124 −0.550618 0.834757i \(-0.685608\pi\)
−0.550618 + 0.834757i \(0.685608\pi\)
\(54\) −37.8403 + 21.8471i −0.0953594 + 0.0550558i
\(55\) −83.0942 143.923i −0.203717 0.352848i
\(56\) 10.2026 17.6714i 0.0243460 0.0421686i
\(57\) 15.1096i 0.0351108i
\(58\) −432.224 249.544i −0.978513 0.564945i
\(59\) 670.696 + 387.226i 1.47995 + 0.854451i 0.999742 0.0227031i \(-0.00722724\pi\)
0.480210 + 0.877154i \(0.340561\pi\)
\(60\) 10.3276i 0.0222214i
\(61\) 61.7113 106.887i 0.129530 0.224352i −0.793965 0.607964i \(-0.791987\pi\)
0.923495 + 0.383612i \(0.125320\pi\)
\(62\) −278.993 483.229i −0.571486 0.989842i
\(63\) 59.2772 34.2237i 0.118543 0.0684410i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −21.2004 −0.0395393
\(67\) 763.491 440.802i 1.39217 0.803769i 0.398614 0.917119i \(-0.369491\pi\)
0.993555 + 0.113350i \(0.0361580\pi\)
\(68\) 187.417 + 324.616i 0.334230 + 0.578904i
\(69\) −21.2902 + 36.8757i −0.0371455 + 0.0643378i
\(70\) 32.4558i 0.0554173i
\(71\) 102.854 + 59.3826i 0.171922 + 0.0992593i 0.583492 0.812119i \(-0.301686\pi\)
−0.411570 + 0.911378i \(0.635019\pi\)
\(72\) −185.921 107.341i −0.304319 0.175698i
\(73\) 209.319i 0.335602i 0.985821 + 0.167801i \(0.0536666\pi\)
−0.985821 + 0.167801i \(0.946333\pi\)
\(74\) −10.9001 + 18.8795i −0.0171231 + 0.0296581i
\(75\) −17.1500 29.7046i −0.0264041 0.0457332i
\(76\) −128.978 + 74.4658i −0.194669 + 0.112392i
\(77\) 66.6253 0.0986059
\(78\) 0 0
\(79\) −532.358 −0.758164 −0.379082 0.925363i \(-0.623760\pi\)
−0.379082 + 0.925363i \(0.623760\pi\)
\(80\) −88.1582 + 50.8982i −0.123205 + 0.0711324i
\(81\) −357.844 619.804i −0.490869 0.850211i
\(82\) 371.375 643.241i 0.500141 0.866270i
\(83\) 376.511i 0.497921i 0.968514 + 0.248960i \(0.0800889\pi\)
−0.968514 + 0.248960i \(0.919911\pi\)
\(84\) −3.58564 2.07017i −0.00465745 0.00268898i
\(85\) 516.324 + 298.100i 0.658861 + 0.380393i
\(86\) 827.436i 1.03750i
\(87\) −50.6342 + 87.7010i −0.0623972 + 0.108075i
\(88\) −104.484 180.971i −0.126568 0.219223i
\(89\) 36.9218 21.3168i 0.0439742 0.0253885i −0.477852 0.878441i \(-0.658584\pi\)
0.521826 + 0.853052i \(0.325251\pi\)
\(90\) −341.467 −0.399931
\(91\) 0 0
\(92\) −419.704 −0.475622
\(93\) −98.0505 + 56.6095i −0.109326 + 0.0631196i
\(94\) 238.631 + 413.321i 0.261840 + 0.453520i
\(95\) −118.443 + 205.149i −0.127916 + 0.221556i
\(96\) 12.9860i 0.0138060i
\(97\) 553.666 + 319.659i 0.579550 + 0.334603i 0.760954 0.648805i \(-0.224731\pi\)
−0.181405 + 0.983409i \(0.558064\pi\)
\(98\) −582.825 336.494i −0.600757 0.346847i
\(99\) 700.963i 0.711611i
\(100\) 169.043 292.791i 0.169043 0.292791i
\(101\) 237.419 + 411.222i 0.233902 + 0.405130i 0.958953 0.283565i \(-0.0915172\pi\)
−0.725051 + 0.688695i \(0.758184\pi\)
\(102\) 65.8667 38.0282i 0.0639390 0.0369152i
\(103\) 1100.53 1.05280 0.526402 0.850236i \(-0.323541\pi\)
0.526402 + 0.850236i \(0.323541\pi\)
\(104\) 0 0
\(105\) −6.58550 −0.00612075
\(106\) −735.961 + 424.907i −0.674367 + 0.389346i
\(107\) 285.191 + 493.966i 0.257668 + 0.446294i 0.965617 0.259970i \(-0.0837126\pi\)
−0.707949 + 0.706264i \(0.750379\pi\)
\(108\) −43.6942 + 75.6805i −0.0389303 + 0.0674293i
\(109\) 593.029i 0.521118i 0.965458 + 0.260559i \(0.0839069\pi\)
−0.965458 + 0.260559i \(0.916093\pi\)
\(110\) −287.847 166.188i −0.249501 0.144050i
\(111\) 3.83078 + 2.21170i 0.00327569 + 0.00189122i
\(112\) 40.8103i 0.0344305i
\(113\) −919.559 + 1592.72i −0.765529 + 1.32594i 0.174437 + 0.984668i \(0.444189\pi\)
−0.939966 + 0.341267i \(0.889144\pi\)
\(114\) 15.1096 + 26.1706i 0.0124135 + 0.0215009i
\(115\) −578.131 + 333.784i −0.468791 + 0.270657i
\(116\) −998.178 −0.798953
\(117\) 0 0
\(118\) 1548.91 1.20838
\(119\) −206.995 + 119.509i −0.159456 + 0.0920617i
\(120\) 10.3276 + 17.8879i 0.00785645 + 0.0136078i
\(121\) −324.348 + 561.788i −0.243688 + 0.422080i
\(122\) 246.845i 0.183183i
\(123\) −130.518 75.3545i −0.0956781 0.0552398i
\(124\) −966.459 557.985i −0.699924 0.404101i
\(125\) 1333.03i 0.953841i
\(126\) 68.4474 118.554i 0.0483951 0.0838227i
\(127\) 1234.26 + 2137.79i 0.862382 + 1.49369i 0.869623 + 0.493716i \(0.164362\pi\)
−0.00724155 + 0.999974i \(0.502305\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) 167.892 0.114590
\(130\) 0 0
\(131\) 2279.82 1.52053 0.760264 0.649615i \(-0.225070\pi\)
0.760264 + 0.649615i \(0.225070\pi\)
\(132\) −36.7202 + 21.2004i −0.0242128 + 0.0139793i
\(133\) −47.4840 82.2446i −0.0309578 0.0536204i
\(134\) 881.604 1526.98i 0.568351 0.984412i
\(135\) 138.997i 0.0886146i
\(136\) 649.232 + 374.834i 0.409347 + 0.236336i
\(137\) 380.453 + 219.654i 0.237257 + 0.136981i 0.613916 0.789372i \(-0.289594\pi\)
−0.376658 + 0.926352i \(0.622927\pi\)
\(138\) 85.1607i 0.0525316i
\(139\) 1089.47 1887.02i 0.664803 1.15147i −0.314536 0.949246i \(-0.601849\pi\)
0.979339 0.202227i \(-0.0648178\pi\)
\(140\) −32.4558 56.2151i −0.0195930 0.0339360i
\(141\) 83.8657 48.4199i 0.0500905 0.0289198i
\(142\) 237.530 0.140374
\(143\) 0 0
\(144\) −429.365 −0.248475
\(145\) −1374.96 + 793.835i −0.787479 + 0.454651i
\(146\) 209.319 + 362.552i 0.118653 + 0.205514i
\(147\) −68.2769 + 118.259i −0.0383087 + 0.0663527i
\(148\) 43.6004i 0.0242157i
\(149\) 2484.17 + 1434.24i 1.36585 + 0.788572i 0.990395 0.138269i \(-0.0441539\pi\)
0.375453 + 0.926842i \(0.377487\pi\)
\(150\) −59.4092 34.2999i −0.0323383 0.0186705i
\(151\) 2202.00i 1.18673i −0.804933 0.593366i \(-0.797799\pi\)
0.804933 0.593366i \(-0.202201\pi\)
\(152\) −148.932 + 257.957i −0.0794733 + 0.137652i
\(153\) 1257.35 + 2177.79i 0.664383 + 1.15075i
\(154\) 115.398 66.6253i 0.0603835 0.0348624i
\(155\) −1775.03 −0.919830
\(156\) 0 0
\(157\) 865.139 0.439781 0.219890 0.975525i \(-0.429430\pi\)
0.219890 + 0.975525i \(0.429430\pi\)
\(158\) −922.071 + 532.358i −0.464278 + 0.268051i
\(159\) 86.2165 + 149.331i 0.0430026 + 0.0744827i
\(160\) −101.796 + 176.316i −0.0502982 + 0.0871190i
\(161\) 267.629i 0.131007i
\(162\) −1239.61 715.688i −0.601190 0.347097i
\(163\) −918.712 530.419i −0.441467 0.254881i 0.262753 0.964863i \(-0.415370\pi\)
−0.704220 + 0.709982i \(0.748703\pi\)
\(164\) 1485.50i 0.707306i
\(165\) −33.7207 + 58.4060i −0.0159100 + 0.0275570i
\(166\) 376.511 + 652.136i 0.176042 + 0.304913i
