Properties

Label 338.8.a.e
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2305}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{2305})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta + 44) q^{3} + 64 q^{4} + (5 \beta - 110) q^{5} + (8 \beta - 352) q^{6} + ( - 49 \beta - 328) q^{7} - 512 q^{8} + ( - 87 \beta + 325) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{2} + ( - \beta + 44) q^{3} + 64 q^{4} + (5 \beta - 110) q^{5} + (8 \beta - 352) q^{6} + ( - 49 \beta - 328) q^{7} - 512 q^{8} + ( - 87 \beta + 325) q^{9} + ( - 40 \beta + 880) q^{10} + ( - 190 \beta - 212) q^{11} + ( - 64 \beta + 2816) q^{12} + (392 \beta + 2624) q^{14} + (325 \beta - 7720) q^{15} + 4096 q^{16} + ( - 1157 \beta + 3890) q^{17} + (696 \beta - 2600) q^{18} + ( - 1738 \beta - 1900) q^{19} + (320 \beta - 7040) q^{20} + ( - 1779 \beta + 13792) q^{21} + (1520 \beta + 1696) q^{22} + ( - 2088 \beta - 19224) q^{23} + (512 \beta - 22528) q^{24} + ( - 1075 \beta - 51625) q^{25} + ( - 1879 \beta - 31816) q^{27} + ( - 3136 \beta - 20992) q^{28} + (2952 \beta - 149610) q^{29} + ( - 2600 \beta + 61760) q^{30} + (4716 \beta + 132592) q^{31} - 32768 q^{32} + ( - 7958 \beta + 100112) q^{33} + (9256 \beta - 31120) q^{34} + (3505 \beta - 105040) q^{35} + ( - 5568 \beta + 20800) q^{36} + ( - 2407 \beta + 179570) q^{37} + (13904 \beta + 15200) q^{38} + ( - 2560 \beta + 56320) q^{40} + (15002 \beta - 112346) q^{41} + (14232 \beta - 110336) q^{42} + (5593 \beta + 425380) q^{43} + ( - 12160 \beta - 13568) q^{44} + (10760 \beta - 286310) q^{45} + (16704 \beta + 153792) q^{46} + ( - 3901 \beta - 887840) q^{47} + ( - 4096 \beta + 180224) q^{48} + (34545 \beta + 667017) q^{49} + (8600 \beta + 413000) q^{50} + ( - 53641 \beta + 837592) q^{51} + ( - 17918 \beta + 817406) q^{53} + (15032 \beta + 254528) q^{54} + (18890 \beta - 523880) q^{55} + (25088 \beta + 167936) q^{56} + ( - 72834 \beta + 917488) q^{57} + ( - 23616 \beta + 1196880) q^{58} + ( - 33578 \beta + 980060) q^{59} + (20800 \beta - 494080) q^{60} + ( - 79118 \beta - 263882) q^{61} + ( - 37728 \beta - 1060736) q^{62} + (16874 \beta + 2348888) q^{63} + 262144 q^{64} + (63664 \beta - 800896) q^{66} + ( - 102558 \beta + 1600324) q^{67} + ( - 74048 \beta + 248960) q^{68} + ( - 70560 \beta + 356832) q^{69} + ( - 28040 \beta + 840320) q^{70} + ( - 42755 \beta + 131480) q^{71} + (44544 \beta - 166400) q^{72} + (62280 \beta - 4327418) q^{73} + (19256 \beta - 1436560) q^{74} + (5400 \beta - 1652300) q^{75} + ( - 111232 \beta - 121600) q^{76} + (82018 \beta + 5432096) q^{77} + ( - 174168 \beta - 685360) q^{79} + (20480 \beta - 450560) q^{80} + (141288 \beta - 1028375) q^{81} + ( - 120016 \beta + 898768) q^{82} + (251496 \beta + 1662612) q^{83} + ( - 113856 \beta + 882688) q^{84} + (140935 \beta - 3760060) q^{85} + ( - 44744 \beta - 3403040) q^{86} + (276546 \beta - 8283192) q^{87} + (97280 \beta + 108544) q^{88} + ( - 194272 \beta + 1767190) q^{89} + ( - 86080 \beta + 2290480) q^{90} + ( - 133632 \beta - 1230336) q^{92} + (70196 \beta + 3117632) q^{93} + (31208 \beta + 7102720) q^{94} + (172990 \beta - 4796440) q^{95} + (32768 \beta - 1441792) q^{96} + (228332 \beta - 11833570) q^{97} + ( - 276360 \beta - 5336136) q^{98} + ( - 26776 \beta + 9452380) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 87 q^{3} + 128 q^{4} - 215 q^{5} - 696 q^{6} - 705 q^{7} - 1024 q^{8} + 563 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 16 q^{2} + 87 q^{3} + 128 q^{4} - 215 q^{5} - 696 q^{6} - 705 q^{7} - 1024 q^{8} + 563 q^{9} + 1720 q^{10} - 614 q^{11} + 5568 q^{12} + 5640 q^{14} - 