Properties

Label 3381.2.a.bc.1.6
Level 33813381
Weight 22
Character 3381.1
Self dual yes
Analytic conductor 26.99726.997
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3381,2,Mod(1,3381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3381=37223 3381 = 3 \cdot 7^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.997420923426.9974209234
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.7997584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x57x4+5x3+12x24x2 x^{6} - x^{5} - 7x^{4} + 5x^{3} + 12x^{2} - 4x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 483)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 2.04340-2.04340 of defining polynomial
Character χ\chi == 3381.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.04340q21.00000q3+2.17548q4+1.94349q52.04340q6+0.358585q8+1.00000q9+3.97133q105.66529q112.17548q126.17812q131.94349q153.61824q16+7.23463q17+2.04340q18+0.790220q19+4.22803q2011.5765q221.00000q230.358585q241.22285q2512.6244q261.00000q275.34085q293.97133q30+0.911316q318.11067q32+5.66529q33+14.7832q34+2.17548q360.973320q37+1.61473q38+6.17812q39+0.696907q401.51843q412.70342q4312.3247q44+1.94349q452.04340q461.52839q47+3.61824q482.49877q507.23463q5113.4404q528.95803q532.04340q5411.0104q550.790220q5710.9135q5810.8931q594.22803q606.31775q61+1.86218q629.33688q6412.0071q65+11.5765q66+7.31833q67+15.7388q68+1.00000q698.75692q71+0.358585q720.875251q731.98888q74+1.22285q75+1.71911q76+12.6244q78+5.96655q797.03200q80+1.00000q813.10277q820.273554q83+14.0604q855.52417q86+5.34085q872.03149q88+17.6270q89+3.97133q902.17548q920.911316q933.12312q94+1.53578q95+8.11067q96+3.09620q975.66529q99+O(q100)q+2.04340 q^{2} -1.00000 q^{3} +2.17548 q^{4} +1.94349 q^{5} -2.04340 q^{6} +0.358585 q^{8} +1.00000 q^{9} +3.97133 q^{10} -5.66529 q^{11} -2.17548 q^{12} -6.17812 q^{13} -1.94349 q^{15} -3.61824 q^{16} +7.23463 q^{17} +2.04340 q^{18} +0.790220 q^{19} +4.22803 q^{20} -11.5765 q^{22} -1.00000 q^{23} -0.358585 q^{24} -1.22285 q^{25} -12.6244 q^{26} -1.00000 q^{27} -5.34085 q^{29} -3.97133 q^{30} +0.911316 q^{31} -8.11067 q^{32} +5.66529 q^{33} +14.7832 q^{34} +2.17548 q^{36} -0.973320 q^{37} +1.61473 q^{38} +6.17812 q^{39} +0.696907 q^{40} -1.51843 q^{41} -2.70342 q^{43} -12.3247 q^{44} +1.94349 q^{45} -2.04340 q^{46} -1.52839 q^{47} +3.61824 q^{48} -2.49877 q^{50} -7.23463 q^{51} -13.4404 q^{52} -8.95803 q^{53} -2.04340 q^{54} -11.0104 q^{55} -0.790220 q^{57} -10.9135 q^{58} -10.8931 q^{59} -4.22803 q^{60} -6.31775 q^{61} +1.86218 q^{62} -9.33688 q^{64} -12.0071 q^{65} +11.5765 q^{66} +7.31833 q^{67} +15.7388 q^{68} +1.00000 q^{69} -8.75692 q^{71} +0.358585 q^{72} -0.875251 q^{73} -1.98888 q^{74} +1.22285 q^{75} +1.71911 q^{76} +12.6244 q^{78} +5.96655 q^{79} -7.03200 q^{80} +1.00000 q^{81} -3.10277 q^{82} -0.273554 q^{83} +14.0604 q^{85} -5.52417 q^{86} +5.34085 q^{87} -2.03149 q^{88} +17.6270 q^{89} +3.97133 q^{90} -2.17548 q^{92} -0.911316 q^{93} -3.12312 q^{94} +1.53578 q^{95} +8.11067 q^{96} +3.09620 q^{97} -5.66529 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq26q3+3q4+3q5+q63q8+6q93q1014q113q123q157q16+15q17q18q19+17q206q226q23+3q24+14q99+O(q100) 6 q - q^{2} - 6 q^{3} + 3 q^{4} + 3 q^{5} + q^{6} - 3 q^{8} + 6 q^{9} - 3 q^{10} - 14 q^{11} - 3 q^{12} - 3 q^{15} - 7 q^{16} + 15 q^{17} - q^{18} - q^{19} + 17 q^{20} - 6 q^{22} - 6 q^{23} + 3 q^{24}+ \cdots - 14 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.04340 1.44490 0.722451 0.691422i 0.243015π-0.243015\pi
0.722451 + 0.691422i 0.243015π0.243015\pi
33 −1.00000 −0.577350
44 2.17548 1.08774
55 1.94349 0.869155 0.434577 0.900634i 0.356898π-0.356898\pi
0.434577 + 0.900634i 0.356898π0.356898\pi
66 −2.04340 −0.834215
77 0 0
88 0.358585 0.126779
99 1.00000 0.333333
1010 3.97133 1.25584
1111 −5.66529 −1.70815 −0.854074 0.520151i 0.825876π-0.825876\pi
−0.854074 + 0.520151i 0.825876π0.825876\pi
1212 −2.17548 −0.628008
1313 −6.17812 −1.71350 −0.856751 0.515730i 0.827521π-0.827521\pi
−0.856751 + 0.515730i 0.827521π0.827521\pi
1414 0 0
1515 −1.94349 −0.501807
1616 −3.61824 −0.904559
1717 7.23463 1.75466 0.877328 0.479892i 0.159324π-0.159324\pi
0.877328 + 0.479892i 0.159324π0.159324\pi
1818 2.04340 0.481634
1919 0.790220 0.181289 0.0906444 0.995883i 0.471107π-0.471107\pi
0.0906444 + 0.995883i 0.471107π0.471107\pi
2020 4.22803 0.945417
2121 0 0
2222 −11.5765 −2.46811
2323 −1.00000 −0.208514
2424 −0.358585 −0.0731960
2525 −1.22285 −0.244570
2626 −12.6244 −2.47584
2727 −1.00000 −0.192450
2828 0 0
2929 −5.34085 −0.991770 −0.495885 0.868388i 0.665156π-0.665156\pi
−0.495885 + 0.868388i 0.665156π0.665156\pi
3030 −3.97133 −0.725062
3131 0.911316 0.163677 0.0818386 0.996646i 0.473921π-0.473921\pi
0.0818386 + 0.996646i 0.473921π0.473921\pi
3232 −8.11067 −1.43378
3333 5.66529 0.986200
3434 14.7832 2.53531
3535 0 0
3636 2.17548 0.362581
3737 −0.973320 −0.160013 −0.0800064 0.996794i 0.525494π-0.525494\pi
−0.0800064 + 0.996794i 0.525494π0.525494\pi
3838 1.61473 0.261945
3939 6.17812 0.989291
4040 0.696907 0.110191
4141 −1.51843 −0.237140 −0.118570 0.992946i 0.537831π-0.537831\pi