\(167\) 1215.97 702.043i 0.563443 0.325304i −0.191083 0.981574i \(-0.561200\pi\)
0.754526 + 0.656270i \(0.227867\pi\)
\(168\) −8.28069 −0.00380279
\(169\) 0 0
\(170\) 1192.40 0.537958
\(171\) −865.295 + 499.578i −0.386963 + 0.223413i
\(172\) 827.436 + 1433.16i 0.366810 + 0.635334i
\(173\) 511.110 885.268i 0.224618 0.389050i −0.731587 0.681749i \(-0.761220\pi\)
0.956205 + 0.292698i \(0.0945532\pi\)
\(174\) 202.537i 0.0882430i
\(175\) 186.702 + 107.792i 0.0806475 + 0.0465619i
\(176\) −361.942 208.967i −0.155014 0.0894972i
\(177\) 314.283i 0.133463i
\(178\) 42.6336 73.8436i 0.0179524 0.0310945i
\(179\) 209.112 + 362.192i 0.0873169 + 0.151237i 0.906376 0.422472i \(-0.138837\pi\)
−0.819059 + 0.573709i \(0.805504\pi\)
\(180\) −591.439 + 341.467i −0.244907 + 0.141397i
\(181\) 2816.05 1.15644 0.578219 0.815882i \(-0.303748\pi\)
0.578219 + 0.815882i \(0.303748\pi\)
\(182\) 0 0
\(183\) −50.0865 −0.0202322
\(184\) −726.949 + 419.704i −0.291258 + 0.168158i
\(185\) 34.6747 + 60.0584i 0.0137802 + 0.0238680i
\(186\) −113.219 + 196.101i −0.0446323 + 0.0773055i
\(187\) 2447.75i 0.957206i
\(188\) 826.643 + 477.263i 0.320687 + 0.185149i
\(189\) −48.2586 27.8621i −0.0185730 0.0107231i
\(190\) 473.772i 0.180900i
\(191\) −807.053 + 1397.86i −0.305740 + 0.529557i −0.977426 0.211279i \(-0.932237\pi\)
0.671686 + 0.740836i \(0.265570\pi\)
\(192\) 12.9860 + 22.4925i 0.00488117 + 0.00845444i
\(193\) −2131.39 + 1230.56i −0.794926 + 0.458951i −0.841694 0.539955i \(-0.818441\pi\)
0.0467677 + 0.998906i \(0.485108\pi\)
\(194\) 1278.64 0.473200
\(195\) 0 0
\(196\) −1345.98 −0.490516
\(197\) −2984.24 + 1722.95i −1.07928 + 0.623123i −0.930702 0.365777i \(-0.880803\pi\)
−0.148579 + 0.988901i \(0.547470\pi\)
\(198\) −700.963 1214.10i −0.251592 0.435771i
\(199\) 1102.51 1909.61i 0.392739 0.680243i −0.600071 0.799947i \(-0.704861\pi\)
0.992810 + 0.119704i \(0.0381944\pi\)
\(200\) 676.172i 0.239063i
\(201\) −309.835 178.883i −0.108727 0.0627734i
\(202\) 822.445 + 474.839i 0.286470 + 0.165394i
\(203\) 636.500i 0.220067i
\(204\) 76.0563 131.733i 0.0261030 0.0452117i
\(205\) −1181.40 2046.24i −0.402499 0.697149i
\(206\) 1906.18 1100.53i 0.644708 0.372222i
\(207\) −2815.72 −0.945441
\(208\) 0 0
\(209\) −972.558 −0.321881
\(210\) −11.4064 + 6.58550i −0.00374818 + 0.00216401i
\(211\) 466.596 + 808.169i 0.152236 + 0.263681i 0.932049 0.362332i \(-0.118019\pi\)
−0.779813 + 0.626012i \(0.784686\pi\)
\(212\) −849.815 + 1471.92i −0.275309 + 0.476849i
\(213\) 48.1964i 0.0155041i
\(214\) 987.932 + 570.383i 0.315578 + 0.182199i
\(215\) 2279.54 + 1316.09i 0.723085 + 0.417473i
\(216\) 174.777i 0.0550558i
\(217\) 355.806 616.274i 0.111307 0.192790i
\(218\) 593.029 + 1027.16i 0.184243 + 0.319118i
\(219\) 73.5641 42.4723i 0.0226986 0.0131051i
\(220\) −664.754 −0.203717
\(221\) 0 0
\(222\) 8.84681 0.00267459
\(223\) 5511.05 3181.81i 1.65492 0.955469i 0.679915 0.733290i \(-0.262016\pi\)
0.975006 0.222179i \(-0.0713169\pi\)
\(224\) −40.8103 70.6856i −0.0121730 0.0210843i
\(225\) 1134.08 1964.28i 0.336024 0.582010i
\(226\) 3678.23i 1.08262i
\(227\) −718.377 414.755i −0.210046 0.121270i 0.391287 0.920269i \(-0.372030\pi\)
−0.601333 + 0.798999i \(0.705363\pi\)
\(228\) 52.3412 + 30.2192i 0.0152034 + 0.00877770i
\(229\) 5789.35i 1.67062i 0.549782 + 0.835308i \(0.314711\pi\)
−0.549782 + 0.835308i \(0.685289\pi\)
\(230\) −667.568 + 1156.26i −0.191383 + 0.331485i
\(231\) −13.5187 23.4151i −0.00385050 0.00666926i
\(232\) −1728.89 + 998.178i −0.489256 + 0.282472i
\(233\) −320.751 −0.0901849 −0.0450924 0.998983i \(-0.514358\pi\)
−0.0450924 + 0.998983i \(0.514358\pi\)
\(234\) 0 0
\(235\) 1518.24 0.421442
\(236\) 2682.78 1548.91i 0.739976 0.427225i
\(237\) 108.019 + 187.094i 0.0296058 + 0.0512788i
\(238\) −239.017 + 413.990i −0.0650974 + 0.112752i
\(239\) 3582.11i 0.969487i −0.874656 0.484744i \(-0.838913\pi\)
0.874656 0.484744i \(-0.161087\pi\)
\(240\) 35.7758 + 20.6552i 0.00962215 + 0.00555535i
\(241\) −4226.41 2440.12i −1.12966 0.652207i −0.185808 0.982586i \(-0.559490\pi\)
−0.943848 + 0.330379i \(0.892823\pi\)
\(242\) 1297.39i 0.344627i
\(243\) −440.153 + 762.368i −0.116197 + 0.201259i
\(244\) −246.845 427.548i −0.0647649 0.112176i
\(245\) −1854.05 + 1070.43i −0.483472 + 0.279133i
\(246\) −301.418 −0.0781208
\(247\) 0 0
\(248\) −2231.94 −0.571486
\(249\) 132.323 76.3965i 0.0336772 0.0194435i
\(250\) −1333.03 2308.88i −0.337234 0.584106i
\(251\) −1490.11 + 2580.95i −0.374721 + 0.649036i −0.990285 0.139051i \(-0.955595\pi\)
0.615564 + 0.788087i \(0.288928\pi\)
\(252\) 273.790i 0.0684410i
\(253\) −2373.57 1370.38i −0.589823 0.340535i
\(254\) 4275.59 + 2468.51i 1.05620 + 0.609796i
\(255\) 241.946i 0.0594165i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −1927.96 3339.33i −0.467950 0.810513i 0.531379 0.847134i \(-0.321674\pi\)
−0.999329 + 0.0366210i \(0.988341\pi\)
\(258\) 290.798 167.892i 0.0701716 0.0405136i
\(259\) −27.8023 −0.00667008
\(260\) 0 0
\(261\) −6696.60 −1.58816
\(262\) 3948.77 2279.82i 0.931129 0.537588i
\(263\) 2215.59 + 3837.51i 0.519464 + 0.899738i 0.999744 + 0.0226228i \(0.00720168\pi\)
−0.480280 + 0.877115i \(0.659465\pi\)
\(264\) −42.4009 + 73.4405i −0.00988482 + 0.0171210i
\(265\) 2703.38i 0.626668i
\(266\) −164.489 94.9679i −0.0379154 0.0218904i
\(267\) −14.9834 8.65065i −0.00343433 0.00198281i
\(268\) 3526.42i 0.803769i
\(269\) −630.667 + 1092.35i −0.142946 + 0.247589i −0.928605 0.371071i \(-0.878991\pi\)
0.785659 + 0.618660i \(0.212324\pi\)
\(270\) 138.997 + 240.750i 0.0313300 + 0.0542651i
\(271\) 5370.00 3100.37i 1.20371 0.694960i 0.242329 0.970194i \(-0.422089\pi\)
0.961377 + 0.275234i \(0.0887552\pi\)
\(272\) 1499.34 0.334230
\(273\) 0 0
\(274\) 878.618 0.193720
\(275\) 1911.99 1103.89i 0.419264 0.242062i
\(276\) 85.1607 + 147.503i 0.0185727 + 0.0321689i
\(277\) −578.785 + 1002.48i −0.125544 + 0.217449i −0.921946 0.387319i \(-0.873401\pi\)
0.796401 + 0.604769i \(0.206734\pi\)
\(278\) 4357.88i 0.940173i
\(279\) −6483.81 3743.43i −1.39131 0.803273i
\(280\) −112.430 64.9116i −0.0239964 0.0138543i
\(281\) 6322.71i 1.34228i 0.741330 + 0.671141i \(0.234195\pi\)
−0.741330 + 0.671141i \(0.765805\pi\)
\(282\) 96.8397 167.731i 0.0204494 0.0354193i
