Properties

Label 3381.2.a.v.1.2
Level $3381$
Weight $2$
Character 3381.1
Self dual yes
Analytic conductor $26.997$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3381,2,Mod(1,3381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3381 = 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9974209234\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.167449\) of defining polynomial
Character \(\chi\) \(=\) 3381.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.167449 q^{2} -1.00000 q^{3} -1.97196 q^{4} -1.16745 q^{5} +0.167449 q^{6} +0.665102 q^{8} +1.00000 q^{9} +0.195488 q^{10} -1.80451 q^{11} +1.97196 q^{12} -6.97196 q^{13} +1.16745 q^{15} +3.83255 q^{16} -6.13941 q^{17} -0.167449 q^{18} -1.80451 q^{19} +2.30216 q^{20} +0.302164 q^{22} -1.00000 q^{23} -0.665102 q^{24} -3.63706 q^{25} +1.16745 q^{26} -1.00000 q^{27} +5.46961 q^{29} -0.195488 q^{30} +2.19549 q^{31} -1.97196 q^{32} +1.80451 q^{33} +1.02804 q^{34} -1.97196 q^{36} -1.46961 q^{37} +0.302164 q^{38} +6.97196 q^{39} -0.776472 q^{40} -9.74843 q^{41} -6.63706 q^{43} +3.55843 q^{44} -1.16745 q^{45} +0.167449 q^{46} +1.94392 q^{47} -3.83255 q^{48} +0.609023 q^{50} +6.13941 q^{51} +13.7484 q^{52} +1.16745 q^{53} +0.167449 q^{54} +2.10668 q^{55} +1.80451 q^{57} -0.915882 q^{58} -9.11137 q^{59} -2.30216 q^{60} +4.63706 q^{61} -0.367633 q^{62} -7.33490 q^{64} +8.13941 q^{65} -0.302164 q^{66} -15.4463 q^{67} +12.1067 q^{68} +1.00000 q^{69} -9.25078 q^{71} +0.665102 q^{72} +0.474308 q^{73} +0.246086 q^{74} +3.63706 q^{75} +3.55843 q^{76} -1.16745 q^{78} +7.46961 q^{79} -4.47431 q^{80} +1.00000 q^{81} +1.63237 q^{82} -8.13941 q^{83} +7.16745 q^{85} +1.11137 q^{86} -5.46961 q^{87} -1.20018 q^{88} -1.02804 q^{89} +0.195488 q^{90} +1.97196 q^{92} -2.19549 q^{93} -0.325508 q^{94} +2.10668 q^{95} +1.97196 q^{96} +8.47431 q^{97} -1.80451 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 6 q^{4} - 3 q^{5} + 3 q^{8} + 3 q^{9} + 12 q^{10} + 6 q^{11} - 6 q^{12} - 9 q^{13} + 3 q^{15} + 12 q^{16} - 6 q^{17} + 6 q^{19} - 3 q^{20} - 9 q^{22} - 3 q^{23} - 3 q^{24} + 3 q^{26} - 3 q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.167449 −0.118404 −0.0592022 0.998246i \(-0.518856\pi\)
−0.0592022 + 0.998246i \(0.518856\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.97196 −0.985980
\(5\) −1.16745 −0.522099 −0.261050 0.965325i \(-0.584069\pi\)
−0.261050 + 0.965325i \(0.584069\pi\)
\(6\) 0.167449 0.0683608
\(7\) 0 0
\(8\) 0.665102 0.235149
\(9\) 1.00000 0.333333
\(10\) 0.195488 0.0618189
\(11\) −1.80451 −0.544081 −0.272040 0.962286i \(-0.587698\pi\)
−0.272040 + 0.962286i \(0.587698\pi\)
\(12\) 1.97196 0.569256
\(13\) −6.97196 −1.93367 −0.966837 0.255394i \(-0.917795\pi\)
−0.966837 + 0.255394i \(0.917795\pi\)
\(14\) 0 0
\(15\) 1.16745 0.301434
\(16\) 3.83255 0.958138
\(17\) −6.13941 −1.48903 −0.744513 0.667608i \(-0.767318\pi\)
−0.744513 + 0.667608i \(0.767318\pi\)
\(18\) −0.167449 −0.0394682
\(19\) −1.80451 −0.413983 −0.206992 0.978343i \(-0.566367\pi\)
−0.206992 + 0.978343i \(0.566367\pi\)
\(20\) 2.30216 0.514780
\(21\) 0 0
\(22\) 0.302164 0.0644216
\(23\) −1.00000 −0.208514
\(24\) −0.665102 −0.135763
\(25\) −3.63706 −0.727412
\(26\) 1.16745 0.228956
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 5.46961 1.01568 0.507841 0.861451i \(-0.330444\pi\)
0.507841 + 0.861451i \(0.330444\pi\)
\(30\) −0.195488 −0.0356911
\(31\) 2.19549 0.394321 0.197161 0.980371i \(-0.436828\pi\)
0.197161 + 0.980371i \(0.436828\pi\)
\(32\) −1.97196 −0.348597
\(33\) 1.80451 0.314125
\(34\) 1.02804 0.176307
\(35\) 0 0
\(36\) −1.97196 −0.328660
\(37\) −1.46961 −0.241603 −0.120801 0.992677i \(-0.538546\pi\)