−0.118570 + 0.992946i 0.537831π0.537831\pi
4242 0 0
4343 −2.70342 −0.412268 −0.206134 0.978524i 0.566088π-0.566088\pi
−0.206134 + 0.978524i 0.566088π0.566088\pi
4444 −12.3247 −1.85803
4545 1.94349 0.289718
4646 −2.04340 −0.301283
4747 −1.52839 −0.222939 −0.111470 0.993768i 0.535556π-0.535556\pi
−0.111470 + 0.993768i 0.535556π0.535556\pi
4848 3.61824 0.522247
4949 0 0
5050 −2.49877 −0.353379
5151 −7.23463 −1.01305
5252 −13.4404 −1.86385
5353 −8.95803 −1.23048 −0.615240 0.788340i 0.710941π-0.710941\pi
−0.615240 + 0.788340i 0.710941π0.710941\pi
5454 −2.04340 −0.278072
5555 −11.0104 −1.48465
5656 0 0
5757 −0.790220 −0.104667
5858 −10.9135 −1.43301
5959 −10.8931 −1.41816 −0.709081 0.705127i 0.750890π-0.750890\pi
−0.709081 + 0.705127i 0.750890π0.750890\pi
6060 −4.22803 −0.545837
6161 −6.31775 −0.808905 −0.404452 0.914559i 0.632538π-0.632538\pi
−0.404452 + 0.914559i 0.632538π0.632538\pi
6262 1.86218 0.236497
6363 0 0
6464 −9.33688 −1.16711
6565 −12.0071 −1.48930
6666 11.5765 1.42496
6767 7.31833 0.894077 0.447038 0.894515i 0.352479π-0.352479\pi
0.447038 + 0.894515i 0.352479π0.352479\pi
6868 15.7388 1.90861
6969 1.00000 0.120386
7070 0 0
7171 −8.75692 −1.03926 −0.519628 0.854393i 0.673929π-0.673929\pi
−0.519628 + 0.854393i 0.673929π0.673929\pi
7272 0.358585 0.0422597
7373 −0.875251 −0.102440 −0.0512202 0.998687i 0.516311π-0.516311\pi
−0.0512202 + 0.998687i 0.516311π0.516311\pi
7474 −1.98888 −0.231203
7575 1.22285 0.141202
7676 1.71911 0.197196
7777 0 0
7878 12.6244 1.42943
7979 5.96655 0.671289 0.335644 0.941989i 0.391046π-0.391046\pi
0.335644 + 0.941989i 0.391046π0.391046\pi
8080 −7.03200 −0.786202
8181 1.00000 0.111111
8282 −3.10277 −0.342644
8383 −0.273554 −0.0300265 −0.0150132 0.999887i 0.504779π-0.504779\pi
−0.0150132 + 0.999887i 0.504779π0.504779\pi
8484 0 0
8585 14.0604 1.52507
8686 −5.52417 −0.595686
8787 5.34085 0.572599
8888 −2.03149 −0.216558
8989 17.6270 1.86846 0.934229 0.356672i 0.116089π-0.116089\pi
0.934229 + 0.356672i 0.116089π0.116089\pi
9090 3.97133 0.418615
9191 0 0
9292 −2.17548 −0.226810
9393 −0.911316 −0.0944991
9494 −3.12312 −0.322125
9595 1.53578 0.157568
9696 8.11067 0.827792
9797 3.09620 0.314372 0.157186 0.987569i 0.449758π-0.449758\pi
0.157186 + 0.987569i 0.449758π0.449758\pi
9898 0 0
9999 −5.66529 −0.569383
100100 −2.66029 −0.266029
101101 13.4276 1.33610 0.668050 0.744116i 0.267129π-0.267129\pi
0.668050 + 0.744116i 0.267129π0.267129\pi
102102 −14.7832 −1.46376
103103 6.33653 0.624357 0.312178 0.950023i 0.398941π-0.398941\pi
0.312178 + 0.950023i 0.398941π0.398941\pi
104104 −2.21538 −0.217236
105105 0 0
106106 −18.3049 −1.77792
107107 15.9609 1.54299 0.771497 0.636232i 0.219508π-0.219508\pi
0.771497 + 0.636232i 0.219508π0.219508\pi
108108 −2.17548 −0.209336
109109 −0.0470715 −0.00450863 −0.00225431 0.999997i 0.500718π-0.500718\pi
−0.00225431 + 0.999997i 0.500718π0.500718\pi
110110 −22.4987 −2.14517
111111 0.973320 0.0923835
112112 0 0
113113 −6.27141 −0.589965 −0.294982 0.955503i 0.595314π-0.595314\pi
−0.294982 + 0.955503i 0.595314π0.595314\pi
114114 −1.61473 −0.151234
115115 −1.94349 −0.181231
116116 −11.6189 −1.07879
117117 −6.17812 −0.571167
118118 −22.2590 −2.04911
119119 0 0
120120 −0.696907 −0.0636186
121121 21.0955 1.91777
122122 −12.9097 −1.16879
123123 1.51843 0.136913
124124 1.98255 0.178039
125125 −12.0940 −1.08172
126126 0 0
127127 −12.4325 −1.10320 −0.551601 0.834108i 0.685983π-0.685983\pi
−0.551601 + 0.834108i 0.685983π0.685983\pi
128128 −2.85764 −0.252582
129129 2.70342 0.238023
130130 −24.5353 −2.15189
131131 −3.31098 −0.289281 −0.144641 0.989484i 0.546203π-0.546203\pi
−0.144641 + 0.989484i 0.546203π0.546203\pi
132132 12.3247 1.07273
133133 0 0
134134 14.9543 1.29185
135135 −1.94349 −0.167269
136136 2.59423 0.222454
137137 −13.0442 −1.11444 −0.557220 0.830365i 0.688132π-0.688132\pi
−0.557220 + 0.830365i 0.688132π0.688132\pi
138138 2.04340 0.173946
139139 −11.3674 −0.964169 −0.482084 0.876125i 0.660120π-0.660120\pi
−0.482084 + 0.876125i 0.660120π0.660120\pi
140140 0 0
141141 1.52839 0.128714
142142 −17.8939 −1.50162
143143 35.0008 2.92692
144144 −3.61824 −0.301520
145145 −10.3799 −0.862002
146146 −1.78849 −0.148016
147147 0 0
148148 −2.11744 −0.174053
149149 16.2060 1.32765 0.663824 0.747889i 0.268932π-0.268932\pi
0.663824 + 0.747889i 0.268932π0.268932\pi
150150 2.49877 0.204024
151151 −12.9337 −1.05253 −0.526266 0.850320i 0.676408π-0.676408\pi
−0.526266 + 0.850320i 0.676408π0.676408\pi
152152 0.283361 0.0229836
153153 7.23463 0.584885
154154 0 0
155155 1.77113 0.142261
156156 13.4404 1.07609
157157 −9.73442 −0.776892 −0.388446 0.921472i 0.626988π-0.626988\pi
−0.388446 + 0.921472i 0.626988π0.626988\pi
158158 12.1920 0.969947
159159 8.95803 0.710418
160160 −15.7630 −1.24618
161161 0 0
162162 2.04340 0.160545
163163 −24.0922 −1.88705 −0.943525 0.331300i 0.892513π-0.892513\pi
−0.943525 + 0.331300i 0.892513π0.892513\pi
164164 −3.30333 −0.257947
165165 11.0104 0.857161
166166 −0.558981 −0.0433853
167167 −12.2582 −0.948566 −0.474283 0.880373i 0.657293π-0.657293\pi
−0.474283 + 0.880373i 0.657293π0.657293\pi
168168 0 0
169169 25.1692 1.93609