\(283\) −4654.17 8061.26i −0.977604 1.69326i −0.671060 0.741403i \(-0.734161\pi\)
−0.306544 0.951857i \(-0.599173\pi\)
\(284\) 411.414 237.530i 0.0859611 0.0496297i
\(285\) 96.1314 0.0199801
\(286\) 0 0
\(287\) 947.247 0.194823
\(288\) −743.682 + 429.365i −0.152159 + 0.0878492i
\(289\) −1934.14 3350.04i −0.393679 0.681872i
\(290\) −1587.67 + 2749.93i −0.321487 + 0.556832i
\(291\) 259.444i 0.0522642i
\(292\) 725.103 + 418.638i 0.145320 + 0.0839006i
\(293\) 438.378 + 253.098i 0.0874073 + 0.0504646i 0.543067 0.839690i \(-0.317263\pi\)
−0.455659 + 0.890154i \(0.650596\pi\)
\(294\) 273.108i 0.0541767i
\(295\) 2463.64 4267.15i 0.486233 0.842180i
\(296\) 43.6004 + 75.5181i 0.00856156 + 0.0148291i
\(297\) −494.211 + 285.333i −0.0965557 + 0.0557465i
\(298\) 5736.95 1.11521
\(299\) 0 0
\(300\) −137.200 −0.0264041
\(301\) −913.871 + 527.624i −0.174999 + 0.101036i
\(302\) −2202.00 3813.98i −0.419573 0.726722i
\(303\) 96.3479 166.879i 0.0182675 0.0316402i
\(304\) 595.726i 0.112392i
\(305\) −680.045 392.624i −0.127670 0.0737101i
\(306\) 4355.58 + 2514.70i 0.813700 + 0.469790i
\(307\) 4094.64i 0.761217i 0.924736 + 0.380608i \(0.124285\pi\)
−0.924736 + 0.380608i \(0.875715\pi\)
\(308\) 133.251 230.797i 0.0246515 0.0426976i
\(309\) −223.305 386.776i −0.0411113 0.0712069i
\(310\) −3074.44 + 1775.03i −0.563278 + 0.325209i
\(311\) −8705.00 −1.58719 −0.793594 0.608448i \(-0.791792\pi\)
−0.793594 + 0.608448i \(0.791792\pi\)
\(312\) 0 0
\(313\) −3144.78 −0.567903 −0.283951 0.958839i \(-0.591645\pi\)
−0.283951 + 0.958839i \(0.591645\pi\)
\(314\) 1498.46 865.139i 0.269310 0.155486i
\(315\) −217.741 377.138i −0.0389469 0.0674581i
\(316\) −1064.72 + 1844.14i −0.189541 + 0.328294i
\(317\) 9902.03i 1.75443i −0.480100 0.877214i \(-0.659400\pi\)
0.480100 0.877214i \(-0.340600\pi\)
\(318\) 298.663 + 172.433i 0.0526672 + 0.0304074i
\(319\) −5645.04 3259.17i −0.990789 0.572032i
\(320\) 407.185i 0.0711324i
\(321\) 115.734 200.458i 0.0201236 0.0348550i
\(322\) −267.629 463.547i −0.0463180 0.0802251i
\(323\) 3021.60 1744.52i 0.520514 0.300519i
\(324\) −2862.75 −0.490869
\(325\) 0 0
\(326\) −2121.67 −0.360456
\(327\) 208.417 120.330i 0.0352461 0.0203494i
\(328\) −1485.50 2572.96i −0.250070 0.433135i
\(329\) −304.332 + 527.118i −0.0509981 + 0.0883312i
\(330\) 134.883i 0.0225002i
\(331\) 1702.93 + 983.184i 0.282783 + 0.163265i 0.634683 0.772773i \(-0.281131\pi\)
−0.351900 + 0.936038i \(0.614464\pi\)
\(332\) 1304.27 + 753.022i 0.215606 + 0.124480i
\(333\) 292.508i 0.0481361i
\(334\) 1404.09 2431.95i 0.230025 0.398414i
\(335\) −2804.50 4857.54i −0.457392 0.792226i
\(336\) −14.3426 + 8.28069i −0.00232872 + 0.00134449i
\(337\) 9570.83 1.54705 0.773526 0.633765i \(-0.218491\pi\)
0.773526 + 0.633765i \(0.218491\pi\)
\(338\) 0 0
\(339\) 746.338 0.119574
\(340\) 2065.29 1192.40i 0.329430 0.190197i
\(341\) −3643.77 6311.20i −0.578655 1.00226i
\(342\) −999.156 + 1730.59i −0.157977 + 0.273624i
\(343\) 1733.15i 0.272832i
\(344\) 2866.32 + 1654.87i 0.449249 + 0.259374i
\(345\) 234.613 + 135.454i 0.0366120 + 0.0211380i
\(346\) 2044.44i 0.317658i
\(347\) 3227.11 5589.51i 0.499251 0.864728i −0.500748 0.865593i \(-0.666942\pi\)
1.00000 0.000864443i \(0.000275161\pi\)
\(348\) 202.537 + 350.804i 0.0311986 + 0.0540376i
\(349\) −2407.14 + 1389.76i −0.369201 + 0.213158i −0.673109 0.739543i \(-0.735042\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(350\) 431.169 0.0658484
\(351\) 0 0
\(352\) −835.870 −0.126568
\(353\) −9653.88 + 5573.67i −1.45559 + 0.840387i −0.998790 0.0491807i \(-0.984339\pi\)
−0.456803 + 0.889568i \(0.651006\pi\)
\(354\) −314.283 544.354i −0.0471863 0.0817291i
\(355\) 377.808 654.383i 0.0564844 0.0978339i
\(356\) 170.535i 0.0253885i
\(357\) 84.0013 + 48.4982i 0.0124533 + 0.00718991i
\(358\) 724.384 + 418.223i 0.106941 + 0.0617424i
\(359\) 4313.27i 0.634111i −0.948407 0.317056i \(-0.897306\pi\)
0.948407 0.317056i \(-0.102694\pi\)
\(360\) −682.934 + 1182.88i −0.0999828 + 0.173175i
\(361\) −2736.36 4739.51i −0.398944 0.690991i
\(362\) 4877.54 2816.05i 0.708171 0.408863i
\(363\) 263.250 0.0380634
\(364\) 0 0
\(365\) 1331.75 0.190977
\(366\) −86.7524 + 50.0865i −0.0123897 + 0.00715318i
\(367\) 3454.76 + 5983.81i 0.491381 + 0.851097i 0.999951 0.00992401i \(-0.00315896\pi\)
−0.508570 + 0.861021i \(0.669826\pi\)
\(368\) −839.408 + 1453.90i −0.118905 + 0.205950i
\(369\) 9965.98i 1.40598i
\(370\) 120.117 + 69.3494i 0.0168772 + 0.00974407i
\(371\) −938.588 541.894i −0.131345 0.0758322i
\(372\) 452.876i 0.0631196i
\(373\) −1158.10 + 2005.88i −0.160761 + 0.278447i −0.935142 0.354273i \(-0.884728\pi\)
0.774381 + 0.632720i \(0.218062\pi\)
\(374\) 2447.75 + 4239.63i 0.338423 + 0.586167i
\(375\) −468.487 + 270.481i −0.0645135 + 0.0372469i
\(376\) 1909.05 0.261840
\(377\) 0 0
\(378\) −111.448 −0.0151648
\(379\) 9866.69 5696.54i 1.33725 0.772062i 0.350852 0.936431i \(-0.385892\pi\)
0.986399 + 0.164369i \(0.0525588\pi\)
\(380\) 473.772 + 820.596i 0.0639578 + 0.110778i
\(381\) 500.877 867.545i 0.0673510 0.116655i
\(382\) 3228.21i 0.432381i
\(383\) −10351.4 5976.39i −1.38102 0.797335i −0.388744 0.921346i \(-0.627091\pi\)
−0.992281 + 0.124011i \(0.960424\pi\)
\(384\) 44.9849 + 25.9720i 0.00597819 + 0.00345151i
\(385\) 423.888i 0.0561126i
\(386\) −2461.12 + 4262.78i −0.324527 + 0.562098i
\(387\) 5551.12 + 9614.83i 0.729146 + 1.26292i
\(388\) 2214.67 1278.64i 0.289775 0.167302i
\(389\) −5282.24 −0.688484 −0.344242 0.938881i \(-0.611864\pi\)
−0.344242 + 0.938881i \(0.611864\pi\)
\(390\) 0 0
\(391\) 9832.46 1.27174
\(392\) −2331.30 + 1345.98i −0.300379 + 0.173424i
\(393\) −462.591 801.231i −0.0593757 0.102842i
\(394\) −3445.91 + 5968.48i −0.440615 + 0.763167i
\(395\) 3387.01i 0.431440i
\(396\) −2428.21 1401.93i −0.308137 0.177903i
\(397\) −7890.86 4555.79i −0.997559 0.575941i −0.0900341 0.995939i \(-0.528698\pi\)
−0.907525 + 0.419997i \(0.862031\pi\)
\(398\) 4410.05i 0.555416i
\(399\) −19.2696 + 33.3760i −0.00241776 + 0.00418769i
\(400\) −676.172 1171.16i −0.0845215 0.146396i
\(401\) −432.633 + 249.781i −0.0538770 + 0.0311059i −0.526697 0.850053i \(-0.676570\pi\)
0.472820 + 0.881159i \(0.343236\pi\)
\(402\) −715.533 −0.0887750
\(403\) 0 0
\(404\) 1899.35 0.233902
