Properties

Label 338.6.a.a
Level 338338
Weight 66
Character orbit 338.a
Self dual yes
Analytic conductor 54.21054.210
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,6,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 54.209731096854.2097310968
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 26)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q4q213q3+16q4+51q5+52q6105q764q874q9204q10120q11208q12+420q14663q15+256q16+1101q17+296q181170q19++8880q99+O(q100) q - 4 q^{2} - 13 q^{3} + 16 q^{4} + 51 q^{5} + 52 q^{6} - 105 q^{7} - 64 q^{8} - 74 q^{9} - 204 q^{10} - 120 q^{11} - 208 q^{12} + 420 q^{14} - 663 q^{15} + 256 q^{16} + 1101 q^{17} + 296 q^{18} - 1170 q^{19}+ \cdots + 8880 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 −13.0000 16.0000 51.0000 52.0000 −105.000 −64.0000 −74.0000 −204.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.6.a.a 1
13.b even 2 1 338.6.a.c 1
13.d odd 4 2 26.6.b.a 2
39.f even 4 2 234.6.b.b 2
52.f even 4 2 208.6.f.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.b.a 2 13.d odd 4 2
208.6.f.b 2 52.f even 4 2
234.6.b.b 2 39.f even 4 2
338.6.a.a 1 1.a even 1 1 trivial
338.6.a.c 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(338))S_{6}^{\mathrm{new}}(\Gamma_0(338)):

T3+13 T_{3} + 13 Copy content Toggle raw display
T551 T_{5} - 51 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T+13 T + 13 Copy content Toggle raw display
55 T51 T - 51 Copy content Toggle raw display
77 T+105 T + 105 Copy content Toggle raw display
1111 T+120 T + 120 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T1101 T - 1101 Copy content Toggle raw display
1919 T+1170 T + 1170 Copy content Toggle raw display
2323 T+1050 T + 1050 Copy content Toggle raw display
2929 T+4104 T + 4104 Copy content Toggle raw display
3131 T9624 T - 9624 Copy content Toggle raw display
3737 T+8709 T + 8709 Copy content Toggle raw display
4141 T+9480 T + 9480 Copy content Toggle raw display
4343 T+9995 T + 9995 Copy content Toggle raw display
4747 T2943 T - 2943 Copy content Toggle raw display
5353 T+750 T + 750 Copy content Toggle raw display
5959 T40938 T - 40938 Copy content Toggle raw display
6161 T+57920 T + 57920 Copy content Toggle raw display
6767 T22812 T - 22812 Copy content Toggle raw display
7171 T63741 T - 63741 Copy content Toggle raw display
7373 T+58866 T + 58866 Copy content Toggle raw display
7979 T63202 T - 63202 Copy content Toggle raw display
8383 T55458 T - 55458 Copy content Toggle raw display
8989 T104778 T - 104778 Copy content Toggle raw display
9797 T160452 T - 160452 Copy content Toggle raw display
show more
show less