170170 28.7311 2.20357
171171 0.790220 0.0604296
172172 −5.88125 −0.448441
173173 −5.88796 −0.447653 −0.223826 0.974629i 0.571855π-0.571855\pi
−0.223826 + 0.974629i 0.571855π0.571855\pi
174174 10.9135 0.827349
175175 0 0
176176 20.4984 1.54512
177177 10.8931 0.818777
178178 36.0190 2.69974
179179 −16.9732 −1.26864 −0.634319 0.773071i 0.718719π-0.718719\pi
−0.634319 + 0.773071i 0.718719π0.718719\pi
180180 4.22803 0.315139
181181 19.1241 1.42149 0.710743 0.703452i 0.248359π-0.248359\pi
0.710743 + 0.703452i 0.248359π0.248359\pi
182182 0 0
183183 6.31775 0.467021
184184 −0.358585 −0.0264353
185185 −1.89164 −0.139076
186186 −1.86218 −0.136542
187187 −40.9863 −2.99721
188188 −3.32500 −0.242500
189189 0 0
190190 3.13822 0.227670
191191 −20.6871 −1.49686 −0.748432 0.663212i 0.769193π-0.769193\pi
−0.748432 + 0.663212i 0.769193π0.769193\pi
192192 9.33688 0.673832
193193 2.22901 0.160447 0.0802237 0.996777i 0.474437π-0.474437\pi
0.0802237 + 0.996777i 0.474437π0.474437\pi
194194 6.32678 0.454237
195195 12.0071 0.859847
196196 0 0
197197 19.3710 1.38013 0.690064 0.723748i 0.257582π-0.257582\pi
0.690064 + 0.723748i 0.257582π0.257582\pi
198198 −11.5765 −0.822703
199199 24.6840 1.74980 0.874902 0.484300i 0.160926π-0.160926\pi
0.874902 + 0.484300i 0.160926π0.160926\pi
200200 −0.438496 −0.0310063
201201 −7.31833 −0.516195
202202 27.4381 1.93054
203203 0 0
204204 −15.7388 −1.10194
205205 −2.95106 −0.206111
206206 12.9481 0.902135
207207 −1.00000 −0.0695048
208208 22.3539 1.54996
209209 −4.47682 −0.309668
210210 0 0
211211 9.90378 0.681804 0.340902 0.940099i 0.389267π-0.389267\pi
0.340902 + 0.940099i 0.389267π0.389267\pi
212212 −19.4881 −1.33845
213213 8.75692 0.600014
214214 32.6144 2.22948
215215 −5.25407 −0.358324
216216 −0.358585 −0.0243987
217217 0 0
218218 −0.0961859 −0.00651453
219219 0.875251 0.0591440
220220 −23.9530 −1.61491
221221 −44.6964 −3.00661
222222 1.98888 0.133485
223223 2.21461 0.148301 0.0741507 0.997247i 0.476375π-0.476375\pi
0.0741507 + 0.997247i 0.476375π0.476375\pi
224224 0 0
225225 −1.22285 −0.0815232
226226 −12.8150 −0.852441
227227 −5.58033 −0.370380 −0.185190 0.982703i 0.559290π-0.559290\pi
−0.185190 + 0.982703i 0.559290π0.559290\pi
228228 −1.71911 −0.113851
229229 6.97859 0.461158 0.230579 0.973054i 0.425938π-0.425938\pi
0.230579 + 0.973054i 0.425938π0.425938\pi
230230 −3.97133 −0.261862
231231 0 0
232232 −1.91515 −0.125736
233233 24.4042 1.59878 0.799388 0.600816i 0.205157π-0.205157\pi
0.799388 + 0.600816i 0.205157π0.205157\pi
234234 −12.6244 −0.825281
235235 −2.97042 −0.193769
236236 −23.6978 −1.54260
237237 −5.96655 −0.387569
238238 0 0
239239 0.424159 0.0274365 0.0137183 0.999906i 0.495633π-0.495633\pi
0.0137183 + 0.999906i 0.495633π0.495633\pi
240240 7.03200 0.453914
241241 −16.3125 −1.05078 −0.525389 0.850862i 0.676080π-0.676080\pi
−0.525389 + 0.850862i 0.676080π0.676080\pi
242242 43.1065 2.77099
243243 −1.00000 −0.0641500
244244 −13.7442 −0.879880
245245 0 0
246246 3.10277 0.197825
247247 −4.88207 −0.310639
248248 0.326785 0.0207508
249249 0.273554 0.0173358
250250 −24.7130 −1.56299
251251 −15.9242 −1.00513 −0.502564 0.864540i 0.667610π-0.667610\pi
−0.502564 + 0.864540i 0.667610π0.667610\pi
252252 0 0
253253 5.66529 0.356174
254254 −25.4045 −1.59402
255255 −14.0604 −0.880498
256256 12.8345 0.802154
257257 −30.1569 −1.88114 −0.940569 0.339602i 0.889708π-0.889708\pi
−0.940569 + 0.339602i 0.889708π0.889708\pi
258258 5.52417 0.343920
259259 0 0
260260 −26.1213 −1.61997
261261 −5.34085 −0.330590
262262 −6.76565 −0.417983
263263 15.1656 0.935153 0.467576 0.883953i 0.345127π-0.345127\pi
0.467576 + 0.883953i 0.345127π0.345127\pi
264264 2.03149 0.125030
265265 −17.4098 −1.06948
266266 0 0
267267 −17.6270 −1.07876
268268 15.9209 0.972525
269269 0.470833 0.0287072 0.0143536 0.999897i 0.495431π-0.495431\pi
0.0143536 + 0.999897i 0.495431π0.495431\pi
270270 −3.97133 −0.241687
271271 −7.28736 −0.442676 −0.221338 0.975197i 0.571042π-0.571042\pi
−0.221338 + 0.975197i 0.571042π0.571042\pi
272272 −26.1766 −1.58719
273273 0 0
274274 −26.6545 −1.61026
275275 6.92779 0.417761
276276 2.17548 0.130949
277277 2.96021 0.177862 0.0889310 0.996038i 0.471655π-0.471655\pi
0.0889310 + 0.996038i 0.471655π0.471655\pi
278278 −23.2281 −1.39313
279279 0.911316 0.0545591
280280 0 0
281281 7.16141 0.427214 0.213607 0.976920i 0.431479π-0.431479\pi
0.213607 + 0.976920i 0.431479π0.431479\pi
282282 3.12312 0.185979
283283 −20.0106 −1.18951 −0.594753 0.803908i 0.702750π-0.702750\pi
−0.594753 + 0.803908i 0.702750π0.702750\pi
284284 −19.0505 −1.13044
285285 −1.53578 −0.0909720
286286 71.5207 4.22911
287287 0 0
288288 −8.11067 −0.477926
289289 35.3399 2.07882
290290 −21.2103 −1.24551
291291 −3.09620 −0.181503
292292 −1.90409 −0.111429
293293 6.27910 0.366829 0.183414 0.983036i 0.441285π-0.441285\pi
0.183414 + 0.983036i 0.441285π0.441285\pi
294294 0 0
295295 −21.1707 −1.23260
296296 −0.349019 −0.0202863
297297 5.66529 0.328733
298298 33.1154 1.91832
299299 6.17812 0.357290
300300 2.66029 0.153592
301301 0 0
302302 −26.4288 −1.52081
303303 −13.4276 −0.771398
304304 −2.85920 −0.163986