\(405\) −3943.36 + 2276.70i −0.483820 + 0.279334i
\(406\) −636.500 1102.45i −0.0778053 0.134763i
\(407\) −142.360 + 246.575i −0.0173379 + 0.0300302i
\(408\) 304.225i 0.0369152i
\(409\) 11087.9 + 6401.61i 1.34049 + 0.773934i 0.986880 0.161457i \(-0.0516194\pi\)
0.353614 + 0.935392i \(0.384953\pi\)
\(410\) −4092.48 2362.79i −0.492958 0.284610i
\(411\) 178.277i 0.0213960i
\(412\) 2201.07 3812.36i 0.263201 0.455877i
\(413\) 987.678 + 1710.71i 0.117677 + 0.203822i
\(414\) −4876.98 + 2815.72i −0.578962 + 0.334264i
\(415\) 2395.47 0.283346
\(416\) 0 0
\(417\) −884.242 −0.103841
\(418\) −1684.52 + 972.558i −0.197111 + 0.113802i
\(419\) 3684.14 + 6381.11i 0.429551 + 0.744004i 0.996833 0.0795194i \(-0.0253386\pi\)
−0.567282 + 0.823523i \(0.692005\pi\)
\(420\) −13.1710 + 22.8128i −0.00153019 + 0.00265036i
\(421\) 15266.9i 1.76737i 0.468080 + 0.883686i \(0.344946\pi\)
−0.468080 + 0.883686i \(0.655054\pi\)
\(422\) 1616.34 + 933.193i 0.186450 + 0.107647i
\(423\) 5545.81 + 3201.87i 0.637462 + 0.368039i
\(424\) 3399.26i 0.389346i
\(425\) −3960.19 + 6859.25i −0.451994 + 0.782877i
\(426\) −48.1964 83.4787i −0.00548152 0.00949426i
\(427\) 272.631 157.404i 0.0308982 0.0178391i
\(428\) 2281.53 0.257668
\(429\) 0 0
\(430\) 5264.37 0.590397
\(431\) 18.1367 10.4712i 0.00202694 0.00117026i −0.498986 0.866610i \(-0.666294\pi\)
0.501013 + 0.865440i \(0.332961\pi\)
\(432\) 174.777 + 302.722i 0.0194652 + 0.0337146i
\(433\) 3729.06 6458.92i 0.413873 0.716849i −0.581436 0.813592i \(-0.697509\pi\)
0.995309 + 0.0967427i \(0.0308424\pi\)
\(434\) 1423.22i 0.157412i
\(435\) 557.978 + 322.149i 0.0615011 + 0.0355077i
\(436\) 2054.31 + 1186.06i 0.225651 + 0.130280i
\(437\) 3906.70i 0.427649i
\(438\) 84.9445 147.128i 0.00926668 0.0160504i
\(439\) 4507.17 + 7806.65i 0.490012 + 0.848726i 0.999934 0.0114946i \(-0.00365891\pi\)
−0.509922 + 0.860221i \(0.670326\pi\)
\(440\) −1151.39 + 664.754i −0.124751 + 0.0720248i
\(441\) −9029.93 −0.975049
\(442\) 0 0
\(443\) 1787.12 0.191668 0.0958339 0.995397i \(-0.469448\pi\)
0.0958339 + 0.995397i \(0.469448\pi\)
\(444\) 15.3231 8.84681i 0.00163785 0.000945610i
\(445\) −135.623 234.907i −0.0144476 0.0250239i
\(446\) 6363.62 11022.1i 0.675619 1.17021i
\(447\) 1164.06i 0.123173i
\(448\) −141.371 81.6207i −0.0149088 0.00860762i
\(449\) 3932.57 + 2270.47i 0.413340 + 0.238642i 0.692224 0.721683i \(-0.256631\pi\)
−0.278884 + 0.960325i \(0.589964\pi\)
\(450\) 4536.32i 0.475209i
\(451\) 4850.34 8401.03i 0.506416 0.877138i
\(452\) 3678.23 + 6370.89i 0.382765 + 0.662968i
\(453\) −773.882 + 446.801i −0.0802652 + 0.0463411i
\(454\) −1659.02 −0.171501
\(455\) 0 0
\(456\) 120.877 0.0124135
\(457\) −5952.95 + 3436.93i −0.609337 + 0.351801i −0.772706 0.634764i \(-0.781097\pi\)
0.163369 + 0.986565i \(0.447764\pi\)
\(458\) 5789.35 + 10027.4i 0.590652 + 1.02304i
\(459\) 1023.63 1772.98i 0.104093 0.180295i
\(460\) 2670.27i 0.270657i
\(461\) 8061.47 + 4654.29i 0.814447 + 0.470221i 0.848498 0.529199i \(-0.177507\pi\)
−0.0340507 + 0.999420i \(0.510841\pi\)
\(462\) −46.8302 27.0374i −0.00471588 0.00272271i
\(463\) 14763.5i 1.48190i −0.671560 0.740950i \(-0.734375\pi\)
0.671560 0.740950i \(-0.265625\pi\)
\(464\) −1996.36 + 3457.79i −0.199738 + 0.345957i
\(465\) 360.165 + 623.824i 0.0359188 + 0.0622132i
\(466\) −555.556 + 320.751i −0.0552267 + 0.0318852i
\(467\) −7397.81 −0.733040 −0.366520 0.930410i \(-0.619451\pi\)
−0.366520 + 0.930410i \(0.619451\pi\)
\(468\) 0 0
\(469\) 2248.66 0.221393
\(470\) 2629.66 1518.24i 0.258079 0.149002i
\(471\) −175.542 304.048i −0.0171732 0.0297448i
\(472\) 3097.81 5365.57i 0.302094 0.523242i
\(473\) 10806.7i 1.05051i
\(474\) 374.188 + 216.038i 0.0362596 + 0.0209345i
\(475\) −2725.36 1573.49i −0.263259 0.151993i
\(476\) 956.069i 0.0920617i
\(477\) −5701.26 + 9874.88i −0.547260 + 0.947882i
\(478\) −3582.11 6204.40i −0.342765 0.593687i
\(479\) −10708.4 + 6182.49i −1.02146 + 0.589740i −0.914526 0.404526i \(-0.867436\pi\)
−0.106933 + 0.994266i \(0.534103\pi\)
\(480\) 82.6206 0.00785645
\(481\) 0 0
\(482\) −9760.48 −0.922360
\(483\) −94.0568 + 54.3037i −0.00886073 + 0.00511575i
\(484\) 1297.39 + 2247.15i 0.121844 + 0.211040i
\(485\) 2033.76 3522.58i 0.190409 0.329798i
\(486\) 1760.61i 0.164327i
\(487\) 7315.63 + 4223.68i 0.680704 + 0.393005i 0.800120 0.599840i \(-0.204769\pi\)
−0.119416 + 0.992844i \(0.538102\pi\)
\(488\) −855.096 493.690i −0.0793205 0.0457957i
\(489\) 430.502i 0.0398118i
\(490\) −2140.87 + 3708.09i −0.197377 + 0.341866i
\(491\) 7091.49 + 12282.8i 0.651801 + 1.12895i 0.982686 + 0.185281i \(0.0593196\pi\)
−0.330884 + 0.943671i \(0.607347\pi\)
\(492\) −522.072 + 301.418i −0.0478390 + 0.0276199i
\(493\) 23384.4 2.13627
\(494\) 0 0
\(495\) −4459.72 −0.404949
\(496\) −3865.84 + 2231.94i −0.349962 + 0.202051i
\(497\) 151.464 + 262.343i 0.0136702 + 0.0236775i
\(498\) 152.793 264.645i 0.0137486 0.0238133i
\(499\) 14029.9i 1.25865i 0.777143 + 0.629324i \(0.216668\pi\)
−0.777143 + 0.629324i \(0.783332\pi\)
\(500\) −4617.76 2666.07i −0.413025 0.238460i
\(501\) −493.459 284.899i −0.0440042 0.0254058i
\(502\) 5960.44i 0.529935i
\(503\) −4874.22 + 8442.40i −0.432069 + 0.748366i −0.997051 0.0767373i \(-0.975550\pi\)
0.564982 + 0.825103i \(0.308883\pi\)
\(504\) −273.790 474.217i −0.0241975 0.0419114i
\(505\) 2616.31 1510.53i 0.230543 0.133104i
\(506\) −5481.53 −0.481589
\(507\) 0 0
\(508\) 9874.05 0.862382
\(509\) −9933.06 + 5734.85i −0.864981 + 0.499397i −0.865677 0.500603i \(-0.833112\pi\)
0.000696453 1.00000i \(0.499778\pi\)
\(510\) −241.946 419.062i −0.0210069 0.0363850i
\(511\) −266.950 + 462.370i −0.0231099 + 0.0400275i
\(512\) 512.000i 0.0441942i
\(513\) 704.451 + 406.715i 0.0606282 + 0.0350037i
\(514\) −6678.66 3855.93i −0.573119 0.330891i
\(515\) 7001.89i 0.599107i
\(516\) 335.784 581.596i 0.0286474 0.0496188i
\(517\) 3116.64 + 5398.17i 0.265125 + 0.459209i
\(518\) −48.1550 + 27.8023i −0.00408457 + 0.00235823i
\(519\) −414.830 −0.0350848
\(520\) 0 0
\(521\) −8428.10 −0.708717 −0.354359 0.935110i \(-0.615301\pi\)
−0.354359 + 0.935110i \(0.615301\pi\)
\(522\) −11598.9 + 6696.60i −0.972545 + 0.561499i
\(523\) 8586.33 + 14872.0i 0.717885 + 1.24341i 0.961836 + 0.273626i \(0.0882230\pi\)