−0.120801 + 0.992677i \(0.538546\pi\)
\(38\) 0.302164 0.0490175
\(39\) 6.97196 1.11641
\(40\) −0.776472 −0.122771
\(41\) −9.74843 −1.52245 −0.761225 0.648488i \(-0.775402\pi\)
−0.761225 + 0.648488i \(0.775402\pi\)
\(42\) 0 0
\(43\) −6.63706 −1.01214 −0.506071 0.862492i \(-0.668903\pi\)
−0.506071 + 0.862492i \(0.668903\pi\)
\(44\) 3.55843 0.536453
\(45\) −1.16745 −0.174033
\(46\) 0.167449 0.0246890
\(47\) 1.94392 0.283550 0.141775 0.989899i \(-0.454719\pi\)
0.141775 + 0.989899i \(0.454719\pi\)
\(48\) −3.83255 −0.553181
\(49\) 0 0
\(50\) 0.609023 0.0861289
\(51\) 6.13941 0.859689
\(52\) 13.7484 1.90656
\(53\) 1.16745 0.160361 0.0801807 0.996780i \(-0.474450\pi\)
0.0801807 + 0.996780i \(0.474450\pi\)
\(54\) 0.167449 0.0227869
\(55\) 2.10668 0.284064
\(56\) 0 0
\(57\) 1.80451 0.239013
\(58\) −0.915882 −0.120261
\(59\) −9.11137 −1.18620 −0.593100 0.805129i \(-0.702096\pi\)
−0.593100 + 0.805129i \(0.702096\pi\)
\(60\) −2.30216 −0.297208
\(61\) 4.63706 0.593715 0.296857 0.954922i \(-0.404061\pi\)
0.296857 + 0.954922i \(0.404061\pi\)
\(62\) −0.367633 −0.0466894
\(63\) 0 0
\(64\) −7.33490 −0.916862
\(65\) 8.13941 1.00957
\(66\) −0.302164 −0.0371938
\(67\) −15.4463 −1.88706 −0.943531 0.331284i \(-0.892518\pi\)
−0.943531 + 0.331284i \(0.892518\pi\)
\(68\) 12.1067 1.46815
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −9.25078 −1.09787 −0.548933 0.835866i \(-0.684966\pi\)
−0.548933 + 0.835866i \(0.684966\pi\)
\(72\) 0.665102 0.0783830
\(73\) 0.474308 0.0555136 0.0277568 0.999615i \(-0.491164\pi\)
0.0277568 + 0.999615i \(0.491164\pi\)
\(74\) 0.246086 0.0286069
\(75\) 3.63706 0.419972
\(76\) 3.55843 0.408179
\(77\) 0 0
\(78\) −1.16745 −0.132188
\(79\) 7.46961 0.840397 0.420199 0.907432i \(-0.361960\pi\)
0.420199 + 0.907432i \(0.361960\pi\)
\(80\) −4.47431 −0.500243
\(81\) 1.00000 0.111111
\(82\) 1.63237 0.180265
\(83\) −8.13941 −0.893416 −0.446708 0.894680i \(-0.647404\pi\)
−0.446708 + 0.894680i \(0.647404\pi\)
\(84\) 0 0
\(85\) 7.16745 0.777419
\(86\) 1.11137 0.119842
\(87\) −5.46961 −0.586404
\(88\) −1.20018 −0.127940
\(89\) −1.02804 −0.108972 −0.0544860 0.998515i \(-0.517352\pi\)
−0.0544860 + 0.998515i \(0.517352\pi\)
\(90\) 0.195488 0.0206063
\(91\) 0 0
\(92\) 1.97196 0.205591
\(93\) −2.19549 −0.227662
\(94\) −0.325508 −0.0335736
\(95\) 2.10668 0.216140
\(96\) 1.97196 0.201262
\(97\) 8.47431 0.860436 0.430218 0.902725i \(-0.358437\pi\)
0.430218 + 0.902725i \(0.358437\pi\)
\(98\) 0 0
\(99\) −1.80451 −0.181360
\(100\) 7.17214 0.717214
\(101\) 18.7204 1.86275 0.931374 0.364063i \(-0.118611\pi\)
0.931374 + 0.364063i \(0.118611\pi\)
\(102\) −1.02804 −0.101791
\(103\) −4.66980 −0.460129 −0.230064 0.973175i \(-0.573894\pi\)
−0.230064 + 0.973175i \(0.573894\pi\)
\(104\) −4.63706 −0.454701
\(105\) 0 0
\(106\) −0.195488 −0.0189875
\(107\) −1.36294 −0.131760 −0.0658801 0.997828i \(-0.520985\pi\)
−0.0658801 + 0.997828i \(0.520985\pi\)
\(108\) 1.97196 0.189752
\(109\) −0.497652 −0.0476665 −0.0238332 0.999716i \(-0.507587\pi\)
−0.0238332 + 0.999716i \(0.507587\pi\)
\(110\) −0.352761 −0.0336345
\(111\) 1.46961 0.139490
\(112\) 0 0
\(113\) −1.44627 −0.136054 −0.0680268 0.997683i \(-0.521670\pi\)
−0.0680268 + 0.997683i \(0.521670\pi\)
\(114\) −0.302164 −0.0283003
\(115\) 1.16745 0.108865
\(116\) −10.7859 −1.00144
\(117\) −6.97196 −0.644558
\(118\) 1.52569 0.140451
\(119\) 0 0
\(120\) 0.776472 0.0708819
\(121\) −7.74374 −0.703976
\(122\) −0.776472 −0.0702985
\(123\) 9.74843 0.878987
\(124\) −4.32942 −0.388793
\(125\) 10.0833 0.901881
\(126\) 0 0
\(127\) 7.91119 0.702004 0.351002 0.936375i \(-0.385841\pi\)
