Properties

Label 3380.1.w.a
Level $3380$
Weight $1$
Character orbit 3380.w
Analytic conductor $1.687$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -4, -260, 65
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(699,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.699");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 260)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(i, \sqrt{65})\)
Artin image: $C_3\times D_4$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6}^{2} q^{2} - \zeta_{6} q^{4} - q^{5} + q^{8} + \zeta_{6} q^{9} - \zeta_{6}^{2} q^{10} + \zeta_{6}^{2} q^{16} - q^{18} + \zeta_{6} q^{20} + q^{25} - 2 \zeta_{6}^{2} q^{29} - \zeta_{6} q^{32} + \cdots - \zeta_{6} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 2 q^{5} + 2 q^{8} + q^{9} + q^{10} - q^{16} - 2 q^{18} + q^{20} + 2 q^{25} + 2 q^{29} - q^{32} + q^{36} - 2 q^{37} - 2 q^{40} - q^{45} - q^{49} - q^{50} + 2 q^{58} + 2 q^{61}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
699.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −1.00000 0 0 1.00000 0.500000 0.866025i 0.500000 + 0.866025i
1499.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −1.00000 0 0 1.00000 0.500000 + 0.866025i 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
65.d even 2 1 RM by \(\Q(\sqrt{65}) \)
260.g odd 2 1 CM by \(\Q(\sqrt{-65}) \)
13.c even 3 1 inner
52.j odd 6 1 inner
65.l even 6 1 inner
260.w odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3380.1.w.a 2
4.b odd 2 1 CM 3380.1.w.a 2
5.b even 2 1 3380.1.w.d 2
13.b even 2 1 3380.1.w.d 2
13.c even 3 1 260.1.g.b yes 1
13.c even 3 1 inner 3380.1.w.a 2
13.d odd 4 2 3380.1.v.a 4
13.e even 6 1 260.1.g.a 1
13.e even 6 1 3380.1.w.d 2
13.f odd 12 2 3380.1.h.a 2
13.f odd 12 2 3380.1.v.a 4
20.d odd 2 1 3380.1.w.d 2
39.h odd 6 1 2340.1.i.b 1
39.i odd 6 1 2340.1.i.a 1
52.b odd 2 1 3380.1.w.d 2
52.f even 4 2 3380.1.v.a 4
52.i odd 6 1 260.1.g.a 1
52.i odd 6 1 3380.1.w.d 2
52.j odd 6 1 260.1.g.b yes 1
52.j odd 6 1 inner 3380.1.w.a 2
52.l even 12 2 3380.1.h.a 2
52.l even 12 2 3380.1.v.a 4
65.d even 2 1 RM 3380.1.w.a 2
65.g odd 4 2 3380.1.v.a 4
65.l even 6 1 260.1.g.b yes 1
65.l even 6 1 inner 3380.1.w.a 2
65.n even 6 1 260.1.g.a 1
65.n even 6 1 3380.1.w.d 2
65.q odd 12 2 1300.1.e.e 2
65.r odd 12 2 1300.1.e.e 2
65.s odd 12 2 3380.1.h.a 2
65.s odd 12 2 3380.1.v.a 4
156.p even 6 1 2340.1.i.a 1
156.r even 6 1 2340.1.i.b 1
195.x odd 6 1 2340.1.i.b 1
195.y odd 6 1 2340.1.i.a 1
260.g odd 2 1 CM 3380.1.w.a 2
260.u even 4 2 3380.1.v.a 4
260.v odd 6 1 260.1.g.a 1
260.v odd 6 1 3380.1.w.d 2
260.w odd 6 1 260.1.g.b yes 1
260.w odd 6 1 inner 3380.1.w.a 2
260.bc even 12 2 3380.1.h.a 2
260.bc even 12 2 3380.1.v.a 4
260.bg even 12 2 1300.1.e.e 2
260.bj even 12 2 1300.1.e.e 2
780.br even 6 1 2340.1.i.b 1
780.cb even 6 1 2340.1.i.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.1.g.a 1 13.e even 6 1
260.1.g.a 1 52.i odd 6 1
260.1.g.a 1 65.n even 6 1
260.1.g.a 1 260.v odd 6 1
260.1.g.b yes 1 13.c even 3 1
260.1.g.b yes 1 52.j odd 6 1
260.1.g.b yes 1 65.l even 6 1
260.1.g.b yes 1 260.w odd 6 1
1300.1.e.e 2 65.q odd 12 2
1300.1.e.e 2 65.r odd 12 2
1300.1.e.e 2 260.bg even 12 2
1300.1.e.e 2 260.bj even 12 2
2340.1.i.a 1 39.i odd 6 1
2340.1.i.a 1 156.p even 6 1
2340.1.i.a 1 195.y odd 6 1
2340.1.i.a 1 780.cb even 6 1
2340.1.i.b 1 39.h odd 6 1
2340.1.i.b 1 156.r even 6 1
2340.1.i.b 1 195.x odd 6 1
2340.1.i.b 1 780.br even 6 1
3380.1.h.a 2 13.f odd 12 2
3380.1.h.a 2 52.l even 12 2
3380.1.h.a 2 65.s odd 12 2
3380.1.h.a 2 260.bc even 12 2
3380.1.v.a 4 13.d odd 4 2
3380.1.v.a 4 13.f odd 12 2
3380.1.v.a 4 52.f even 4 2
3380.1.v.a 4 52.l even 12 2
3380.1.v.a 4 65.g odd 4 2
3380.1.v.a 4 65.s odd 12 2
3380.1.v.a 4 260.u even 4 2
3380.1.v.a 4 260.bc even 12 2
3380.1.w.a 2 1.a even 1 1 trivial
3380.1.w.a 2 4.b odd 2 1 CM
3380.1.w.a 2 13.c even 3 1 inner
3380.1.w.a 2 52.j odd 6 1 inner
3380.1.w.a 2 65.d even 2 1 RM
3380.1.w.a 2 65.l even 6 1 inner
3380.1.w.a 2 260.g odd 2 1 CM
3380.1.w.a 2 260.w odd 6 1 inner
3380.1.w.d 2 5.b even 2 1
3380.1.w.d 2 13.b even 2 1
3380.1.w.d 2 13.e even 6 1
3380.1.w.d 2 20.d odd 2 1
3380.1.w.d 2 52.b odd 2 1
3380.1.w.d 2 52.i odd 6 1
3380.1.w.d 2 65.n even 6 1
3380.1.w.d 2 260.v odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3380, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{37}^{2} + 2T_{37} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less