305305 −12.2785 −0.703064
306306 14.7832 0.845102
307307 25.1923 1.43780 0.718900 0.695114i 0.244646π-0.244646\pi
0.718900 + 0.695114i 0.244646π0.244646\pi
308308 0 0
309309 −6.33653 −0.360473
310310 3.61913 0.205553
311311 11.9221 0.676038 0.338019 0.941139i 0.390243π-0.390243\pi
0.338019 + 0.941139i 0.390243π0.390243\pi
312312 2.21538 0.125421
313313 10.0423 0.567625 0.283812 0.958880i 0.408401π-0.408401\pi
0.283812 + 0.958880i 0.408401π0.408401\pi
314314 −19.8913 −1.12253
315315 0 0
316316 12.9801 0.730189
317317 −8.86210 −0.497745 −0.248872 0.968536i 0.580060π-0.580060\pi
−0.248872 + 0.968536i 0.580060π0.580060\pi
318318 18.3049 1.02649
319319 30.2574 1.69409
320320 −18.1461 −1.01440
321321 −15.9609 −0.890849
322322 0 0
323323 5.71695 0.318099
324324 2.17548 0.120860
325325 7.55490 0.419071
326326 −49.2301 −2.72660
327327 0.0470715 0.00260306
328328 −0.544489 −0.0300644
329329 0 0
330330 22.4987 1.23851
331331 −22.8992 −1.25865 −0.629327 0.777141i 0.716669π-0.716669\pi
−0.629327 + 0.777141i 0.716669π0.716669\pi
332332 −0.595113 −0.0326611
333333 −0.973320 −0.0533376
334334 −25.0483 −1.37058
335335 14.2231 0.777091
336336 0 0
337337 12.2517 0.667392 0.333696 0.942681i 0.391704π-0.391704\pi
0.333696 + 0.942681i 0.391704π0.391704\pi
338338 51.4307 2.79746
339339 6.27141 0.340616
340340 30.5882 1.65888
341341 −5.16287 −0.279585
342342 1.61473 0.0873149
343343 0 0
344344 −0.969407 −0.0522669
345345 1.94349 0.104634
346346 −12.0314 −0.646815
347347 −6.45833 −0.346701 −0.173351 0.984860i 0.555459π-0.555459\pi
−0.173351 + 0.984860i 0.555459π0.555459\pi
348348 11.6189 0.622840
349349 20.5047 1.09759 0.548795 0.835957i 0.315087π-0.315087\pi
0.548795 + 0.835957i 0.315087π0.315087\pi
350350 0 0
351351 6.17812 0.329764
352352 45.9493 2.44911
353353 14.5113 0.772357 0.386178 0.922424i 0.373795π-0.373795\pi
0.386178 + 0.922424i 0.373795π0.373795\pi
354354 22.2590 1.18305
355355 −17.0190 −0.903274
356356 38.3473 2.03240
357357 0 0
358358 −34.6831 −1.83306
359359 4.67780 0.246885 0.123442 0.992352i 0.460607π-0.460607\pi
0.123442 + 0.992352i 0.460607π0.460607\pi
360360 0.696907 0.0367302
361361 −18.3756 −0.967134
362362 39.0782 2.05391
363363 −21.0955 −1.10723
364364 0 0
365365 −1.70104 −0.0890366
366366 12.9097 0.674800
367367 −28.0660 −1.46503 −0.732515 0.680750i 0.761654π-0.761654\pi
−0.732515 + 0.680750i 0.761654π0.761654\pi
368368 3.61824 0.188614
369369 −1.51843 −0.0790465
370370 −3.86537 −0.200951
371371 0 0
372372 −1.98255 −0.102791
373373 14.6303 0.757527 0.378763 0.925494i 0.376349π-0.376349\pi
0.378763 + 0.925494i 0.376349π0.376349\pi
374374 −83.7514 −4.33068
375375 12.0940 0.624534
376376 −0.548060 −0.0282640
377377 32.9964 1.69940
378378 0 0
379379 −2.44369 −0.125524 −0.0627620 0.998029i 0.519991π-0.519991\pi
−0.0627620 + 0.998029i 0.519991π0.519991\pi
380380 3.34107 0.171393
381381 12.4325 0.636934
382382 −42.2720 −2.16282
383383 30.7792 1.57274 0.786371 0.617755i 0.211958π-0.211958\pi
0.786371 + 0.617755i 0.211958π0.211958\pi
384384 2.85764 0.145828
385385 0 0
386386 4.55475 0.231831
387387 −2.70342 −0.137423
388388 6.73575 0.341956
389389 12.1855 0.617830 0.308915 0.951090i 0.400034π-0.400034\pi
0.308915 + 0.951090i 0.400034π0.400034\pi
390390 24.5353 1.24239
391391 −7.23463 −0.365871
392392 0 0
393393 3.31098 0.167017
394394 39.5827 1.99415
395395 11.5959 0.583454
396396 −12.3247 −0.619342
397397 21.3044 1.06924 0.534618 0.845094i 0.320455π-0.320455\pi
0.534618 + 0.845094i 0.320455π0.320455\pi
398398 50.4394 2.52830
399399 0 0
400400 4.42455 0.221228
401401 7.40280 0.369678 0.184839 0.982769i 0.440824π-0.440824\pi
0.184839 + 0.982769i 0.440824π0.440824\pi
402402 −14.9543 −0.745852
403403 −5.63022 −0.280461
404404 29.2116 1.45333
405405 1.94349 0.0965728
406406 0 0
407407 5.51414 0.273326
408408 −2.59423 −0.128434
409409 26.4674 1.30873 0.654364 0.756180i 0.272936π-0.272936\pi
0.654364 + 0.756180i 0.272936π0.272936\pi
410410 −6.03020 −0.297810
411411 13.0442 0.643423
412412 13.7850 0.679140
413413 0 0
414414 −2.04340 −0.100428
415415 −0.531650 −0.0260977
416416 50.1087 2.45678
417417 11.3674 0.556663
418418 −9.14794 −0.447440
419419 −30.7294 −1.50123 −0.750614 0.660741i 0.770242π-0.770242\pi
−0.750614 + 0.660741i 0.770242π0.770242\pi
420420 0 0
421421 2.65571 0.129432 0.0647158 0.997904i 0.479386π-0.479386\pi
0.0647158 + 0.997904i 0.479386π0.479386\pi
422422 20.2374 0.985141
423423 −1.52839 −0.0743130
424424 −3.21222 −0.155999
425425 −8.84685 −0.429135
426426 17.8939 0.866962
427427 0 0
428428 34.7226 1.67838
429429 −35.0008 −1.68986
430430 −10.7362 −0.517744
431431 21.2541 1.02377 0.511887 0.859053i 0.328947π-0.328947\pi
0.511887 + 0.859053i 0.328947π0.328947\pi
432432 3.61824 0.174082
433433 −16.8730 −0.810864 −0.405432 0.914125i 0.632879π-0.632879\pi
−0.405432 + 0.914125i 0.632879π0.632879\pi
434434 0 0
435435 10.3799 0.497677
436436 −0.102403 −0.00490423
437437 −0.790220 −0.0378013
438438 1.78849 0.0854573
439439 −11.0905 −0.529320 −0.264660 0.964342i 0.585260π-0.585260\pi
−0.264660 + 0.964342i 0.585260π0.585260\pi
440440 −3.94818 −0.188222