0.351002 + 0.936375i \(0.385841\pi\)
\(128\) 5.17214 0.457157
\(129\) 6.63706 0.584361
\(130\) −1.36294 −0.119538
\(131\) −1.80451 −0.157661 −0.0788305 0.996888i \(-0.525119\pi\)
−0.0788305 + 0.996888i \(0.525119\pi\)
\(132\) −3.55843 −0.309721
\(133\) 0 0
\(134\) 2.58647 0.223437
\(135\) 1.16745 0.100478
\(136\) −4.08333 −0.350143
\(137\) −13.4696 −1.15079 −0.575393 0.817877i \(-0.695151\pi\)
−0.575393 + 0.817877i \(0.695151\pi\)
\(138\) −0.167449 −0.0142542
\(139\) 15.1674 1.28649 0.643243 0.765662i \(-0.277588\pi\)
0.643243 + 0.765662i \(0.277588\pi\)
\(140\) 0 0
\(141\) −1.94392 −0.163708
\(142\) 1.54904 0.129992
\(143\) 12.5810 1.05207
\(144\) 3.83255 0.319379
\(145\) −6.38550 −0.530287
\(146\) −0.0794225 −0.00657306
\(147\) 0 0
\(148\) 2.89802 0.238216
\(149\) 19.5529 1.60184 0.800920 0.598772i \(-0.204344\pi\)
0.800920 + 0.598772i \(0.204344\pi\)
\(150\) −0.609023 −0.0497265
\(151\) −13.2741 −1.08023 −0.540116 0.841590i \(-0.681620\pi\)
−0.540116 + 0.841590i \(0.681620\pi\)
\(152\) −1.20018 −0.0973477
\(153\) −6.13941 −0.496342
\(154\) 0 0
\(155\) −2.56312 −0.205875
\(156\) −13.7484 −1.10076
\(157\) 13.2835 1.06014 0.530070 0.847954i \(-0.322166\pi\)
0.530070 + 0.847954i \(0.322166\pi\)
\(158\) −1.25078 −0.0995068
\(159\) −1.16745 −0.0925847
\(160\) 2.30216 0.182002
\(161\) 0 0
\(162\) −0.167449 −0.0131561
\(163\) 7.44627 0.583237 0.291618 0.956535i \(-0.405806\pi\)
0.291618 + 0.956535i \(0.405806\pi\)
\(164\) 19.2235 1.50111
\(165\) −2.10668 −0.164004
\(166\) 1.36294 0.105784
\(167\) −20.7437 −1.60520 −0.802599 0.596519i \(-0.796550\pi\)
−0.802599 + 0.596519i \(0.796550\pi\)
\(168\) 0 0
\(169\) 35.6082 2.73910
\(170\) −1.20018 −0.0920499
\(171\) −1.80451 −0.137994
\(172\) 13.0880 0.997953
\(173\) 17.7484 1.34939 0.674694 0.738097i \(-0.264276\pi\)
0.674694 + 0.738097i \(0.264276\pi\)
\(174\) 0.915882 0.0694329
\(175\) 0 0
\(176\) −6.91588 −0.521304
\(177\) 9.11137 0.684853
\(178\) 0.172144 0.0129028
\(179\) 4.44157 0.331979 0.165989 0.986128i \(-0.446918\pi\)
0.165989 + 0.986128i \(0.446918\pi\)
\(180\) 2.30216 0.171593
\(181\) 11.6924 0.869086 0.434543 0.900651i \(-0.356910\pi\)
0.434543 + 0.900651i \(0.356910\pi\)
\(182\) 0 0
\(183\) −4.63706 −0.342782
\(184\) −0.665102 −0.0490319
\(185\) 1.71570 0.126141
\(186\) 0.367633 0.0269561
\(187\) 11.0786 0.810150
\(188\) −3.83334 −0.279575
\(189\) 0 0
\(190\) −0.352761 −0.0255920
\(191\) 21.2741 1.53934 0.769671 0.638441i \(-0.220420\pi\)
0.769671 + 0.638441i \(0.220420\pi\)
\(192\) 7.33490 0.529351
\(193\) −3.27412 −0.235677 −0.117838 0.993033i \(-0.537596\pi\)
−0.117838 + 0.993033i \(0.537596\pi\)
\(194\) −1.41902 −0.101879
\(195\) −8.13941 −0.582875
\(196\) 0 0
\(197\) 0.358242 0.0255237 0.0127619 0.999919i \(-0.495938\pi\)
0.0127619 + 0.999919i \(0.495938\pi\)
\(198\) 0.302164 0.0214739
\(199\) 23.3808 1.65742 0.828710 0.559678i \(-0.189075\pi\)
0.828710 + 0.559678i \(0.189075\pi\)
\(200\) −2.41902 −0.171050
\(201\) 15.4463 1.08950
\(202\) −3.13471 −0.220558
\(203\) 0 0
\(204\) −12.1067 −0.847637
\(205\) 11.3808 0.794870
\(206\) 0.781954 0.0544813
\(207\) −1.00000 −0.0695048
\(208\) −26.7204 −1.85273
\(209\) 3.25626 0.225240
\(210\) 0 0
\(211\) 13.4135 0.923426 0.461713 0.887029i \(-0.347235\pi\)
0.461713 + 0.887029i \(0.347235\pi\)
\(212\) −2.30216 −0.158113
\(213\) 9.25078 0.633853
\(214\) 0.228223 0.0156010
\(215\) 7.74843 0.528439
\(216\) −0.665102 −0.0452544
\(217\) 0 0
\(218\) 0.0833315 0.00564392
\(219\) −0.474308 −0.0320508
\(220\) −4.15428 −0.280082
\(221\) 42.8037 2.87929
\(222\) −0.246086 −0.0165162
\(223\) −8.72039 −0.583961 −0.291980 0.956424i \(-0.594314\pi\)