−0.243951 + 0.969788i \(0.578444\pi\)
\(524\) 4559.65 7897.54i 0.380132 0.658408i
\(525\) 87.4870i 0.00727285i
\(526\) 7675.02 + 4431.18i 0.636211 + 0.367316i
\(527\) 22641.4 + 13072.0i 1.87149 + 1.08050i
\(528\) 169.604i 0.0139793i
\(529\) 578.763 1002.45i 0.0475683 0.0823907i
\(530\) 2703.38 + 4682.39i 0.221561 + 0.383754i
\(531\) 17998.3 10391.3i 1.47093 0.849239i
\(532\) −379.872 −0.0309578
\(533\) 0 0
\(534\) −34.6026 −0.00280412
\(535\) 3142.75 1814.46i 0.253968 0.146628i
\(536\) −3526.42 6107.93i −0.284175 0.492206i
\(537\) 84.8602 146.982i 0.00681935 0.0118115i
\(538\) 2522.67i 0.202156i
\(539\) −7611.97 4394.77i −0.608294 0.351199i
\(540\) 481.500 + 277.994i 0.0383712 + 0.0221536i
\(541\) 3228.20i 0.256546i −0.991739 0.128273i \(-0.959057\pi\)
0.991739 0.128273i \(-0.0409434\pi\)
\(542\) 6200.75 10740.0i 0.491411 0.851149i
\(543\) −571.395 989.685i −0.0451582 0.0782163i
\(544\) 2596.93 1499.34i 0.204673 0.118168i
\(545\) 3773.01 0.296547
\(546\) 0 0
\(547\) 6923.31 0.541169 0.270584 0.962696i \(-0.412783\pi\)
0.270584 + 0.962696i \(0.412783\pi\)
\(548\) 1521.81 878.618i 0.118629 0.0684903i
\(549\) −1656.04 2868.35i −0.128740 0.222984i
\(550\) 2207.78 3823.99i 0.171164 0.296464i
\(551\) 9291.26i 0.718368i
\(552\) 295.005 + 170.321i 0.0227469 + 0.0131329i
\(553\) −1175.94 678.928i −0.0904267 0.0522079i
\(554\) 2315.14i 0.177547i
\(555\) 14.0715 24.3725i 0.00107622 0.00186406i
\(556\) −4357.88 7548.07i −0.332401 0.575736i
\(557\) −15306.0 + 8836.91i −1.16434 + 0.672229i −0.952339 0.305041i \(-0.901330\pi\)
−0.211996 + 0.977271i \(0.567996\pi\)
\(558\) −14973.7 −1.13600
\(559\) 0 0
\(560\) −259.647 −0.0195930
\(561\) 860.250 496.666i 0.0647411 0.0373783i
\(562\) 6322.71 + 10951.3i 0.474568 + 0.821976i
\(563\) −1221.09 + 2115.00i −0.0914085 + 0.158324i −0.908104 0.418745i \(-0.862470\pi\)
0.816696 + 0.577069i \(0.195804\pi\)
\(564\) 387.359i 0.0289198i
\(565\) 10133.3 + 5850.48i 0.754535 + 0.435631i
\(566\) −16122.5 9308.35i −1.19732 0.691270i
\(567\) 1825.47i 0.135207i
\(568\) 475.060 822.829i 0.0350935 0.0607837i
\(569\) 3487.06 + 6039.77i 0.256916 + 0.444992i 0.965414 0.260721i \(-0.0839603\pi\)
−0.708498 + 0.705713i \(0.750627\pi\)
\(570\) 166.504 96.1314i 0.0122353 0.00706404i
\(571\) −5061.39 −0.370950 −0.185475 0.982649i \(-0.559382\pi\)
−0.185475 + 0.982649i \(0.559382\pi\)
\(572\) 0 0
\(573\) 655.026 0.0477558
\(574\) 1640.68 947.247i 0.119304 0.0688804i
\(575\) −4434.25 7680.35i −0.321602 0.557031i
\(576\) −858.730 + 1487.36i −0.0621188 + 0.107593i
\(577\) 3849.90i 0.277771i −0.990308 0.138885i \(-0.955648\pi\)
0.990308 0.138885i \(-0.0443519\pi\)
\(578\) −6700.07 3868.29i −0.482156 0.278373i
\(579\) 864.946 + 499.377i 0.0620828 + 0.0358435i
\(580\) 6350.68i 0.454651i
\(581\) −480.173 + 831.684i −0.0342873 + 0.0593874i
\(582\) −259.444 449.370i −0.0184782 0.0320052i
\(583\) −9612.00 + 5549.49i −0.682827 + 0.394230i
\(584\) 1674.55 0.118653
\(585\) 0 0
\(586\) 1012.39 0.0713677
\(587\) 10117.0 5841.06i 0.711369 0.410709i −0.100199 0.994967i \(-0.531948\pi\)
0.811568 + 0.584258i \(0.198615\pi\)
\(588\) 273.108 + 473.036i 0.0191544 + 0.0331763i
\(589\) −5193.85 + 8996.01i −0.363343 + 0.629328i
\(590\) 9854.56i 0.687637i
\(591\) 1211.04 + 699.197i 0.0842906 + 0.0486652i
\(592\) 151.036 + 87.2008i 0.0104857 + 0.00605394i
\(593\) 14539.7i 1.00687i −0.864033 0.503435i \(-0.832069\pi\)
0.864033 0.503435i \(-0.167931\pi\)
\(594\) −570.666 + 988.423i −0.0394187 + 0.0682752i
\(595\) 760.347 + 1316.96i 0.0523885 + 0.0907396i
\(596\) 9936.69 5736.95i 0.682924 0.394286i
\(597\) −894.827 −0.0613448
\(598\) 0 0
\(599\) 8414.92 0.573997 0.286998 0.957931i \(-0.407343\pi\)
0.286998 + 0.957931i \(0.407343\pi\)
\(600\) −237.637 + 137.200i −0.0161691 + 0.00933526i
\(601\) −9135.37 15822.9i −0.620032 1.07393i −0.989479 0.144675i \(-0.953786\pi\)
0.369447 0.929252i \(-0.379547\pi\)
\(602\) −1055.25 + 1827.74i −0.0714430 + 0.123743i
\(603\) 23658.1i 1.59773i
\(604\) −7627.96 4404.01i −0.513870 0.296683i
\(605\) 3574.25 + 2063.59i 0.240188 + 0.138673i
\(606\) 385.392i 0.0258341i
\(607\) 2833.59 4907.93i 0.189476 0.328182i −0.755600 0.655034i \(-0.772654\pi\)
0.945076 + 0.326851i \(0.105988\pi\)
\(608\) 595.726 + 1031.83i 0.0397367 + 0.0688259i
\(609\) −223.694 + 129.150i −0.0148843 + 0.00859347i
\(610\) −1570.50 −0.104242
\(611\) 0 0
\(612\) 10058.8 0.664383
\(613\) 12585.6 7266.32i 0.829248 0.478767i −0.0243470 0.999704i \(-0.507751\pi\)
0.853595 + 0.520937i \(0.174417\pi\)
\(614\) 4094.64 + 7092.13i 0.269131 + 0.466148i
\(615\) −479.426 + 830.390i −0.0314347 + 0.0544465i
\(616\) 533.002i 0.0348624i
\(617\) −9919.56 5727.06i −0.647239 0.373684i 0.140158 0.990129i \(-0.455239\pi\)
−0.787398 + 0.616445i \(0.788572\pi\)
\(618\) −773.553 446.611i −0.0503509 0.0290701i
\(619\) 10052.7i 0.652751i 0.945240 + 0.326376i \(0.105827\pi\)
−0.945240 + 0.326376i \(0.894173\pi\)
\(620\) −3550.05 + 6148.88i −0.229957 + 0.398298i
\(621\) 1146.16 + 1985.21i 0.0740644 + 0.128283i
\(622\) −15077.5 + 8705.00i −0.971950 + 0.561155i
\(623\) 108.743 0.00699311
\(624\) 0 0
\(625\) 2084.07 0.133380
\(626\) −5446.92 + 3144.78i −0.347768 + 0.200784i
\(627\) 197.338 + 341.800i 0.0125693 + 0.0217706i
\(628\) 1730.28 2996.93i 0.109945 0.190431i
\(629\) 1021.43i 0.0647491i
\(630\) −754.275 435.481i −0.0477001 0.0275396i
\(631\) −10433.6 6023.82i −0.658247 0.380039i 0.133362 0.991067i \(-0.457423\pi\)
−0.791609 + 0.611028i \(0.790756\pi\)
\(632\) 4258.86i 0.268051i
\(633\) 189.351 327.966i 0.0118895 0.0205931i
\(634\) −9902.03 17150.8i −0.620284 1.07436i
\(635\) 13601.2 7852.67i 0.849997 0.490746i
\(636\) 689.732 0.0430026
\(637\) 0 0
\(638\) −13036.7 −0.808976
\(639\) 2760.11 1593.55i 0.170874 0.0986539i
\(640\) 407.185 + 705.266i 0.0251491 + 0.0435595i
\(641\) −10575.4 + 18317.1i −0.651643 + 1.12868i 0.331082 + 0.943602i \(0.392586\pi\)
−0.982724 + 0.185076i \(0.940747\pi\)
\(642\) 462.938i 0.0284590i
\(643\) 13275.7 + 7664.72i 0.814217 + 0.470089i 0.848418 0.529326i \(-0.177555\pi\)
−0.0342009 + 0.999415i \(0.510889\pi\)
\(644\) −927.095 535.258i −0.0567277 0.0327518i
\(645\) 1068.18i 0.0652083i
\(646\) 3489.04 6043.19i 0.212499 0.368059i