441441 0 0
442442 −91.3327 −4.34425
443443 −12.7742 −0.606920 −0.303460 0.952844i 0.598142π-0.598142\pi
−0.303460 + 0.952844i 0.598142π0.598142\pi
444444 2.11744 0.100489
445445 34.2579 1.62398
446446 4.52534 0.214281
447447 −16.2060 −0.766518
448448 0 0
449449 38.7094 1.82681 0.913405 0.407052i 0.133443π-0.133443\pi
0.913405 + 0.407052i 0.133443π0.133443\pi
450450 −2.49877 −0.117793
451451 8.60237 0.405070
452452 −13.6434 −0.641729
453453 12.9337 0.607680
454454 −11.4029 −0.535162
455455 0 0
456456 −0.283361 −0.0132696
457457 −36.2907 −1.69761 −0.848803 0.528709i 0.822676π-0.822676\pi
−0.848803 + 0.528709i 0.822676π0.822676\pi
458458 14.2601 0.666329
459459 −7.23463 −0.337684
460460 −4.22803 −0.197133
461461 −3.70588 −0.172600 −0.0862999 0.996269i 0.527504π-0.527504\pi
−0.0862999 + 0.996269i 0.527504π0.527504\pi
462462 0 0
463463 −29.9926 −1.39387 −0.696937 0.717132i 0.745454π-0.745454\pi
−0.696937 + 0.717132i 0.745454π0.745454\pi
464464 19.3244 0.897115
465465 −1.77113 −0.0821343
466466 49.8676 2.31007
467467 28.0845 1.29959 0.649797 0.760108i 0.274854π-0.274854\pi
0.649797 + 0.760108i 0.274854π0.274854\pi
468468 −13.4404 −0.621283
469469 0 0
470470 −6.06975 −0.279977
471471 9.73442 0.448539
472472 −3.90611 −0.179793
473473 15.3156 0.704214
474474 −12.1920 −0.559999
475475 −0.966319 −0.0443377
476476 0 0
477477 −8.95803 −0.410160
478478 0.866726 0.0396431
479479 −12.8184 −0.585688 −0.292844 0.956160i 0.594602π-0.594602\pi
−0.292844 + 0.956160i 0.594602π0.594602\pi
480480 15.7630 0.719480
481481 6.01329 0.274182
482482 −33.3329 −1.51827
483483 0 0
484484 45.8929 2.08604
485485 6.01744 0.273238
486486 −2.04340 −0.0926905
487487 9.33744 0.423120 0.211560 0.977365i 0.432146π-0.432146\pi
0.211560 + 0.977365i 0.432146π0.432146\pi
488488 −2.26545 −0.102552
489489 24.0922 1.08949
490490 0 0
491491 −1.98455 −0.0895616 −0.0447808 0.998997i 0.514259π-0.514259\pi
−0.0447808 + 0.998997i 0.514259π0.514259\pi
492492 3.30333 0.148926
493493 −38.6391 −1.74022
494494 −9.97603 −0.448843
495495 −11.0104 −0.494882
496496 −3.29736 −0.148056
497497 0 0
498498 0.558981 0.0250485
499499 −40.8742 −1.82978 −0.914890 0.403702i 0.867723π-0.867723\pi
−0.914890 + 0.403702i 0.867723π0.867723\pi
500500 −26.3104 −1.17664
501501 12.2582 0.547655
502502 −32.5396 −1.45231
503503 −2.08575 −0.0929989 −0.0464994 0.998918i 0.514807π-0.514807\pi
−0.0464994 + 0.998918i 0.514807π0.514807\pi
504504 0 0
505505 26.0965 1.16128
506506 11.5765 0.514636
507507 −25.1692 −1.11780
508508 −27.0466 −1.20000
509509 −17.4199 −0.772123 −0.386062 0.922473i 0.626165π-0.626165\pi
−0.386062 + 0.922473i 0.626165π0.626165\pi
510510 −28.7311 −1.27223
511511 0 0
512512 31.9412 1.41162
513513 −0.790220 −0.0348890
514514 −61.6227 −2.71806
515515 12.3150 0.542663
516516 5.88125 0.258907
517517 8.65879 0.380813
518518 0 0
519519 5.88796 0.258453
520520 −4.30558 −0.188812
521521 −13.2487 −0.580438 −0.290219 0.956960i 0.593728π-0.593728\pi
−0.290219 + 0.956960i 0.593728π0.593728\pi
522522 −10.9135 −0.477670
523523 6.49239 0.283892 0.141946 0.989874i 0.454664π-0.454664\pi
0.141946 + 0.989874i 0.454664π0.454664\pi
524524 −7.20298 −0.314664
525525 0 0
526526 30.9894 1.35120
527527 6.59303 0.287197
528528 −20.4984 −0.892076
529529 1.00000 0.0434783
530530 −35.5753 −1.54529
531531 −10.8931 −0.472721
532532 0 0
533533 9.38107 0.406339
534534 −36.0190 −1.55870
535535 31.0198 1.34110
536536 2.62425 0.113350
537537 16.9732 0.732449
538538 0.962101 0.0414791
539539 0 0
540540 −4.22803 −0.181946
541541 17.0384 0.732536 0.366268 0.930509i 0.380635π-0.380635\pi
0.366268 + 0.930509i 0.380635π0.380635\pi
542542 −14.8910 −0.639623
543543 −19.1241 −0.820695
544544 −58.6777 −2.51579
545545 −0.0914829 −0.00391870
546546 0 0
547547 −29.4820 −1.26056 −0.630280 0.776368i 0.717060π-0.717060\pi
−0.630280 + 0.776368i 0.717060π0.717060\pi
548548 −28.3774 −1.21222
549549 −6.31775 −0.269635
550550 14.1562 0.603624
551551 −4.22044 −0.179797
552552 0.358585 0.0152624
553553 0 0
554554 6.04890 0.256993
555555 1.89164 0.0802956
556556 −24.7296 −1.04877
557557 −10.2316 −0.433526 −0.216763 0.976224i 0.569550π-0.569550\pi
−0.216763 + 0.976224i 0.569550π0.569550\pi
558558 1.86218 0.0788325
559559 16.7020 0.706421
560560 0 0
561561 40.9863 1.73044
562562 14.6336 0.617282
563563 23.2599 0.980288 0.490144 0.871641i 0.336944π-0.336944\pi
0.490144 + 0.871641i 0.336944π0.336944\pi
564564 3.32500 0.140008
565565 −12.1884 −0.512771
566566 −40.8897 −1.71872
567567 0 0
568568 −3.14010 −0.131756
569569 19.6402 0.823362 0.411681 0.911328i 0.364942π-0.364942\pi
0.411681 + 0.911328i 0.364942π0.364942\pi
570570 −3.13822 −0.131446
571571 −41.5761 −1.73991 −0.869953 0.493134i 0.835851π-0.835851\pi
−0.869953 + 0.493134i 0.835851π0.835851\pi
572572 76.1438 3.18373
573573 20.6871 0.864215
574574 0 0
575575 1.22285 0.0509963
576576 −9.33688 −0.389037
577577 −1.41768 −0.0590187 −0.0295093 0.999565i 0.509394π-0.509394\pi
−0.0295093 + 0.999565i 0.509394π0.509394\pi
578578 72.2135 3.00369
579579 −2.22901 −0.0926344
580580 −22.5813 −0.937636
581581 0 0
582582 −6.32678 −0.262254