−0.291980 + 0.956424i \(0.594314\pi\)
\(224\) 0 0
\(225\) −3.63706 −0.242471
\(226\) 0.242177 0.0161093
\(227\) −14.1067 −0.936293 −0.468146 0.883651i \(-0.655078\pi\)
−0.468146 + 0.883651i \(0.655078\pi\)
\(228\) −3.55843 −0.235663
\(229\) −5.05529 −0.334063 −0.167032 0.985952i \(-0.553418\pi\)
−0.167032 + 0.985952i \(0.553418\pi\)
\(230\) −0.195488 −0.0128901
\(231\) 0 0
\(232\) 3.63785 0.238836
\(233\) −27.7157 −1.81572 −0.907858 0.419278i \(-0.862283\pi\)
−0.907858 + 0.419278i \(0.862283\pi\)
\(234\) 1.16745 0.0763185
\(235\) −2.26943 −0.148041
\(236\) 17.9673 1.16957
\(237\) −7.46961 −0.485204
\(238\) 0 0
\(239\) 7.83725 0.506949 0.253475 0.967342i \(-0.418427\pi\)
0.253475 + 0.967342i \(0.418427\pi\)
\(240\) 4.47431 0.288815
\(241\) −19.6924 −1.26850 −0.634248 0.773130i \(-0.718690\pi\)
−0.634248 + 0.773130i \(0.718690\pi\)
\(242\) 1.29668 0.0833539
\(243\) −1.00000 −0.0641500
\(244\) −9.14411 −0.585391
\(245\) 0 0
\(246\) −1.63237 −0.104076
\(247\) 12.5810 0.800509
\(248\) 1.46022 0.0927242
\(249\) 8.13941 0.515814
\(250\) −1.68845 −0.106787
\(251\) 30.2227 1.90764 0.953821 0.300375i \(-0.0971117\pi\)
0.953821 + 0.300375i \(0.0971117\pi\)
\(252\) 0 0
\(253\) 1.80451 0.113449
\(254\) −1.32472 −0.0831204
\(255\) −7.16745 −0.448843
\(256\) 13.8037 0.862733
\(257\) −12.2227 −0.762434 −0.381217 0.924486i \(-0.624495\pi\)
−0.381217 + 0.924486i \(0.624495\pi\)
\(258\) −1.11137 −0.0691909
\(259\) 0 0
\(260\) −16.0506 −0.995416
\(261\) 5.46961 0.338561
\(262\) 0.302164 0.0186678
\(263\) 5.47900 0.337850 0.168925 0.985629i \(-0.445970\pi\)
0.168925 + 0.985629i \(0.445970\pi\)
\(264\) 1.20018 0.0738662
\(265\) −1.36294 −0.0837246
\(266\) 0 0
\(267\) 1.02804 0.0629150
\(268\) 30.4594 1.86061
\(269\) −26.8598 −1.63767 −0.818836 0.574028i \(-0.805380\pi\)
−0.818836 + 0.574028i \(0.805380\pi\)
\(270\) −0.195488 −0.0118970
\(271\) 4.13941 0.251451 0.125726 0.992065i \(-0.459874\pi\)
0.125726 + 0.992065i \(0.459874\pi\)
\(272\) −23.5296 −1.42669
\(273\) 0 0
\(274\) 2.25548 0.136258
\(275\) 6.56312 0.395771
\(276\) −1.97196 −0.118698
\(277\) 17.2414 1.03593 0.517967 0.855400i \(-0.326689\pi\)
0.517967 + 0.855400i \(0.326689\pi\)
\(278\) −2.53978 −0.152326
\(279\) 2.19549 0.131440
\(280\) 0 0
\(281\) −11.8318 −0.705824 −0.352912 0.935657i \(-0.614808\pi\)
−0.352912 + 0.935657i \(0.614808\pi\)
\(282\) 0.325508 0.0193837
\(283\) 13.7812 0.819205 0.409603 0.912264i \(-0.365667\pi\)
0.409603 + 0.912264i \(0.365667\pi\)
\(284\) 18.2422 1.08247
\(285\) −2.10668 −0.124789
\(286\) −2.10668 −0.124570
\(287\) 0 0
\(288\) −1.97196 −0.116199
\(289\) 20.6924 1.21720
\(290\) 1.06925 0.0627883
\(291\) −8.47431 −0.496773
\(292\) −0.935317 −0.0547353
\(293\) −20.9392 −1.22328 −0.611641 0.791135i \(-0.709490\pi\)
−0.611641 + 0.791135i \(0.709490\pi\)
\(294\) 0 0
\(295\) 10.6371 0.619314
\(296\) −0.977442 −0.0568127
\(297\) 1.80451 0.104708
\(298\) −3.27412 −0.189665
\(299\) 6.97196 0.403199
\(300\) −7.17214 −0.414084
\(301\) 0 0
\(302\) 2.22274 0.127904
\(303\) −18.7204 −1.07546
\(304\) −6.91588 −0.396653
\(305\) −5.41353 −0.309978
\(306\) 1.02804 0.0587691
\(307\) 9.80451 0.559573 0.279787 0.960062i \(-0.409736\pi\)
0.279787 + 0.960062i \(0.409736\pi\)
\(308\) 0 0
\(309\) 4.66980 0.265655
\(310\) 0.429193 0.0243765
\(311\) −12.5810 −0.713402 −0.356701 0.934219i \(-0.616099\pi\)
−0.356701 + 0.934219i \(0.616099\pi\)
\(312\) 4.63706 0.262522
\(313\) 18.1667 1.02684 0.513420 0.858137i \(-0.328378\pi\)
0.513420 + 0.858137i \(0.328378\pi\)
\(314\) −2.22431 −0.125525
\(315\) 0 0
\(316\) −14.7298 −0.828615
\(317\) 5.83725 0.327852 0.163926 0.986473i \(-0.447584\pi\)
