Properties

Label 338.8.a.f
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{105}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{105}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - 7 \beta - 6) q^{3} + 64 q^{4} + (36 \beta + 73) q^{5} + ( - 56 \beta - 48) q^{6} + (27 \beta + 890) q^{7} + 512 q^{8} + (84 \beta + 2994) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{2} + ( - 7 \beta - 6) q^{3} + 64 q^{4} + (36 \beta + 73) q^{5} + ( - 56 \beta - 48) q^{6} + (27 \beta + 890) q^{7} + 512 q^{8} + (84 \beta + 2994) q^{9} + (288 \beta + 584) q^{10} + (90 \beta - 5452) q^{11} + ( - 448 \beta - 384) q^{12} + (216 \beta + 7120) q^{14} + ( - 727 \beta - 26898) q^{15} + 4096 q^{16} + ( - 2304 \beta - 7059) q^{17} + (672 \beta + 23952) q^{18} + (1386 \beta - 27204) q^{19} + (2304 \beta + 4672) q^{20} + ( - 6392 \beta - 25185) q^{21} + (720 \beta - 43616) q^{22} + (3564 \beta - 78232) q^{23} + ( - 3584 \beta - 3072) q^{24} + (5256 \beta + 63284) q^{25} + ( - 6153 \beta - 66582) q^{27} + (1728 \beta + 56960) q^{28} + ( - 14544 \beta - 72934) q^{29} + ( - 5816 \beta - 215184) q^{30} + (2808 \beta - 22900) q^{31} + 32768 q^{32} + (37624 \beta - 33438) q^{33} + ( - 18432 \beta - 56472) q^{34} + (34011 \beta + 167030) q^{35} + (5376 \beta + 191616) q^{36} + ( - 14544 \beta - 174279) q^{37} + (11088 \beta - 217632) q^{38} + (18432 \beta + 37376) q^{40} + ( - 9864 \beta + 78120) q^{41} + ( - 51136 \beta - 201480) q^{42} + (36891 \beta + 368626) q^{43} + (5760 \beta - 348928) q^{44} + (113916 \beta + 536082) q^{45} + (28512 \beta - 625856) q^{46} + ( - 44037 \beta + 307598) q^{47} + ( - 28672 \beta - 24576) q^{48} + (48060 \beta + 45102) q^{49} + (42048 \beta + 506272) q^{50} + (63237 \beta + 1735794) q^{51} + (76104 \beta - 768012) q^{53} + ( - 49224 \beta - 532656) q^{54} + ( - 189702 \beta - 57796) q^{55} + (13824 \beta + 455680) q^{56} + (182112 \beta - 855486) q^{57} + ( - 116352 \beta - 583472) q^{58} + ( - 202734 \beta + 881236) q^{59} + ( - 46528 \beta - 1721472) q^{60} + ( - 90864 \beta - 2230136) q^{61} + (22464 \beta - 183200) q^{62} + (155598 \beta + 2902800) q^{63} + 262144 q^{64} + (300992 \beta - 267504) q^{66} + (3114 \beta - 963340) q^{67} + ( - 147456 \beta - 451776) q^{68} + (526240 \beta - 2150148) q^{69} + (272088 \beta + 1336240) q^{70} + (388305 \beta - 1252570) q^{71} + (43008 \beta + 1532928) q^{72} + ( - 219960 \beta - 1862702) q^{73} + ( - 116352 \beta - 1394232) q^{74} + ( - 474524 \beta - 4242864) q^{75} + (88704 \beta - 1741056) q^{76} + ( - 67104 \beta - 4597130) q^{77} + (169956 \beta + 1955696) q^{79} + (147456 \beta + 299008) q^{80} + (319284 \beta - 1625931) q^{81} + ( - 78912 \beta + 624960) q^{82} + (203472 \beta - 4441680) q^{83} + ( - 409088 \beta - 1611840) q^{84} + ( - 422316 \beta - 9224427) q^{85} + (295128 \beta + 2949008) q^{86} + (597802 \beta + 11127444) q^{87} + (46080 \beta - 2791424) q^{88} + (50904 \beta + 8360274) q^{89} + (911328 \beta + 4288656) q^{90} + (228096 \beta - 5006848) q^{92} + (143452 \beta - 1926480) q^{93} + ( - 352296 \beta + 2460784) q^{94} + ( - 878166 \beta + 3253188) q^{95} + ( - 229376 \beta - 196608) q^{96} + (900504 \beta - 5658566) q^{97} + (384480 \beta + 360816) q^{98} + ( - 188508 \beta - 15529488) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} - 12 q^{3} + 128 q^{4} + 146 q^{5} - 96 q^{6} + 1780 q^{7} + 1024 q^{8} + 5988 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 16 q^{2} - 12 q^{3} + 128 q^{4} + 146 q^{5} - 96 q^{6} + 1780 q^{7} + 1024 q^{8} + 5988 q^{9} + 1168 q^{10} - 10904 q^{11} - 768 q^{12} + 14240 q^{14} - 