583583 50.7499 2.10184
584584 −0.313852 −0.0129873
585585 −12.0071 −0.496433
586586 12.8307 0.530032
587587 28.5127 1.17685 0.588423 0.808553i 0.299749π-0.299749\pi
0.588423 + 0.808553i 0.299749π0.299749\pi
588588 0 0
589589 0.720140 0.0296728
590590 −43.2601 −1.78099
591591 −19.3710 −0.796817
592592 3.52170 0.144741
593593 −8.25387 −0.338946 −0.169473 0.985535i 0.554206π-0.554206\pi
−0.169473 + 0.985535i 0.554206π0.554206\pi
594594 11.5765 0.474988
595595 0 0
596596 35.2559 1.44414
597597 −24.6840 −1.01025
598598 12.6244 0.516249
599599 25.2430 1.03140 0.515700 0.856769i 0.327532π-0.327532\pi
0.515700 + 0.856769i 0.327532π0.327532\pi
600600 0.438496 0.0179015
601601 19.9481 0.813702 0.406851 0.913495i 0.366627π-0.366627\pi
0.406851 + 0.913495i 0.366627π0.366627\pi
602602 0 0
603603 7.31833 0.298026
604604 −28.1371 −1.14488
605605 40.9989 1.66684
606606 −27.4381 −1.11459
607607 28.0616 1.13899 0.569493 0.821996i 0.307139π-0.307139\pi
0.569493 + 0.821996i 0.307139π0.307139\pi
608608 −6.40921 −0.259928
609609 0 0
610610 −25.0898 −1.01586
611611 9.44260 0.382007
612612 15.7388 0.636204
613613 −34.9865 −1.41309 −0.706545 0.707668i 0.749747π-0.749747\pi
−0.706545 + 0.707668i 0.749747π0.749747\pi
614614 51.4779 2.07748
615615 2.95106 0.118998
616616 0 0
617617 −30.9952 −1.24782 −0.623911 0.781496i 0.714457π-0.714457\pi
−0.623911 + 0.781496i 0.714457π0.714457\pi
618618 −12.9481 −0.520848
619619 31.2143 1.25461 0.627305 0.778774i 0.284158π-0.284158\pi
0.627305 + 0.778774i 0.284158π0.284158\pi
620620 3.85307 0.154743
621621 1.00000 0.0401286
622622 24.3615 0.976809
623623 0 0
624624 −22.3539 −0.894872
625625 −17.3904 −0.695616
626626 20.5205 0.820162
627627 4.47682 0.178787
628628 −21.1771 −0.845058
629629 −7.04161 −0.280767
630630 0 0
631631 19.1609 0.762782 0.381391 0.924414i 0.375445π-0.375445\pi
0.381391 + 0.924414i 0.375445π0.375445\pi
632632 2.13952 0.0851054
633633 −9.90378 −0.393640
634634 −18.1088 −0.719193
635635 −24.1624 −0.958854
636636 19.4881 0.772752
637637 0 0
638638 61.8281 2.44780
639639 −8.75692 −0.346418
640640 −5.55380 −0.219533
641641 16.1599 0.638278 0.319139 0.947708i 0.396606π-0.396606\pi
0.319139 + 0.947708i 0.396606π0.396606\pi
642642 −32.6144 −1.28719
643643 −44.7116 −1.76325 −0.881627 0.471947i 0.843551π-0.843551\pi
−0.881627 + 0.471947i 0.843551π0.843551\pi
644644 0 0
645645 5.25407 0.206879
646646 11.6820 0.459623
647647 7.95077 0.312577 0.156288 0.987711i 0.450047π-0.450047\pi
0.156288 + 0.987711i 0.450047π0.450047\pi
648648 0.358585 0.0140866
649649 61.7126 2.42243
650650 15.4377 0.605516
651651 0 0
652652 −52.4123 −2.05262
653653 −42.7024 −1.67107 −0.835537 0.549434i 0.814843π-0.814843\pi
−0.835537 + 0.549434i 0.814843π0.814843\pi
654654 0.0961859 0.00376117
655655 −6.43485 −0.251430
656656 5.49405 0.214507
657657 −0.875251 −0.0341468
658658 0 0
659659 −31.2099 −1.21577 −0.607883 0.794027i 0.707981π-0.707981\pi
−0.607883 + 0.794027i 0.707981π0.707981\pi
660660 23.9530 0.932370
661661 5.89998 0.229483 0.114741 0.993395i 0.463396π-0.463396\pi
0.114741 + 0.993395i 0.463396π0.463396\pi
662662 −46.7922 −1.81863
663663 44.6964 1.73586
664664 −0.0980926 −0.00380673
665665 0 0
666666 −1.98888 −0.0770677
667667 5.34085 0.206798
668668 −26.6675 −1.03180
669669 −2.21461 −0.0856218
670670 29.0635 1.12282
671671 35.7919 1.38173
672672 0 0
673673 −6.61159 −0.254858 −0.127429 0.991848i 0.540673π-0.540673\pi
−0.127429 + 0.991848i 0.540673π0.540673\pi
674674 25.0351 0.964316
675675 1.22285 0.0470675
676676 54.7551 2.10597
677677 3.71673 0.142845 0.0714227 0.997446i 0.477246π-0.477246\pi
0.0714227 + 0.997446i 0.477246π0.477246\pi
678678 12.8150 0.492157
679679 0 0
680680 5.04187 0.193347
681681 5.58033 0.213839
682682 −10.5498 −0.403973
683683 29.5669 1.13135 0.565674 0.824629i 0.308616π-0.308616\pi
0.565674 + 0.824629i 0.308616π0.308616\pi
684684 1.71911 0.0657318
685685 −25.3513 −0.968622
686686 0 0
687687 −6.97859 −0.266250
688688 9.78161 0.372920
689689 55.3438 2.10843
690690 3.97133 0.151186
691691 0.603892 0.0229731 0.0114866 0.999934i 0.496344π-0.496344\pi
0.0114866 + 0.999934i 0.496344π0.496344\pi
692692 −12.8092 −0.486931
693693 0 0
694694 −13.1969 −0.500949
695695 −22.0924 −0.838012
696696 1.91515 0.0725936
697697 −10.9853 −0.416098
698698 41.8992 1.58591
699699 −24.4042 −0.923053
700700 0 0
701701 8.15835 0.308136 0.154068 0.988060i 0.450762π-0.450762\pi
0.154068 + 0.988060i 0.450762π0.450762\pi
702702 12.6244 0.476476
703703 −0.769137 −0.0290085
704704 52.8961 1.99360
705705 2.97042 0.111872
706706 29.6523 1.11598
707707 0 0
708708 23.6978 0.890618
709709 −24.2270 −0.909863 −0.454932 0.890526i 0.650336π-0.650336\pi
−0.454932 + 0.890526i 0.650336π0.650336\pi
710710 −34.7766 −1.30514
711711 5.96655 0.223763
712712 6.32079 0.236882
713713 −0.911316 −0.0341290
714714 0 0
715715 68.0238 2.54394
716716 −36.9250 −1.37995
717717 −0.424159 −0.0158405
718718 9.55861 0.356724
719719 2.58504 0.0964058 0.0482029 0.998838i 0.484651π-0.484651\pi
0.0482029 + 0.998838i 0.484651π0.484651\pi
720720 −7.03200 −0.262067
721721 0 0
722722 −37.5486 −1.39741