0.163926 + 0.986473i \(0.447584\pi\)
\(318\) 0.195488 0.0109624
\(319\) −9.86998 −0.552613
\(320\) 8.56312 0.478693
\(321\) 1.36294 0.0760718
\(322\) 0 0
\(323\) 11.0786 0.616432
\(324\) −1.97196 −0.109553
\(325\) 25.3575 1.40658
\(326\) −1.24687 −0.0690578
\(327\) 0.497652 0.0275202
\(328\) −6.48370 −0.358002
\(329\) 0 0
\(330\) 0.352761 0.0194189
\(331\) −28.2788 −1.55434 −0.777172 0.629288i \(-0.783347\pi\)
−0.777172 + 0.629288i \(0.783347\pi\)
\(332\) 16.0506 0.880891
\(333\) −1.46961 −0.0805343
\(334\) 3.47352 0.190063
\(335\) 18.0327 0.985234
\(336\) 0 0
\(337\) 10.9720 0.597681 0.298840 0.954303i \(-0.403400\pi\)
0.298840 + 0.954303i \(0.403400\pi\)
\(338\) −5.96257 −0.324321
\(339\) 1.44627 0.0785506
\(340\) −14.1339 −0.766520
\(341\) −3.96178 −0.214543
\(342\) 0.302164 0.0163392
\(343\) 0 0
\(344\) −4.41432 −0.238004
\(345\) −1.16745 −0.0628534
\(346\) −2.97196 −0.159774
\(347\) −10.4088 −0.558776 −0.279388 0.960178i \(-0.590132\pi\)
−0.279388 + 0.960178i \(0.590132\pi\)
\(348\) 10.7859 0.578183
\(349\) 13.7251 0.734687 0.367344 0.930085i \(-0.380267\pi\)
0.367344 + 0.930085i \(0.380267\pi\)
\(350\) 0 0
\(351\) 6.97196 0.372136
\(352\) 3.55843 0.189665
\(353\) 6.02725 0.320798 0.160399 0.987052i \(-0.448722\pi\)
0.160399 + 0.987052i \(0.448722\pi\)
\(354\) −1.52569 −0.0810896
\(355\) 10.7998 0.573195
\(356\) 2.02725 0.107444
\(357\) 0 0
\(358\) −0.743738 −0.0393078
\(359\) −35.1674 −1.85607 −0.928033 0.372497i \(-0.878502\pi\)
−0.928033 + 0.372497i \(0.878502\pi\)
\(360\) −0.776472 −0.0409237
\(361\) −15.7437 −0.828618
\(362\) −1.95788 −0.102904
\(363\) 7.74374 0.406441
\(364\) 0 0
\(365\) −0.553731 −0.0289836
\(366\) 0.776472 0.0405869
\(367\) 20.5810 1.07432 0.537159 0.843481i \(-0.319497\pi\)
0.537159 + 0.843481i \(0.319497\pi\)
\(368\) −3.83255 −0.199786
\(369\) −9.74843 −0.507483
\(370\) −0.287292 −0.0149356
\(371\) 0 0
\(372\) 4.32942 0.224470
\(373\) 5.74843 0.297643 0.148821 0.988864i \(-0.452452\pi\)
0.148821 + 0.988864i \(0.452452\pi\)
\(374\) −1.85511 −0.0959254
\(375\) −10.0833 −0.520701
\(376\) 1.29291 0.0666765
\(377\) −38.1339 −1.96400
\(378\) 0 0
\(379\) 21.8972 1.12479 0.562393 0.826870i \(-0.309881\pi\)
0.562393 + 0.826870i \(0.309881\pi\)
\(380\) −4.15428 −0.213110
\(381\) −7.91119 −0.405302
\(382\) −3.56233 −0.182265
\(383\) −15.7484 −0.804707 −0.402354 0.915484i \(-0.631808\pi\)
−0.402354 + 0.915484i \(0.631808\pi\)
\(384\) −5.17214 −0.263940
\(385\) 0 0
\(386\) 0.548250 0.0279052
\(387\) −6.63706 −0.337381
\(388\) −16.7110 −0.848373
\(389\) −32.6410 −1.65496 −0.827481 0.561493i \(-0.810227\pi\)
−0.827481 + 0.561493i \(0.810227\pi\)
\(390\) 1.36294 0.0690150
\(391\) 6.13941 0.310483
\(392\) 0 0
\(393\) 1.80451 0.0910256
\(394\) −0.0599874 −0.00302212
\(395\) −8.72039 −0.438771
\(396\) 3.55843 0.178818
\(397\) −34.2134 −1.71712 −0.858559 0.512714i \(-0.828640\pi\)
−0.858559 + 0.512714i \(0.828640\pi\)
\(398\) −3.91510 −0.196246
\(399\) 0 0
\(400\) −13.9392 −0.696961
\(401\) −35.5802 −1.77679 −0.888395 0.459080i \(-0.848179\pi\)
−0.888395 + 0.459080i \(0.848179\pi\)
\(402\) −2.58647 −0.129001
\(403\) −15.3069 −0.762489
\(404\) −36.9159 −1.83663
\(405\) −1.16745 −0.0580110
\(406\) 0 0
\(407\) 2.65193 0.131451
\(408\) 4.08333 0.202155
\(409\) −22.4182 −1.10851 −0.554255 0.832347i \(-0.686997\pi\)
−0.554255 + 0.832347i \(0.686997\pi\)
\(410\) −1.90571 −0.0941161
\(411\) 13.4696 0.664407
\(412\) 9.20866 0.453678
\(413\) 0 0
\(414\) 0.167449 0.00822968
\(415\) 9.50235 0.466452
\(416\) 13.7484 0.674072
\(417\) −15.1674 −0.742753
\(418\) −0.545258 −0.0266695
\(419\) 24.7859 1.21087 0.605434 0.795895i \(-0.292999\pi\)