\(647\) −7259.97 12574.6i −0.441142 0.764080i 0.556633 0.830759i \(-0.312093\pi\)
−0.997774 + 0.0666787i \(0.978760\pi\)
\(648\) −4958.43 + 2862.75i −0.300595 + 0.173549i
\(649\) 20229.4 1.22354
\(650\) 0 0
\(651\) −288.781 −0.0173859
\(652\) −3674.85 + 2121.67i −0.220733 + 0.127440i
\(653\) −13807.8 23915.8i −0.827475 1.43323i −0.900013 0.435863i \(-0.856443\pi\)
0.0725376 0.997366i \(-0.476890\pi\)
\(654\) 240.659 416.834i 0.0143892 0.0249228i
\(655\) 14504.9i 0.865270i
\(656\) −5145.93 2971.00i −0.306273 0.176827i
\(657\) 4864.59 + 2808.57i 0.288867 + 0.166778i
\(658\) 1217.33i 0.0721222i
\(659\) 6949.24 12036.4i 0.410780 0.711492i −0.584195 0.811613i \(-0.698590\pi\)
0.994975 + 0.100121i \(0.0319231\pi\)
\(660\) 134.883 + 233.624i 0.00795502 + 0.0137785i
\(661\) 15020.6 8672.14i 0.883862 0.510298i 0.0119324 0.999929i \(-0.496202\pi\)
0.871930 + 0.489631i \(0.162868\pi\)
\(662\) 3932.74 0.230892
\(663\) 0 0
\(664\) 3012.09 0.176042
\(665\) −523.263 + 302.106i −0.0305132 + 0.0176168i
\(666\) 292.508 + 506.638i 0.0170187 + 0.0294772i
\(667\) −13091.9 + 22675.8i −0.759998 + 1.31636i
\(668\) 5616.35i 0.325304i
\(669\) −2236.46 1291.22i −0.129247 0.0746210i
\(670\) −9715.08 5609.00i −0.560189 0.323425i
\(671\) 3223.91i 0.185481i
\(672\) −16.5614 + 28.6851i −0.000950698 + 0.00164666i
\(673\) −1328.00 2300.15i −0.0760631 0.131745i 0.825485 0.564424i \(-0.190902\pi\)
−0.901548 + 0.432679i \(0.857568\pi\)
\(674\) 16577.2 9570.83i 0.947372 0.546965i
\(675\) −1846.55 −0.105294
\(676\) 0 0
\(677\) −18853.1 −1.07029 −0.535143 0.844761i \(-0.679742\pi\)
−0.535143 + 0.844761i \(0.679742\pi\)
\(678\) 1292.70 746.338i 0.0732237 0.0422757i
\(679\) 815.338 + 1412.21i 0.0460822 + 0.0798167i
\(680\) 2384.80 4130.59i 0.134489 0.232942i
\(681\) 336.626i 0.0189421i
\(682\) −12622.4 7287.55i −0.708705 0.409171i
\(683\) 1455.14 + 840.126i 0.0815218 + 0.0470666i 0.540207 0.841532i \(-0.318346\pi\)
−0.458685 + 0.888599i \(0.651679\pi\)
\(684\) 3996.62i 0.223413i
\(685\) 1397.50 2420.54i 0.0779501 0.135013i
\(686\) −1733.15 3001.90i −0.0964606 0.167075i
\(687\) 2034.64 1174.70i 0.112993 0.0652365i
\(688\) 6619.49 0.366810
\(689\) 0 0
\(690\) 541.816 0.0298936
\(691\) 9472.95 5469.21i 0.521516 0.301098i −0.216038 0.976385i \(-0.569314\pi\)
0.737555 + 0.675287i \(0.235980\pi\)
\(692\) −2044.44 3541.07i −0.112309 0.194525i
\(693\) 893.955 1548.38i 0.0490022 0.0848743i
\(694\) 12908.4i 0.706048i
\(695\) −12005.7 6931.50i −0.655256 0.378312i
\(696\) 701.608 + 405.074i 0.0382103 + 0.0220607i
\(697\) 34801.0i 1.89122i
\(698\) −2779.52 + 4814.28i −0.150726 + 0.261064i
\(699\) 65.0824 + 112.726i 0.00352166 + 0.00609970i
\(700\) 746.806 431.169i 0.0403238 0.0232809i
\(701\) −19632.4 −1.05778 −0.528892 0.848689i \(-0.677392\pi\)
−0.528892 + 0.848689i \(0.677392\pi\)
\(702\) 0 0
\(703\) 405.842 0.0217733
\(704\) −1447.77 + 835.870i −0.0775069 + 0.0447486i
\(705\) −308.060 533.576i −0.0164571 0.0285045i
\(706\) −11147.3 + 19307.8i −0.594243 + 1.02926i
\(707\) 1211.15i 0.0644269i
\(708\) −1088.71 628.566i −0.0577912 0.0333658i
\(709\) 16868.3 + 9738.89i 0.893513 + 0.515870i 0.875090 0.483960i \(-0.160802\pi\)
0.0184228 + 0.999830i \(0.494135\pi\)
\(710\) 1511.23i 0.0798810i
\(711\) −7142.99 + 12372.0i −0.376770 + 0.652584i
\(712\) −170.535 295.374i −0.00897620 0.0155472i
\(713\) −25351.7 + 14636.8i −1.33160 + 0.768797i
\(714\) 193.993 0.0101681
\(715\) 0 0
\(716\) 1672.89 0.0873169
\(717\) −1258.91 + 726.834i −0.0655718 + 0.0378579i
\(718\) −4313.27 7470.81i −0.224192 0.388312i
\(719\) −201.611 + 349.201i −0.0104573 + 0.0181126i −0.871207 0.490916i \(-0.836662\pi\)
0.860749 + 0.509029i \(0.169995\pi\)
\(720\) 2731.74i 0.141397i
\(721\) 2430.99 + 1403.54i 0.125569 + 0.0724971i
\(722\) −9479.02 5472.71i −0.488604 0.282096i
\(723\) 1980.47i 0.101873i
\(724\) 5632.10 9755.08i 0.289110 0.500752i
\(725\) −10545.9 18266.1i −0.540229 0.935704i
\(726\) 455.962 263.250i 0.0233090 0.0134575i
\(727\) 29051.3 1.48206 0.741028 0.671474i \(-0.234339\pi\)
0.741028 + 0.671474i \(0.234339\pi\)
\(728\) 0 0
\(729\) −18966.3 −0.963589
\(730\) 2306.65 1331.75i 0.116949 0.0675207i
\(731\) −19384.4 33574.8i −0.980793 1.69878i
\(732\) −100.173 + 173.505i −0.00505806 + 0.00876082i
\(733\) 25289.5i 1.27434i −0.770724 0.637169i \(-0.780105\pi\)
0.770724 0.637169i \(-0.219895\pi\)
\(734\) 11967.6 + 6909.51i 0.601816 + 0.347459i
\(735\) 752.396 + 434.396i 0.0377586 + 0.0217999i
\(736\) 3357.63i 0.168158i
\(737\) 11514.2 19943.1i 0.575481 0.996762i
\(738\) −9965.98 17261.6i −0.497090 0.860986i
\(739\) −219.893 + 126.956i −0.0109458 + 0.00631953i −0.505463 0.862848i \(-0.668678\pi\)
0.494517 + 0.869168i \(0.335345\pi\)
\(740\) 277.398 0.0137802
\(741\) 0 0
\(742\) −2167.58 −0.107243
\(743\) 11174.8 6451.78i 0.551768 0.318564i −0.198066 0.980189i \(-0.563466\pi\)
0.749835 + 0.661625i \(0.230133\pi\)
\(744\) 452.876 + 784.404i 0.0223162 + 0.0386527i
\(745\) 9125.01 15805.0i 0.448744 0.777248i
\(746\) 4632.39i 0.227351i
\(747\) 8750.14 + 5051.89i 0.428582 + 0.247442i
\(748\) 8479.27 + 4895.51i 0.414482 + 0.239301i
\(749\) 1454.84i 0.0709731i
\(750\) −540.962 + 936.974i −0.0263375 + 0.0456179i
\(751\) −16912.6 29293.5i −0.821771 1.42335i −0.904362 0.426766i \(-0.859653\pi\)
0.0825911 0.996584i \(-0.473680\pi\)
\(752\) 3306.57 1909.05i 0.160343 0.0925743i
\(753\) 1209.41 0.0585305
\(754\) 0 0
\(755\) −14009.7 −0.675320
\(756\) −193.034 + 111.448i −0.00928649 + 0.00536156i
\(757\) 16928.8 + 29321.5i 0.812796 + 1.40780i 0.910899 + 0.412629i \(0.135389\pi\)
−0.0981029 + 0.995176i \(0.531277\pi\)
\(758\) 11393.1 19733.4i 0.545930 0.945579i
\(759\) 1112.24i 0.0531907i
\(760\) 1641.19 + 947.543i 0.0783320 + 0.0452250i
\(761\) −10255.2 5920.81i −0.488501 0.282036i 0.235452 0.971886i \(-0.424343\pi\)
−0.723952 + 0.689850i \(0.757676\pi\)
\(762\) 2003.51i 0.0952487i
\(763\) −756.304 + 1309.96i −0.0358847 + 0.0621542i
\(764\) 3228.21 + 5591.43i 0.152870 + 0.264778i
\(765\) 13855.7 7999.60i 0.654842 0.378073i
\(766\) −23905.6 −1.12760
\(767\) 0 0
\(768\) 103.888 0.00488117
\(769\) 8494.96 4904.57i 0.398356 0.229991i −0.287418 0.957805i \(-0.592797\pi\)