723723 16.3125 0.606667
724724 41.6042 1.54621
725725 6.53105 0.242557
726726 −43.1065 −1.59983
727727 −1.39574 −0.0517650 −0.0258825 0.999665i 0.508240π-0.508240\pi
−0.0258825 + 0.999665i 0.508240π0.508240\pi
728728 0 0
729729 1.00000 0.0370370
730730 −3.47591 −0.128649
731731 −19.5582 −0.723388
732732 13.7442 0.507999
733733 20.4900 0.756815 0.378408 0.925639i 0.376472π-0.376472\pi
0.378408 + 0.925639i 0.376472π0.376472\pi
734734 −57.3500 −2.11683
735735 0 0
736736 8.11067 0.298963
737737 −41.4605 −1.52722
738738 −3.10277 −0.114215
739739 −47.4816 −1.74664 −0.873320 0.487148i 0.838037π-0.838037\pi
−0.873320 + 0.487148i 0.838037π0.838037\pi
740740 −4.11523 −0.151279
741741 4.88207 0.179347
742742 0 0
743743 −41.4450 −1.52047 −0.760235 0.649648i 0.774916π-0.774916\pi
−0.760235 + 0.649648i 0.774916π0.774916\pi
744744 −0.326785 −0.0119805
745745 31.4962 1.15393
746746 29.8955 1.09455
747747 −0.273554 −0.0100088
748748 −89.1650 −3.26020
749749 0 0
750750 24.7130 0.902390
751751 11.5886 0.422872 0.211436 0.977392i 0.432186π-0.432186\pi
0.211436 + 0.977392i 0.432186π0.432186\pi
752752 5.53009 0.201662
753753 15.9242 0.580311
754754 67.4248 2.45547
755755 −25.1366 −0.914814
756756 0 0
757757 −11.3101 −0.411073 −0.205536 0.978649i 0.565894π-0.565894\pi
−0.205536 + 0.978649i 0.565894π0.565894\pi
758758 −4.99344 −0.181370
759759 −5.66529 −0.205637
760760 0.550710 0.0199763
761761 −21.8257 −0.791183 −0.395591 0.918427i 0.629460π-0.629460\pi
−0.395591 + 0.918427i 0.629460π0.629460\pi
762762 25.4045 0.920308
763763 0 0
764764 −45.0044 −1.62820
765765 14.0604 0.508356
766766 62.8941 2.27246
767767 67.2990 2.43002
768768 −12.8345 −0.463124
769769 −24.1550 −0.871052 −0.435526 0.900176i 0.643438π-0.643438\pi
−0.435526 + 0.900176i 0.643438π0.643438\pi
770770 0 0
771771 30.1569 1.08608
772772 4.84917 0.174525
773773 14.7390 0.530124 0.265062 0.964231i 0.414608π-0.414608\pi
0.265062 + 0.964231i 0.414608π0.414608\pi
774774 −5.52417 −0.198562
775775 −1.11440 −0.0400305
776776 1.11025 0.0398558
777777 0 0
778778 24.8999 0.892703
779779 −1.19990 −0.0429908
780780 26.1213 0.935292
781781 49.6105 1.77520
782782 −14.7832 −0.528648
783783 5.34085 0.190866
784784 0 0
785785 −18.9188 −0.675239
786786 6.76565 0.241323
787787 23.8103 0.848746 0.424373 0.905487i 0.360495π-0.360495\pi
0.424373 + 0.905487i 0.360495π0.360495\pi
788788 42.1414 1.50122
789789 −15.1656 −0.539911
790790 23.6951 0.843034
791791 0 0
792792 −2.03149 −0.0721859
793793 39.0318 1.38606
794794 43.5334 1.54494
795795 17.4098 0.617464
796796 53.6997 1.90334
797797 19.8938 0.704674 0.352337 0.935873i 0.385387π-0.385387\pi
0.352337 + 0.935873i 0.385387π0.385387\pi
798798 0 0
799799 −11.0574 −0.391181
800800 9.91812 0.350659
801801 17.6270 0.622820
802802 15.1269 0.534149
803803 4.95855 0.174983
804804 −15.9209 −0.561488
805805 0 0
806806 −11.5048 −0.405239
807807 −0.470833 −0.0165741
808808 4.81496 0.169390
809809 −47.9127 −1.68452 −0.842260 0.539071i 0.818775π-0.818775\pi
−0.842260 + 0.539071i 0.818775π0.818775\pi
810810 3.97133 0.139538
811811 −48.3843 −1.69900 −0.849500 0.527588i 0.823097π-0.823097\pi
−0.849500 + 0.527588i 0.823097π0.823097\pi
812812 0 0
813813 7.28736 0.255579
814814 11.2676 0.394929
815815 −46.8230 −1.64014
816816 26.1766 0.916364
817817 −2.13629 −0.0747395
818818 54.0835 1.89098
819819 0 0
820820 −6.41999 −0.224196
821821 −8.16367 −0.284914 −0.142457 0.989801i 0.545500π-0.545500\pi
−0.142457 + 0.989801i 0.545500π0.545500\pi
822822 26.6545 0.929683
823823 −33.2648 −1.15954 −0.579769 0.814781i 0.696857π-0.696857\pi
−0.579769 + 0.814781i 0.696857π0.696857\pi
824824 2.27219 0.0791554
825825 −6.92779 −0.241195
826826 0 0
827827 31.2711 1.08740 0.543701 0.839279i 0.317023π-0.317023\pi
0.543701 + 0.839279i 0.317023π0.317023\pi
828828 −2.17548 −0.0756033
829829 −17.8076 −0.618484 −0.309242 0.950983i 0.600075π-0.600075\pi
−0.309242 + 0.950983i 0.600075π0.600075\pi
830830 −1.08637 −0.0377086
831831 −2.96021 −0.102689
832832 57.6844 1.99985
833833 0 0
834834 23.2281 0.804324
835835 −23.8236 −0.824451
836836 −9.73926 −0.336839
837837 −0.911316 −0.0314997
838838 −62.7924 −2.16913
839839 29.7947 1.02863 0.514313 0.857603i 0.328047π-0.328047\pi
0.514313 + 0.857603i 0.328047π0.328047\pi
840840 0 0
841841 −0.475352 −0.0163915
842842 5.42669 0.187016
843843 −7.16141 −0.246652
844844 21.5455 0.741628
845845 48.9160 1.68276
846846 −3.12312 −0.107375
847847 0 0
848848 32.4123 1.11304
849849 20.0106 0.686762
850850 −18.0777 −0.620059
851851 0.973320 0.0333650
852852 19.0505 0.652661
853853 −43.0902 −1.47538 −0.737690 0.675140i 0.764083π-0.764083\pi
−0.737690 + 0.675140i 0.764083π0.764083\pi
854854 0 0
855855 1.53578 0.0525227
856856 5.72333 0.195620
857857 48.0096 1.63998 0.819988 0.572381i 0.193980π-0.193980\pi
0.819988 + 0.572381i 0.193980π0.193980\pi
858858 −71.5207 −2.44168
859859 11.7497 0.400896 0.200448 0.979704i 0.435760π-0.435760\pi
0.200448 + 0.979704i 0.435760π0.435760\pi
860860 −11.4301 −0.389765
861861 0 0
862862 43.4306 1.47925
863863 −5.60759 −0.190885 −0.0954424 0.995435i 0.530427π-0.530427\pi