0.605434 + 0.795895i \(0.292999\pi\)
\(420\) 0 0
\(421\) −35.0265 −1.70709 −0.853543 0.521023i \(-0.825551\pi\)
−0.853543 + 0.521023i \(0.825551\pi\)
\(422\) −2.24609 −0.109338
\(423\) 1.94392 0.0945167
\(424\) 0.776472 0.0377088
\(425\) 22.3294 1.08314
\(426\) −1.54904 −0.0750510
\(427\) 0 0
\(428\) 2.68766 0.129913
\(429\) −12.5810 −0.607416
\(430\) −1.29747 −0.0625695
\(431\) 3.37233 0.162439 0.0812197 0.996696i \(-0.474118\pi\)
0.0812197 + 0.996696i \(0.474118\pi\)
\(432\) −3.83255 −0.184394
\(433\) −7.83176 −0.376371 −0.188185 0.982134i \(-0.560261\pi\)
−0.188185 + 0.982134i \(0.560261\pi\)
\(434\) 0 0
\(435\) 6.38550 0.306161
\(436\) 0.981351 0.0469982
\(437\) 1.80451 0.0863215
\(438\) 0.0794225 0.00379496
\(439\) −13.0226 −0.621533 −0.310766 0.950486i \(-0.600586\pi\)
−0.310766 + 0.950486i \(0.600586\pi\)
\(440\) 1.40115 0.0667974
\(441\) 0 0
\(442\) −7.16745 −0.340921
\(443\) −7.33020 −0.348268 −0.174134 0.984722i \(-0.555713\pi\)
−0.174134 + 0.984722i \(0.555713\pi\)
\(444\) −2.89802 −0.137534
\(445\) 1.20018 0.0568942
\(446\) 1.46022 0.0691436
\(447\) −19.5529 −0.924823
\(448\) 0 0
\(449\) −9.49296 −0.448000 −0.224000 0.974589i \(-0.571912\pi\)
−0.224000 + 0.974589i \(0.571912\pi\)
\(450\) 0.609023 0.0287096
\(451\) 17.5912 0.828335
\(452\) 2.85199 0.134146
\(453\) 13.2741 0.623673
\(454\) 2.36215 0.110861
\(455\) 0 0
\(456\) 1.20018 0.0562037
\(457\) −20.1721 −0.943613 −0.471807 0.881702i \(-0.656398\pi\)
−0.471807 + 0.881702i \(0.656398\pi\)
\(458\) 0.846505 0.0395546
\(459\) 6.13941 0.286563
\(460\) −2.30216 −0.107339
\(461\) −22.3949 −1.04303 −0.521517 0.853241i \(-0.674634\pi\)
−0.521517 + 0.853241i \(0.674634\pi\)
\(462\) 0 0
\(463\) 20.6970 0.961873 0.480937 0.876755i \(-0.340297\pi\)
0.480937 + 0.876755i \(0.340297\pi\)
\(464\) 20.9626 0.973163
\(465\) 2.56312 0.118862
\(466\) 4.64097 0.214989
\(467\) −3.74843 −0.173457 −0.0867284 0.996232i \(-0.527641\pi\)
−0.0867284 + 0.996232i \(0.527641\pi\)
\(468\) 13.7484 0.635522
\(469\) 0 0
\(470\) 0.380014 0.0175287
\(471\) −13.2835 −0.612072
\(472\) −6.05999 −0.278934
\(473\) 11.9767 0.550687
\(474\) 1.25078 0.0574503
\(475\) 6.56312 0.301137
\(476\) 0 0
\(477\) 1.16745 0.0534538
\(478\) −1.31234 −0.0600251
\(479\) 29.3014 1.33881 0.669407 0.742896i \(-0.266548\pi\)
0.669407 + 0.742896i \(0.266548\pi\)
\(480\) −2.30216 −0.105079
\(481\) 10.2461 0.467181
\(482\) 3.29747 0.150196
\(483\) 0 0
\(484\) 15.2703 0.694107
\(485\) −9.89332 −0.449233
\(486\) 0.167449 0.00759565
\(487\) 17.0880 0.774332 0.387166 0.922010i \(-0.373454\pi\)
0.387166 + 0.922010i \(0.373454\pi\)
\(488\) 3.08412 0.139611
\(489\) −7.44627 −0.336732
\(490\) 0 0
\(491\) −16.3022 −0.735706 −0.367853 0.929884i \(-0.619907\pi\)
−0.367853 + 0.929884i \(0.619907\pi\)
\(492\) −19.2235 −0.866664
\(493\) −33.5802 −1.51238
\(494\) −2.10668 −0.0947838
\(495\) 2.10668 0.0946880
\(496\) 8.41432 0.377814
\(497\) 0 0
\(498\) −1.36294 −0.0610747
\(499\) 31.7251 1.42021 0.710105 0.704096i \(-0.248647\pi\)
0.710105 + 0.704096i \(0.248647\pi\)
\(500\) −19.8839 −0.889237
\(501\) 20.7437 0.926762
\(502\) −5.06077 −0.225873
\(503\) 15.1020 0.673364 0.336682 0.941618i \(-0.390695\pi\)
0.336682 + 0.941618i \(0.390695\pi\)
\(504\) 0 0
\(505\) −21.8551 −0.972540
\(506\) −0.302164 −0.0134328
\(507\) −35.6082 −1.58142
\(508\) −15.6006 −0.692163
\(509\) 28.7804 1.27567 0.637834 0.770174i \(-0.279831\pi\)
0.637834 + 0.770174i \(0.279831\pi\)
\(510\) 1.20018 0.0531450
\(511\) 0 0
\(512\) −12.6557 −0.559309
\(513\) 1.80451 0.0796711
\(514\) 2.04669 0.0902755
\(515\) 5.45175 0.240233
\(516\) −13.0880 −0.576168