0.685775 + 0.727814i \(0.259464\pi\)
\(770\) −423.888 734.196i −0.0198388 0.0343618i
\(771\) −782.393 + 1355.15i −0.0365463 + 0.0633001i
\(772\) 9844.47i 0.458951i
\(773\) −23488.0 13560.8i −1.09289 0.630982i −0.158548 0.987351i \(-0.550681\pi\)
−0.934345 + 0.356369i \(0.884015\pi\)
\(774\) 19229.7 + 11102.2i 0.893018 + 0.515584i
\(775\) 23580.9i 1.09297i
\(776\) 2557.28 4429.33i 0.118300 0.204902i
\(777\) 5.64127 + 9.77097i 0.000260463 + 0.000451134i
\(778\) −9149.11 + 5282.24i −0.421609 + 0.243416i
\(779\) −13827.4 −0.635966
\(780\) 0 0
\(781\) 3102.26 0.142135
\(782\) 17030.3 9832.46i 0.778777 0.449627i
\(783\) 2725.91 + 4721.41i 0.124414 + 0.215491i
\(784\) −2691.95 + 4662.60i −0.122629 + 0.212400i
\(785\) 5504.25i 0.250261i
\(786\) −1602.46 925.182i −0.0727201 0.0419849i
\(787\) 15982.9 + 9227.71i 0.723923 + 0.417957i 0.816195 0.577777i \(-0.196080\pi\)
−0.0922719 + 0.995734i \(0.529413\pi\)
\(788\) 13783.6i 0.623123i
\(789\) 899.115 1557.31i 0.0405695 0.0702684i
\(790\) 3387.01 + 5866.46i 0.152537 + 0.264202i
\(791\) −4062.47 + 2345.47i −0.182610 + 0.105430i
\(792\) −5607.71 −0.251592
\(793\) 0 0
\(794\) −18223.2 −0.814504
\(795\) 950.087 548.533i 0.0423850 0.0244710i
\(796\) −4410.05 7638.42i −0.196369 0.340122i
\(797\) −7025.68 + 12168.8i −0.312249 + 0.540831i −0.978849 0.204585i \(-0.934416\pi\)
0.666600 + 0.745416i \(0.267749\pi\)
\(798\) 77.0785i 0.00341923i
\(799\) −19365.9 11180.9i −0.857466 0.495058i
\(800\) −2342.33 1352.34i −0.103517 0.0597657i
\(801\) 1144.09i 0.0504673i
\(802\) −499.562 + 865.266i −0.0219952 + 0.0380968i
\(803\) 2733.81 + 4735.09i 0.120142 + 0.208092i
\(804\) −1239.34 + 715.533i −0.0543634 + 0.0313867i
\(805\) −1702.73 −0.0745507
\(806\) 0 0
\(807\) 511.866 0.0223278
\(808\) 3289.78 1899.35i 0.143235 0.0826968i
\(809\) 12193.2 + 21119.3i 0.529902 + 0.917818i 0.999392 + 0.0348794i \(0.0111047\pi\)
−0.469489 + 0.882938i \(0.655562\pi\)
\(810\) −4553.40 + 7886.72i −0.197519 + 0.342112i
\(811\) 34306.9i 1.48542i 0.669612 + 0.742711i \(0.266460\pi\)
−0.669612 + 0.742711i \(0.733540\pi\)
\(812\) −2204.90 1273.00i −0.0952916 0.0550167i
\(813\) −2179.22 1258.17i −0.0940080 0.0542756i
\(814\) 569.442i 0.0245196i
\(815\) −3374.67 + 5845.10i −0.145042 + 0.251221i
\(816\) −304.225 526.934i −0.0130515 0.0226058i
\(817\) 13340.2 7701.95i 0.571253 0.329813i
\(818\) 25606.4 1.09451
\(819\) 0 0
\(820\) −9451.17 −0.402499
\(821\) −2835.84 + 1637.27i −0.120550 + 0.0695995i −0.559062 0.829126i \(-0.688839\pi\)
0.438513 + 0.898725i \(0.355505\pi\)
\(822\) −178.277 308.785i −0.00756464 0.0131023i
\(823\) 8607.39 14908.4i 0.364562 0.631440i −0.624144 0.781310i \(-0.714552\pi\)
0.988706 + 0.149869i \(0.0478853\pi\)
\(824\) 8804.26i 0.372222i
\(825\) −775.912 447.973i −0.0327440 0.0189048i
\(826\) 3421.42 + 1975.36i 0.144124 + 0.0832099i
\(827\) 40718.9i 1.71213i 0.516864 + 0.856067i \(0.327099\pi\)
−0.516864 + 0.856067i \(0.672901\pi\)
\(828\) −5631.45 + 9753.95i −0.236360 + 0.409388i
\(829\) 813.632 + 1409.25i 0.0340876 + 0.0590414i 0.882566 0.470189i \(-0.155814\pi\)
−0.848478 + 0.529230i \(0.822481\pi\)
\(830\) 4149.07 2395.47i 0.173514 0.100178i
\(831\) 469.757 0.0196097
\(832\) 0 0
\(833\) 31532.4 1.31156
\(834\) −1531.55 + 884.242i −0.0635891 + 0.0367132i
\(835\) −4466.59 7736.36i −0.185117 0.320632i
\(836\) −1945.12 + 3369.04i −0.0804704 + 0.139379i
\(837\) 6095.18i 0.251709i
\(838\) 12762.2 + 7368.27i 0.526090 + 0.303738i
\(839\) −14827.4 8560.59i −0.610128 0.352258i 0.162887 0.986645i \(-0.447919\pi\)
−0.773016 + 0.634387i \(0.781253\pi\)
\(840\) 52.6840i 0.00216401i
\(841\) −18941.7 + 32808.0i −0.776650 + 1.34520i
\(842\) 15266.9 + 26443.1i 0.624861 + 1.08229i
\(843\) 2222.08 1282.92i 0.0907859 0.0524153i
\(844\) 3732.77 0.152236
\(845\) 0 0
\(846\) 12807.5 0.520485
\(847\) −1432.92 + 827.298i −0.0581296 + 0.0335612i
\(848\) 3399.26 + 5887.69i 0.137655 + 0.238425i
\(849\) −1888.73 + 3271.37i −0.0763497 + 0.132242i
\(850\) 15840.8i 0.639216i
\(851\) 990.477 + 571.852i 0.0398979 + 0.0230351i
\(852\) −166.957 96.3929i −0.00671346 0.00387602i
\(853\) 4791.65i 0.192336i 0.995365 + 0.0961682i \(0.0306587\pi\)
−0.995365 + 0.0961682i \(0.969341\pi\)
\(854\) 314.807 545.262i 0.0126141 0.0218483i
\(855\) 3178.45 + 5505.24i 0.127135 + 0.220205i
\(856\) 3951.73 2281.53i 0.157789 0.0910994i
\(857\) −12689.7 −0.505802 −0.252901 0.967492i \(-0.581385\pi\)
−0.252901 + 0.967492i \(0.581385\pi\)
\(858\) 0 0
\(859\) −35646.1 −1.41586 −0.707932 0.706280i \(-0.750372\pi\)
−0.707932 + 0.706280i \(0.750372\pi\)
\(860\) 9118.16 5264.37i 0.361543 0.208737i
\(861\) −192.203 332.905i −0.00760773 0.0131770i
\(862\) 20.9424 36.2734i 0.000827497 0.00143327i
\(863\) 10664.4i 0.420650i 0.977631 + 0.210325i \(0.0674523\pi\)
−0.977631 + 0.210325i \(0.932548\pi\)
\(864\) 605.444 + 349.553i 0.0238398 + 0.0137639i
\(865\) −5632.32 3251.82i −0.221393 0.127821i
\(866\) 14916.2i 0.585305i
\(867\) −784.901 + 1359.49i −0.0307458 + 0.0532534i
\(868\) −1423.22 2465.09i −0.0556536 0.0963949i
\(869\) −12042.7 + 6952.84i −0.470103 + 0.271414i
\(870\) 1288.59 0.0502155
\(871\) 0 0
\(872\) 4744.23 0.184243
\(873\) 14857.8 8578.16i 0.576015 0.332562i
\(874\) 3906.70 + 6766.60i 0.151197 + 0.261881i
\(875\) 1700.05 2944.57i 0.0656824 0.113765i
\(876\) 339.778i 0.0131051i
\(877\) 9538.83 + 5507.25i 0.367279 + 0.212048i 0.672269 0.740307i \(-0.265320\pi\)
−0.304990 + 0.952355i \(0.598653\pi\)
\(878\) 15613.3 + 9014.34i 0.600140 + 0.346491i
\(879\) 205.421i 0.00788245i
\(880\) −1329.51 + 2302.78i −0.0509292 + 0.0882120i
\(881\) −2271.51 3934.36i −0.0868660 0.150456i 0.819319 0.573338i \(-0.194352\pi\)
−0.906185 + 0.422882i \(0.861019\pi\)
\(882\) −15640.3 + 9029.93i −0.597093 + 0.344732i
\(883\) −28212.2 −1.07522 −0.537608 0.843195i \(-0.680672\pi\)
−0.537608 + 0.843195i \(0.680672\pi\)
\(884\) 0 0
\(885\) −1999.56 −0.0759484
\(886\) 3095.39 1787.12i 0.117372 0.0677648i
\(887\) 15348.0 + 26583.5i 0.580987 + 1.00630i 0.995363 + 0.0961927i \(0.0306665\pi\)
−0.414376 + 0.910106i \(0.636000\pi\)
\(888\) 17.6936 30.6462i 0.000668647 0.00115813i
\(889\) 6296.30i 0.237538i
\(890\) −469.813 271.247i −0.0176946 0.0102160i