15115 q^{15} + 8192 q^{16} + 6623 q^{17} - 4504 q^{18} - 5538 q^{19} - 13760 q^{20} + 25805 q^{21} + 4912 q^{22} - 40536 q^{23} - 44544 q^{24} - 104325 q^{25} - 65511 q^{27} - 45120 q^{28} - 296268 q^{29} + 120920 q^{30} + 269900 q^{31} - 65536 q^{32} + 192266 q^{33} - 52984 q^{34} - 206575 q^{35} + 36032 q^{36} + 356733 q^{37} + 44304 q^{38} + 110080 q^{40} - 209690 q^{41} - 206440 q^{42} + 856353 q^{43} - 39296 q^{44} - 561860 q^{45} + 324288 q^{46} - 1779581 q^{47} + 356352 q^{48} + 1368579 q^{49} + 834600 q^{50} + 1621543 q^{51} + 1616894 q^{53} + 524088 q^{54} - 1028870 q^{55} + 360960 q^{56} + 1762142 q^{57} + 2370144 q^{58} + 1926542 q^{59} - 967360 q^{60} - 606882 q^{61} - 2159200 q^{62} + 4714650 q^{63} + 524288 q^{64} - 1538128 q^{66} + 3098090 q^{67} + 423872 q^{68} + 643104 q^{69} + 1652600 q^{70} + 220205 q^{71} - 288256 q^{72} - 8592556 q^{73} - 2853864 q^{74} - 3299200 q^{75} - 354432 q^{76} + 10946210 q^{77} - 1544888 q^{79} - 880640 q^{80} - 1915462 q^{81} + 1677520 q^{82} + 3576720 q^{83} + 1651520 q^{84} - 7379185 q^{85} - 6850824 q^{86} - 16289838 q^{87} + 314368 q^{88} + 3340108 q^{89} + 4494880 q^{90} - 2594304 q^{92} + 6305460 q^{93} + 14236648 q^{94} - 9419890 q^{95} - 2850816 q^{96} - 23438808 q^{97} - 10948632 q^{98} + 18877984 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
24.5052
−23.5052
−8.00000 19.4948 64.0000 12.5260 −155.958 −1528.76 −512.000 −1806.95 −100.208
1.2 −8.00000 67.5052 64.0000 −227.526 −540.042 823.755 −512.000 2369.95 1820.21
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.e 2
13.b even 2 1 26.8.a.e 2
13.d odd 4 2 338.8.b.f 4
39.d odd 2 1 234.8.a.g 2
52.b odd 2 1 208.8.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.a.e 2 13.b even 2 1
208.8.a.f 2 52.b odd 2 1
234.8.a.g 2 39.d odd 2 1
338.8.a.e 2 1.a even 1 1 trivial
338.8.b.f 4 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{2} - 87T_{3} + 1316 \) Copy content Toggle raw display
\( T_{5}^{2} + 215T_{5} - 2850 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 87T + 1316 \) Copy content Toggle raw display
$5$ \( T^{2} + 215T - 2850 \) Copy content Toggle raw display
$7$ \( T^{2} + 705 T - 1259320 \) Copy content Toggle raw display
$11$ \( T^{2} + 614 T - 20708376 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6623 T - 760430454 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 1732978744 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 2101510656 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 16922064276 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 5395324480 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 28476018086 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 118698353280 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 165309064916 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 782957876064 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 468578767104 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 278179468536 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 3515051438224 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 3661539701480 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1041256691400 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 16222847075284 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 16883581410944 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 33249718167120 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 18959522390364 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 107301346958636 \) Copy content Toggle raw display
show more
show less