Properties

Label 338.8.a.e
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2305}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{2305})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta + 44) q^{3} + 64 q^{4} + (5 \beta - 110) q^{5} + (8 \beta - 352) q^{6} + ( - 49 \beta - 328) q^{7} - 512 q^{8} + ( - 87 \beta + 325) q^{9} + ( - 40 \beta + 880) q^{10} + ( - 190 \beta - 212) q^{11}+ \cdots + ( - 26776 \beta + 9452380) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 87 q^{3} + 128 q^{4} - 215 q^{5} - 696 q^{6} - 705 q^{7} - 1024 q^{8} + 563 q^{9} + 1720 q^{10} - 614 q^{11} + 5568 q^{12} + 5640 q^{14} - 15115 q^{15} + 8192 q^{16} + 6623 q^{17} - 4504 q^{18}+ \cdots + 18877984 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
24.5052
−23.5052
−8.00000 19.4948 64.0000 12.5260 −155.958 −1528.76 −512.000 −1806.95 −100.208
1.2 −8.00000 67.5052 64.0000 −227.526 −540.042 823.755 −512.000 2369.95 1820.21
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.e 2
13.b even 2 1 26.8.a.e 2
13.d odd 4 2 338.8.b.f 4
39.d odd 2 1 234.8.a.g 2
52.b odd 2 1 208.8.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.a.e 2 13.b even 2 1
208.8.a.f 2 52.b odd 2 1
234.8.a.g 2 39.d odd 2 1
338.8.a.e 2 1.a even 1 1 trivial
338.8.b.f 4 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{2} - 87T_{3} + 1316 \) Copy content Toggle raw display
\( T_{5}^{2} + 215T_{5} - 2850 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 87T + 1316 \) Copy content Toggle raw display
$5$ \( T^{2} + 215T - 2850 \) Copy content Toggle raw display
$7$ \( T^{2} + 705 T - 1259320 \) Copy content Toggle raw display
$11$ \( T^{2} + 614 T - 20708376 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6623 T - 760430454 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 1732978744 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 2101510656 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 16922064276 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 5395324480 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 28476018086 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 118698353280 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 165309064916 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 782957876064 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 468578767104 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 278179468536 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 3515051438224 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 3661539701480 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1041256691400 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 16222847075284 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 16883581410944 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 33249718167120 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 18959522390364 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 107301346958636 \) Copy content Toggle raw display
show more
show less