Properties

Label 338.8.a.e
Level 338338
Weight 88
Character orbit 338.a
Self dual yes
Analytic conductor 105.586105.586
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 105.586138614105.586138614
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2305)\Q(\sqrt{2305})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x576 x^{2} - x - 576 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 26)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+2305)\beta = \frac{1}{2}(1 + \sqrt{2305}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q8q2+(β+44)q3+64q4+(5β110)q5+(8β352)q6+(49β328)q7512q8+(87β+325)q9+(40β+880)q10+(190β212)q11++(26776β+9452380)q99+O(q100) q - 8 q^{2} + ( - \beta + 44) q^{3} + 64 q^{4} + (5 \beta - 110) q^{5} + (8 \beta - 352) q^{6} + ( - 49 \beta - 328) q^{7} - 512 q^{8} + ( - 87 \beta + 325) q^{9} + ( - 40 \beta + 880) q^{10} + ( - 190 \beta - 212) q^{11}+ \cdots + ( - 26776 \beta + 9452380) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q16q2+87q3+128q4215q5696q6705q71024q8+563q9+1720q10614q11+5568q12+5640q1415115q15+8192q16+6623q174504q18++18877984q99+O(q100) 2 q - 16 q^{2} + 87 q^{3} + 128 q^{4} - 215 q^{5} - 696 q^{6} - 705 q^{7} - 1024 q^{8} + 563 q^{9} + 1720 q^{10} - 614 q^{11} + 5568 q^{12} + 5640 q^{14} - 15115 q^{15} + 8192 q^{16} + 6623 q^{17} - 4504 q^{18}+ \cdots + 18877984 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
24.5052
−23.5052
−8.00000 19.4948 64.0000 12.5260 −155.958 −1528.76 −512.000 −1806.95 −100.208
1.2 −8.00000 67.5052 64.0000 −227.526 −540.042 823.755 −512.000 2369.95 1820.21
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.e 2
13.b even 2 1 26.8.a.e 2
13.d odd 4 2 338.8.b.f 4
39.d odd 2 1 234.8.a.g 2
52.b odd 2 1 208.8.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.a.e 2 13.b even 2 1
208.8.a.f 2 52.b odd 2 1
234.8.a.g 2 39.d odd 2 1
338.8.a.e 2 1.a even 1 1 trivial
338.8.b.f 4 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(338))S_{8}^{\mathrm{new}}(\Gamma_0(338)):

T3287T3+1316 T_{3}^{2} - 87T_{3} + 1316 Copy content Toggle raw display
T52+215T52850 T_{5}^{2} + 215T_{5} - 2850 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
33 T287T+1316 T^{2} - 87T + 1316 Copy content Toggle raw display
55 T2+215T2850 T^{2} + 215T - 2850 Copy content Toggle raw display
77 T2+705T1259320 T^{2} + 705 T - 1259320 Copy content Toggle raw display
1111 T2+614T20708376 T^{2} + 614 T - 20708376 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T26623T760430454 T^{2} - 6623 T - 760430454 Copy content Toggle raw display
1919 T2+1732978744 T^{2} + \cdots - 1732978744 Copy content Toggle raw display
2323 T2+2101510656 T^{2} + \cdots - 2101510656 Copy content Toggle raw display
2929 T2++16922064276 T^{2} + \cdots + 16922064276 Copy content Toggle raw display
3131 T2++5395324480 T^{2} + \cdots + 5395324480 Copy content Toggle raw display
3737 T2++28476018086 T^{2} + \cdots + 28476018086 Copy content Toggle raw display
4141 T2+118698353280 T^{2} + \cdots - 118698353280 Copy content Toggle raw display
4343 T2++165309064916 T^{2} + \cdots + 165309064916 Copy content Toggle raw display
4747 T2++782957876064 T^{2} + \cdots + 782957876064 Copy content Toggle raw display
5353 T2++468578767104 T^{2} + \cdots + 468578767104 Copy content Toggle raw display
5959 T2++278179468536 T^{2} + \cdots + 278179468536 Copy content Toggle raw display
6161 T2+3515051438224 T^{2} + \cdots - 3515051438224 Copy content Toggle raw display
6767 T2+3661539701480 T^{2} + \cdots - 3661539701480 Copy content Toggle raw display
7171 T2+1041256691400 T^{2} + \cdots - 1041256691400 Copy content Toggle raw display
7373 T2++16222847075284 T^{2} + \cdots + 16222847075284 Copy content Toggle raw display
7979 T2+16883581410944 T^{2} + \cdots - 16883581410944 Copy content Toggle raw display
8383 T2+33249718167120 T^{2} + \cdots - 33249718167120 Copy content Toggle raw display
8989 T2+18959522390364 T^{2} + \cdots - 18959522390364 Copy content Toggle raw display
9797 T2++107301346958636 T^{2} + \cdots + 107301346958636 Copy content Toggle raw display
show more
show less