Properties

Label 338.8.a.f
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{105}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{105}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - 7 \beta - 6) q^{3} + 64 q^{4} + (36 \beta + 73) q^{5} + ( - 56 \beta - 48) q^{6} + (27 \beta + 890) q^{7} + 512 q^{8} + (84 \beta + 2994) q^{9} + (288 \beta + 584) q^{10} + (90 \beta - 5452) q^{11}+ \cdots + ( - 188508 \beta - 15529488) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} - 12 q^{3} + 128 q^{4} + 146 q^{5} - 96 q^{6} + 1780 q^{7} + 1024 q^{8} + 5988 q^{9} + 1168 q^{10} - 10904 q^{11} - 768 q^{12} + 14240 q^{14} - 53796 q^{15} + 8192 q^{16} - 14118 q^{17} + 47904 q^{18}+ \cdots - 31058976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.62348
−4.62348
8.00000 −77.7287 64.0000 441.890 −621.829 1166.67 512.000 3854.74 3535.12
1.2 8.00000 65.7287 64.0000 −295.890 525.829 613.332 512.000 2133.26 −2367.12
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.f 2
13.b even 2 1 26.8.a.d 2
13.d odd 4 2 338.8.b.e 4
39.d odd 2 1 234.8.a.l 2
52.b odd 2 1 208.8.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.a.d 2 13.b even 2 1
208.8.a.h 2 52.b odd 2 1
234.8.a.l 2 39.d odd 2 1
338.8.a.f 2 1.a even 1 1 trivial
338.8.b.e 4 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{2} + 12T_{3} - 5109 \) Copy content Toggle raw display
\( T_{5}^{2} - 146T_{5} - 130751 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 12T - 5109 \) Copy content Toggle raw display
$5$ \( T^{2} - 146T - 130751 \) Copy content Toggle raw display
$7$ \( T^{2} - 1780 T + 715555 \) Copy content Toggle raw display
$11$ \( T^{2} + 10904 T + 28873804 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 14118 T - 507554199 \) Copy content Toggle raw display
$19$ \( T^{2} + 54408 T + 538353036 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 4786525744 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 16891064924 \) Copy content Toggle raw display
$31$ \( T^{2} + 45800 T - 303500720 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 8162736561 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 4113607680 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 7014189629 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 109005494141 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 18298543536 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 3539035961684 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 4106598596416 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 927005771020 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 14263049562725 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1610493427196 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 791817441136 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 15381431470080 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 69622103547396 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 53125913495324 \) Copy content Toggle raw display
show more
show less