\(517\) −3.50783 −0.154274
\(518\) 0 0
\(519\) −17.7484 −0.779070
\(520\) 5.41353 0.237399
\(521\) −30.4455 −1.33384 −0.666920 0.745129i \(-0.732388\pi\)
−0.666920 + 0.745129i \(0.732388\pi\)
\(522\) −0.915882 −0.0400871
\(523\) 29.4875 1.28940 0.644699 0.764437i \(-0.276983\pi\)
0.644699 + 0.764437i \(0.276983\pi\)
\(524\) 3.55843 0.155451
\(525\) 0 0
\(526\) −0.917455 −0.0400029
\(527\) −13.4790 −0.587155
\(528\) 6.91588 0.300975
\(529\) 1.00000 0.0434783
\(530\) 0.228223 0.00991336
\(531\) −9.11137 −0.395400
\(532\) 0 0
\(533\) 67.9657 2.94392
\(534\) −0.172144 −0.00744941
\(535\) 1.59116 0.0687919
\(536\) −10.2733 −0.443741
\(537\) −4.44157 −0.191668
\(538\) 4.49765 0.193908
\(539\) 0 0
\(540\) −2.30216 −0.0990694
\(541\) −9.54355 −0.410309 −0.205155 0.978730i \(-0.565770\pi\)
−0.205155 + 0.978730i \(0.565770\pi\)
\(542\) −0.693141 −0.0297729
\(543\) −11.6924 −0.501767
\(544\) 12.1067 0.519069
\(545\) 0.580984 0.0248866
\(546\) 0 0
\(547\) −21.2780 −0.909783 −0.454892 0.890547i \(-0.650322\pi\)
−0.454892 + 0.890547i \(0.650322\pi\)
\(548\) 26.5615 1.13465
\(549\) 4.63706 0.197905
\(550\) −1.09899 −0.0468611
\(551\) −9.86998 −0.420475
\(552\) 0.665102 0.0283086
\(553\) 0 0
\(554\) −2.88706 −0.122659
\(555\) −1.71570 −0.0728274
\(556\) −29.9096 −1.26845
\(557\) −30.4922 −1.29199 −0.645997 0.763340i \(-0.723558\pi\)
−0.645997 + 0.763340i \(0.723558\pi\)
\(558\) −0.367633 −0.0155631
\(559\) 46.2733 1.95715
\(560\) 0 0
\(561\) −11.0786 −0.467740
\(562\) 1.98122 0.0835727
\(563\) −20.7476 −0.874409 −0.437205 0.899362i \(-0.644031\pi\)
−0.437205 + 0.899362i \(0.644031\pi\)
\(564\) 3.83334 0.161413
\(565\) 1.68845 0.0710334
\(566\) −2.30765 −0.0969976
\(567\) 0 0
\(568\) −6.15271 −0.258162
\(569\) −21.4969 −0.901196 −0.450598 0.892727i \(-0.648789\pi\)
−0.450598 + 0.892727i \(0.648789\pi\)
\(570\) 0.352761 0.0147755
\(571\) −14.1488 −0.592109 −0.296054 0.955171i \(-0.595671\pi\)
−0.296054 + 0.955171i \(0.595671\pi\)
\(572\) −24.8092 −1.03733
\(573\) −21.2741 −0.888739
\(574\) 0 0
\(575\) 3.63706 0.151676
\(576\) −7.33490 −0.305621
\(577\) −10.7820 −0.448859 −0.224429 0.974490i \(-0.572052\pi\)
−0.224429 + 0.974490i \(0.572052\pi\)
\(578\) −3.46492 −0.144122
\(579\) 3.27412 0.136068
\(580\) 12.5919 0.522852
\(581\) 0 0
\(582\) 1.41902 0.0588201
\(583\) −2.10668 −0.0872496
\(584\) 0.315463 0.0130540
\(585\) 8.13941 0.336523
\(586\) 3.50626 0.144842
\(587\) 20.3676 0.840662 0.420331 0.907371i \(-0.361914\pi\)
0.420331 + 0.907371i \(0.361914\pi\)
\(588\) 0 0
\(589\) −3.96178 −0.163242
\(590\) −1.78117 −0.0733295
\(591\) −0.358242 −0.0147361
\(592\) −5.63237 −0.231489
\(593\) 15.9439 0.654738 0.327369 0.944897i \(-0.393838\pi\)
0.327369 + 0.944897i \(0.393838\pi\)
\(594\) −0.302164 −0.0123979
\(595\) 0 0
\(596\) −38.5576 −1.57938
\(597\) −23.3808 −0.956912
\(598\) −1.16745 −0.0477405
\(599\) 18.9159 0.772882 0.386441 0.922314i \(-0.373704\pi\)
0.386441 + 0.922314i \(0.373704\pi\)
\(600\) 2.41902 0.0987559
\(601\) 48.3388 1.97178 0.985891 0.167391i \(-0.0535343\pi\)
0.985891 + 0.167391i \(0.0535343\pi\)
\(602\) 0 0
\(603\) −15.4463 −0.629021
\(604\) 26.1761 1.06509
\(605\) 9.04042 0.367545
\(606\) 3.13471 0.127339
\(607\) 9.29747 0.377373 0.188686 0.982037i \(-0.439577\pi\)
0.188686 + 0.982037i \(0.439577\pi\)
\(608\) 3.55843 0.144313
\(609\) 0 0
\(610\) 0.906492 0.0367028
\(611\) −13.5529 −0.548293
\(612\) 12.1067 0.489383
\(613\) 41.3108 1.66853 0.834263 0.551367i \(-0.185893\pi\)
0.834263 + 0.551367i \(0.185893\pi\)
\(614\) −1.64176 −0.0662559
\(615\) −11.3808 −0.458918
\(616\) 0 0
\(617\) −36.4782 −1.46856 −0.734279 0.678848i \(-0.762480\pi\)