\(891\) −16189.9 9347.22i −0.608732 0.351452i
\(892\) 25454.5i 0.955469i
\(893\) 4442.47 7694.58i 0.166474 0.288342i
\(894\) −1164.06 2016.22i −0.0435483 0.0754278i
\(895\) 2304.36 1330.42i 0.0860630 0.0496885i
\(896\) −326.483 −0.0121730
\(897\) 0 0
\(898\) 9081.89 0.337491
\(899\) −60293.6 + 34810.5i −2.23682 + 1.29143i
\(900\) −4536.32 7857.14i −0.168012 0.291005i
\(901\) 19908.7 34482.9i 0.736133 1.27502i
\(902\) 19401.3i 0.716180i
\(903\) 370.861 + 214.117i 0.0136672 + 0.00789076i
\(904\) 12741.8 + 7356.47i 0.468789 + 0.270655i
\(905\) 17916.5i 0.658082i
\(906\) −893.602 + 1547.76i −0.0327681 + 0.0567561i
\(907\) 15138.6 + 26220.9i 0.554211 + 0.959922i 0.997964 + 0.0637731i \(0.0203134\pi\)
−0.443753 + 0.896149i \(0.646353\pi\)
\(908\) −2873.51 + 1659.02i −0.105023 + 0.0606349i
\(909\) 12742.4 0.464951
\(910\) 0 0
\(911\) 18833.6 0.684946 0.342473 0.939528i \(-0.388736\pi\)
0.342473 + 0.939528i \(0.388736\pi\)
\(912\) 209.365 120.877i 0.00760171 0.00438885i
\(913\) 4917.41 + 8517.20i 0.178250 + 0.308738i
\(914\) −6873.87 + 11905.9i −0.248761 + 0.430866i
\(915\) 318.664i 0.0115133i
\(916\) 20054.9 + 11578.7i 0.723398 + 0.417654i
\(917\) 5035.96 + 2907.51i 0.181354 + 0.104705i
\(918\) 4094.52i 0.147210i
\(919\) 1279.32 2215.85i 0.0459206 0.0795367i −0.842152 0.539241i \(-0.818711\pi\)
0.888072 + 0.459704i \(0.152045\pi\)
\(920\) 2670.27 + 4625.05i 0.0956916 + 0.165743i
\(921\) 1439.04 830.830i 0.0514853 0.0297250i
\(922\) 18617.2 0.664993
\(923\) 0 0
\(924\) −108.150 −0.00385050
\(925\) −797.863 + 460.646i −0.0283606 + 0.0163740i
\(926\) −14763.5 25571.2i −0.523931 0.907475i
\(927\) 14766.6 25576.5i 0.523191 0.906193i
\(928\) 7985.42i 0.282472i
\(929\) 14196.7 + 8196.45i 0.501375 + 0.289469i 0.729281 0.684214i \(-0.239855\pi\)
−0.227906 + 0.973683i \(0.573188\pi\)
\(930\) 1247.65 + 720.330i 0.0439914 + 0.0253984i
\(931\) 12528.7i 0.441042i
\(932\) −641.501 + 1111.11i −0.0225462 + 0.0390512i
\(933\) 1766.30 + 3059.32i 0.0619787 + 0.107350i
\(934\) −12813.4 + 7397.81i −0.448894 + 0.259169i
\(935\) 15573.3 0.544707
\(936\) 0 0
\(937\) 24289.2 0.846845 0.423422 0.905932i \(-0.360829\pi\)
0.423422 + 0.905932i \(0.360829\pi\)
\(938\) 3894.79 2248.66i 0.135575 0.0782744i
\(939\) 638.097 + 1105.22i 0.0221763 + 0.0384104i
\(940\) 3036.47 5259.33i 0.105361 0.182490i
\(941\) 31263.6i 1.08306i 0.840680 + 0.541532i \(0.182156\pi\)
−0.840680 + 0.541532i \(0.817844\pi\)
\(942\) −608.096 351.085i −0.0210328 0.0121433i
\(943\) −33746.4 19483.5i −1.16536 0.672820i
\(944\) 12391.2i 0.427225i
\(945\) −177.266 + 307.034i −0.00610208 + 0.0105691i
\(946\) 10806.7 + 18717.7i 0.371412 + 0.643305i
\(947\) −38179.5 + 22043.0i −1.31010 + 0.756389i −0.982113 0.188292i \(-0.939705\pi\)
−0.327991 + 0.944681i \(0.606372\pi\)
\(948\) 864.151 0.0296058
\(949\) 0 0
\(950\) −6293.96 −0.214950
\(951\) −3480.01 + 2009.19i −0.118662 + 0.0685093i
\(952\) 956.069 + 1655.96i 0.0325487 + 0.0563760i
\(953\) −317.041 + 549.131i −0.0107765 + 0.0186654i −0.871363 0.490638i \(-0.836764\pi\)
0.860587 + 0.509304i \(0.170097\pi\)
\(954\) 22805.0i 0.773942i
\(955\) 8893.55 + 5134.69i 0.301349 + 0.173984i
\(956\) −12408.8 7164.22i −0.419800 0.242372i
\(957\) 2645.23i 0.0893501i
\(958\) −12365.0 + 21416.8i −0.417009 + 0.722281i
\(959\) 560.261 + 970.400i 0.0188652 + 0.0326756i
\(960\) 143.103 82.6206i 0.00481108 0.00277768i
\(961\) −48045.9 −1.61277
\(962\) 0 0
\(963\) 15306.4 0.512193
\(964\) −16905.6 + 9760.48i −0.564828 + 0.326104i
\(965\) 7829.15 + 13560.5i 0.261170 + 0.452360i
\(966\) −108.607 + 188.114i −0.00361738 + 0.00626548i
\(967\) 58557.1i 1.94733i −0.227981 0.973666i \(-0.573212\pi\)
0.227981 0.973666i \(-0.426788\pi\)
\(968\) 4494.30 + 2594.79i 0.149228 + 0.0861566i
\(969\) −1226.20 707.949i −0.0406515 0.0234702i
\(970\) 8135.04i 0.269279i
\(971\) 1667.84 2888.79i 0.0551222 0.0954745i −0.837148 0.546977i \(-0.815778\pi\)
0.892270 + 0.451503i \(0.149112\pi\)
\(972\) 1760.61 + 3049.47i 0.0580985 + 0.100629i
\(973\) 4813.11 2778.85i 0.158583 0.0915579i
\(974\) 16894.7 0.555793
\(975\) 0 0
\(976\) −1974.76 −0.0647649
\(977\) −20531.4 + 11853.8i −0.672323 + 0.388166i −0.796956 0.604037i \(-0.793558\pi\)
0.124633 + 0.992203i \(0.460225\pi\)
\(978\) 430.502 + 745.651i 0.0140756 + 0.0243796i
\(979\) 556.815 964.432i 0.0181776 0.0314846i
\(980\) 8563.47i 0.279133i
\(981\) 13782.0 + 7957.06i 0.448549 + 0.258970i
\(982\) 24565.6 + 14183.0i 0.798290 + 0.460893i
\(983\) 34833.6i 1.13023i −0.825011 0.565117i \(-0.808831\pi\)
0.825011 0.565117i \(-0.191169\pi\)
\(984\) −602.836 + 1044.14i −0.0195302 + 0.0338273i
\(985\) 10961.9 + 18986.6i 0.354594 + 0.614175i
\(986\) 40503.0 23384.4i 1.30819 0.755286i
\(987\) 247.004 0.00796577
\(988\) 0 0
\(989\) 43409.8 1.39570
\(990\) −7724.46 + 4459.72i −0.247979 + 0.143171i
\(991\) −11978.8 20747.8i −0.383974 0.665062i 0.607652 0.794203i \(-0.292111\pi\)
−0.991626 + 0.129141i \(0.958778\pi\)
\(992\) −4463.88 + 7731.67i −0.142871 + 0.247461i
\(993\) 797.979i 0.0255016i
\(994\) 524.686 + 302.928i 0.0167425 + 0.00966628i
\(995\) −12149.4 7014.48i −0.387098 0.223491i
\(996\) 611.172i 0.0194435i
\(997\) 21680.9 37552.5i 0.688708 1.19288i −0.283547 0.958958i \(-0.591511\pi\)
0.972256 0.233920i \(-0.0751553\pi\)
\(998\) 14029.9 + 24300.5i 0.444999 + 0.770761i
\(999\) 206.231 119.068i 0.00653140 0.00377091i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.e.h.23.4 12
13.2 odd 12 338.4.a.k.1.3 yes 3
13.3 even 3 338.4.b.f.337.6 6
13.4 even 6 inner 338.4.e.h.147.4 12
13.5 odd 4 338.4.c.k.315.1 6
13.6 odd 12 338.4.c.k.191.1 6
13.7 odd 12 338.4.c.l.191.1 6
13.8 odd 4 338.4.c.l.315.1 6
13.9 even 3 inner 338.4.e.h.147.1 12
13.10 even 6 338.4.b.f.337.3 6
13.11 odd 12 338.4.a.j.1.3 3
13.12 even 2 inner 338.4.e.h.23.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.3 3 13.11 odd 12
338.4.a.k.1.3 yes 3 13.2 odd 12
338.4.b.f.337.3 6 13.10 even 6
338.4.b.f.337.6 6 13.3 even 3
338.4.c.k.191.1 6 13.6 odd 12
338.4.c.k.315.1 6 13.5 odd 4
338.4.c.l.191.1 6 13.7 odd 12
338.4.c.l.315.1 6 13.8 odd 4
338.4.e.h.23.1 12 13.12 even 2 inner
338.4.e.h.23.4 12 1.1 even 1 trivial
338.4.e.h.147.1 12 13.9 even 3 inner
338.4.e.h.147.4 12 13.4 even 6 inner