−0.0954424 + 0.995435i 0.530427π0.530427\pi
864864 8.11067 0.275931
865865 −11.4432 −0.389080
866866 −34.4783 −1.17162
867867 −35.3399 −1.20021
868868 0 0
869869 −33.8022 −1.14666
870870 21.2103 0.719095
871871 −45.2135 −1.53200
872872 −0.0168791 −0.000571600 0
873873 3.09620 0.104791
874874 −1.61473 −0.0546192
875875 0 0
876876 1.90409 0.0643334
877877 16.7638 0.566075 0.283037 0.959109i 0.408658π-0.408658\pi
0.283037 + 0.959109i 0.408658π0.408658\pi
878878 −22.6623 −0.764816
879879 −6.27910 −0.211789
880880 39.8383 1.34295
881881 −39.4239 −1.32823 −0.664113 0.747632i 0.731191π-0.731191\pi
−0.664113 + 0.747632i 0.731191π0.731191\pi
882882 0 0
883883 −17.4928 −0.588679 −0.294339 0.955701i 0.595100π-0.595100\pi
−0.294339 + 0.955701i 0.595100π0.595100\pi
884884 −97.2364 −3.27041
885885 21.1707 0.711644
886886 −26.1028 −0.876940
887887 2.75212 0.0924073 0.0462037 0.998932i 0.485288π-0.485288\pi
0.0462037 + 0.998932i 0.485288π0.485288\pi
888888 0.349019 0.0117123
889889 0 0
890890 70.0026 2.34649
891891 −5.66529 −0.189794
892892 4.81785 0.161314
893893 −1.20777 −0.0404164
894894 −33.1154 −1.10754
895895 −32.9873 −1.10264
896896 0 0
897897 −6.17812 −0.206281
898898 79.0988 2.63956
899899 −4.86720 −0.162330
900900 −2.66029 −0.0886763
901901 −64.8081 −2.15907
902902 17.5781 0.585286
903903 0 0
904904 −2.24884 −0.0747952
905905 37.1675 1.23549
906906 26.4288 0.878038
907907 −29.1794 −0.968886 −0.484443 0.874823i 0.660978π-0.660978\pi
−0.484443 + 0.874823i 0.660978π0.660978\pi
908908 −12.1399 −0.402878
909909 13.4276 0.445367
910910 0 0
911911 −6.24020 −0.206747 −0.103374 0.994643i 0.532964π-0.532964\pi
−0.103374 + 0.994643i 0.532964π0.532964\pi
912912 2.85920 0.0946776
913913 1.54976 0.0512897
914914 −74.1564 −2.45288
915915 12.2785 0.405914
916916 15.1818 0.501621
917917 0 0
918918 −14.7832 −0.487920
919919 −36.4022 −1.20080 −0.600398 0.799701i 0.704991π-0.704991\pi
−0.600398 + 0.799701i 0.704991π0.704991\pi
920920 −0.696907 −0.0229763
921921 −25.1923 −0.830114
922922 −7.57259 −0.249390
923923 54.1013 1.78077
924924 0 0
925925 1.19022 0.0391343
926926 −61.2869 −2.01401
927927 6.33653 0.208119
928928 43.3179 1.42198
929929 −0.0513202 −0.00168376 −0.000841881 1.00000i 0.500268π-0.500268\pi
−0.000841881 1.00000i 0.500268π0.500268\pi
930930 −3.61913 −0.118676
931931 0 0
932932 53.0911 1.73906
933933 −11.9221 −0.390311
934934 57.3878 1.87779
935935 −79.6564 −2.60504
936936 −2.21538 −0.0724121
937937 −8.46139 −0.276421 −0.138211 0.990403i 0.544135π-0.544135\pi
−0.138211 + 0.990403i 0.544135π0.544135\pi
938938 0 0
939939 −10.0423 −0.327718
940940 −6.46210 −0.210770
941941 −6.94143 −0.226284 −0.113142 0.993579i 0.536092π-0.536092\pi
−0.113142 + 0.993579i 0.536092π0.536092\pi
942942 19.8913 0.648094
943943 1.51843 0.0494470
944944 39.4139 1.28281
945945 0 0
946946 31.2960 1.01752
947947 6.05341 0.196709 0.0983547 0.995151i 0.468642π-0.468642\pi
0.0983547 + 0.995151i 0.468642π0.468642\pi
948948 −12.9801 −0.421575
949949 5.40740 0.175532
950950 −1.97458 −0.0640637
951951 8.86210 0.287373
952952 0 0
953953 −52.7135 −1.70756 −0.853778 0.520637i 0.825695π-0.825695\pi
−0.853778 + 0.520637i 0.825695π0.825695\pi
954954 −18.3049 −0.592641
955955 −40.2051 −1.30101
956956 0.922751 0.0298439
957957 −30.2574 −0.978084
958958 −26.1931 −0.846262
959959 0 0
960960 18.1461 0.585664
961961 −30.1695 −0.973210
962962 12.2876 0.396167
963963 15.9609 0.514332
964964 −35.4875 −1.14298
965965 4.33205 0.139454
966966 0 0
967967 −16.9757 −0.545900 −0.272950 0.962028i 0.587999π-0.587999\pi
−0.272950 + 0.962028i 0.587999π0.587999\pi
968968 7.56454 0.243133
969969 −5.71695 −0.183655
970970 12.2960 0.394802
971971 −29.0124 −0.931051 −0.465525 0.885034i 0.654135π-0.654135\pi
−0.465525 + 0.885034i 0.654135π0.654135\pi
972972 −2.17548 −0.0697787
973973 0 0
974974 19.0801 0.611367
975975 −7.55490 −0.241951
976976 22.8591 0.731702
977977 −32.1866 −1.02974 −0.514871 0.857268i 0.672160π-0.672160\pi
−0.514871 + 0.857268i 0.672160π0.672160\pi
978978 49.2301 1.57421
979979 −99.8621 −3.19161
980980 0 0
981981 −0.0470715 −0.00150288
982982 −4.05523 −0.129408
983983 6.03861 0.192602 0.0963009 0.995352i 0.469299π-0.469299\pi
0.0963009 + 0.995352i 0.469299π0.469299\pi
984984 0.544489 0.0173577
985985 37.6474 1.19955
986986 −78.9551 −2.51444
987987 0 0
988988 −10.6209 −0.337895
989989 2.70342 0.0859637
990990 −22.4987 −0.715056
991991 20.8108 0.661075 0.330538 0.943793i 0.392770π-0.392770\pi
0.330538 + 0.943793i 0.392770π0.392770\pi
992992 −7.39139 −0.234677
993993 22.8992 0.726684
994994 0 0
995995 47.9732 1.52085
996996 0.595113 0.0188569
997997 −53.1594 −1.68358 −0.841788 0.539809i 0.818496π-0.818496\pi
−0.841788 + 0.539809i 0.818496π0.818496\pi
998998 −83.5224 −2.64385
999999 0.973320 0.0307945
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3381.2.a.bc.1.6 6
7.2 even 3 483.2.i.f.277.1 12
7.4 even 3 483.2.i.f.415.1 yes 12
7.6 odd 2 3381.2.a.bd.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.i.f.277.1 12 7.2 even 3
483.2.i.f.415.1 yes 12 7.4 even 3
3381.2.a.bc.1.6 6 1.1 even 1 trivial
3381.2.a.bd.1.6 6 7.6 odd 2