Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3380,1,Mod(2219,3380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3380, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 4]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3380.2219");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3380.v (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 260) |
Projective image: | |
Projective field: | Galois closure of 6.0.2970344000.2 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2219.1 |
|
−0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 0 | 0 | − | 1.00000i | 0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||||
2219.2 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | 0 | 0 | 1.00000i | 0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||||||
3019.1 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | 0 | 0 | 1.00000i | 0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | |||||||||||||||||||||
3019.2 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | 0 | 0 | − | 1.00000i | 0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | ||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
13.b | even | 2 | 1 | inner |
52.b | odd | 2 | 1 | inner |
65.l | even | 6 | 1 | inner |
65.n | even | 6 | 1 | inner |
260.v | odd | 6 | 1 | inner |
260.w | odd | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|