53796 q^{15} + 8192 q^{16} - 14118 q^{17} + 47904 q^{18} - 54408 q^{19} + 9344 q^{20} - 50370 q^{21} - 87232 q^{22} - 156464 q^{23} - 6144 q^{24} + 126568 q^{25} - 133164 q^{27} + 113920 q^{28} - 145868 q^{29} - 430368 q^{30} - 45800 q^{31} + 65536 q^{32} - 66876 q^{33} - 112944 q^{34} + 334060 q^{35} + 383232 q^{36} - 348558 q^{37} - 435264 q^{38} + 74752 q^{40} + 156240 q^{41} - 402960 q^{42} + 737252 q^{43} - 697856 q^{44} + 1072164 q^{45} - 1251712 q^{46} + 615196 q^{47} - 49152 q^{48} + 90204 q^{49} + 1012544 q^{50} + 3471588 q^{51} - 1536024 q^{53} - 1065312 q^{54} - 115592 q^{55} + 911360 q^{56} - 1710972 q^{57} - 1166944 q^{58} + 1762472 q^{59} - 3442944 q^{60} - 4460272 q^{61} - 366400 q^{62} + 5805600 q^{63} + 524288 q^{64} - 535008 q^{66} - 1926680 q^{67} - 903552 q^{68} - 4300296 q^{69} + 2672480 q^{70} - 2505140 q^{71} + 3065856 q^{72} - 3725404 q^{73} - 2788464 q^{74} - 8485728 q^{75} - 3482112 q^{76} - 9194260 q^{77} + 3911392 q^{79} + 598016 q^{80} - 3251862 q^{81} + 1249920 q^{82} - 8883360 q^{83} - 3223680 q^{84} - 18448854 q^{85} + 5898016 q^{86} + 22254888 q^{87} - 5582848 q^{88} + 16720548 q^{89} + 8577312 q^{90} - 10013696 q^{92} - 3852960 q^{93} + 4921568 q^{94} + 6506376 q^{95} - 393216 q^{96} - 11317132 q^{97} + 721632 q^{98} - 31058976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.62348
−4.62348
8.00000 −77.7287 64.0000 441.890 −621.829 1166.67 512.000 3854.74 3535.12
1.2 8.00000 65.7287 64.0000 −295.890 525.829 613.332 512.000 2133.26 −2367.12
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.f 2
13.b even 2 1 26.8.a.d 2
13.d odd 4 2 338.8.b.e 4
39.d odd 2 1 234.8.a.l 2
52.b odd 2 1 208.8.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.a.d 2 13.b even 2 1
208.8.a.h 2 52.b odd 2 1
234.8.a.l 2 39.d odd 2 1
338.8.a.f 2 1.a even 1 1 trivial
338.8.b.e 4 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{2} + 12T_{3} - 5109 \) Copy content Toggle raw display
\( T_{5}^{2} - 146T_{5} - 130751 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 12T - 5109 \) Copy content Toggle raw display
$5$ \( T^{2} - 146T - 130751 \) Copy content Toggle raw display
$7$ \( T^{2} - 1780 T + 715555 \) Copy content Toggle raw display
$11$ \( T^{2} + 10904 T + 28873804 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 14118 T - 507554199 \) Copy content Toggle raw display
$19$ \( T^{2} + 54408 T + 538353036 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 4786525744 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 16891064924 \) Copy content Toggle raw display
$31$ \( T^{2} + 45800 T - 303500720 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 8162736561 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 4113607680 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 7014189629 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 109005494141 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 18298543536 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 3539035961684 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 4106598596416 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 927005771020 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 14263049562725 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1610493427196 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 791817441136 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 15381431470080 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 69622103547396 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 53125913495324 \) Copy content Toggle raw display
show more
show less