−0.734279 + 0.678848i \(0.762480\pi\)
\(618\) −0.781954 −0.0314548
\(619\) −7.41902 −0.298195 −0.149098 0.988822i \(-0.547637\pi\)
−0.149098 + 0.988822i \(0.547637\pi\)
\(620\) 5.05437 0.202989
\(621\) 1.00000 0.0401286
\(622\) 2.10668 0.0844700
\(623\) 0 0
\(624\) 26.7204 1.06967
\(625\) 6.41353 0.256541
\(626\) −3.04199 −0.121582
\(627\) −3.25626 −0.130043
\(628\) −26.1946 −1.04528
\(629\) 9.02256 0.359753
\(630\) 0 0
\(631\) 23.0132 0.916140 0.458070 0.888916i \(-0.348541\pi\)
0.458070 + 0.888916i \(0.348541\pi\)
\(632\) 4.96805 0.197618
\(633\) −13.4135 −0.533140
\(634\) −0.977442 −0.0388192
\(635\) −9.23591 −0.366516
\(636\) 2.30216 0.0912867
\(637\) 0 0
\(638\) 1.65272 0.0654318
\(639\) −9.25078 −0.365955
\(640\) −6.03822 −0.238681
\(641\) 26.1433 1.03260 0.516300 0.856408i \(-0.327309\pi\)
0.516300 + 0.856408i \(0.327309\pi\)
\(642\) −0.228223 −0.00900724
\(643\) 5.47509 0.215917 0.107958 0.994155i \(-0.465569\pi\)
0.107958 + 0.994155i \(0.465569\pi\)
\(644\) 0 0
\(645\) −7.74843 −0.305094
\(646\) −1.85511 −0.0729883
\(647\) −43.8263 −1.72299 −0.861494 0.507767i \(-0.830471\pi\)
−0.861494 + 0.507767i \(0.830471\pi\)
\(648\) 0.665102 0.0261277
\(649\) 16.4416 0.645388
\(650\) −4.24609 −0.166545
\(651\) 0 0
\(652\) −14.6838 −0.575060
\(653\) 28.7298 1.12428 0.562142 0.827041i \(-0.309978\pi\)
0.562142 + 0.827041i \(0.309978\pi\)
\(654\) −0.0833315 −0.00325852
\(655\) 2.10668 0.0823146
\(656\) −37.3614 −1.45872
\(657\) 0.474308 0.0185045
\(658\) 0 0
\(659\) −6.47431 −0.252203 −0.126102 0.992017i \(-0.540247\pi\)
−0.126102 + 0.992017i \(0.540247\pi\)
\(660\) 4.15428 0.161705
\(661\) 5.03195 0.195720 0.0978601 0.995200i \(-0.468800\pi\)
0.0978601 + 0.995200i \(0.468800\pi\)
\(662\) 4.73527 0.184041
\(663\) −42.8037 −1.66236
\(664\) −5.41353 −0.210086
\(665\) 0 0
\(666\) 0.246086 0.00953562
\(667\) −5.46961 −0.211784
\(668\) 40.9058 1.58269
\(669\) 8.72039 0.337150
\(670\) −3.01957 −0.116656
\(671\) −8.36763 −0.323029
\(672\) 0 0
\(673\) 37.9618 1.46332 0.731660 0.681670i \(-0.238746\pi\)
0.731660 + 0.681670i \(0.238746\pi\)
\(674\) −1.83725 −0.0707681
\(675\) 3.63706 0.139991
\(676\) −70.2180 −2.70069
\(677\) 13.1947 0.507114 0.253557 0.967320i \(-0.418400\pi\)
0.253557 + 0.967320i \(0.418400\pi\)
\(678\) −0.242177 −0.00930074
\(679\) 0 0
\(680\) 4.76708 0.182809
\(681\) 14.1067 0.540569
\(682\) 0.663398 0.0254028
\(683\) 18.4088 0.704395 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(684\) 3.55843 0.136060
\(685\) 15.7251 0.600825
\(686\) 0 0
\(687\) 5.05529 0.192871
\(688\) −25.4369 −0.969772
\(689\) −8.13941 −0.310087
\(690\) 0.195488 0.00744212
\(691\) −32.5343 −1.23766 −0.618831 0.785524i \(-0.712394\pi\)
−0.618831 + 0.785524i \(0.712394\pi\)
\(692\) −34.9992 −1.33047
\(693\) 0 0
\(694\) 1.74295 0.0661615
\(695\) −17.7072 −0.671673
\(696\) −3.63785 −0.137892
\(697\) 59.8496 2.26697
\(698\) −2.29826 −0.0869902
\(699\) 27.7157 1.04830
\(700\) 0 0
\(701\) 39.9290 1.50810 0.754050 0.656817i \(-0.228098\pi\)
0.754050 + 0.656817i \(0.228098\pi\)
\(702\) −1.16745 −0.0440625
\(703\) 2.65193 0.100020
\(704\) 13.2359 0.498847
\(705\) 2.26943 0.0854717
\(706\) −1.00926 −0.0379840
\(707\) 0 0
\(708\) −17.9673 −0.675251
\(709\) −30.2555 −1.13627 −0.568134 0.822936i \(-0.692335\pi\)
−0.568134 + 0.822936i \(0.692335\pi\)
\(710\) −1.80842 −0.0678688
\(711\) 7.46961 0.280132
\(712\) −0.683751 −0.0256246
\(713\) −2.19549 −0.0822217
\(714\) 0 0
\(715\) −14.6877 −0.549287
\(716\) −8.75861 −0.327325
\(717\) −7.83725 −0.292687
\(718\) 5.88876 0.219767
\(719\) −37.9057 −1.41364 −0.706822 0.707391i \(-0.749872\pi\)
−0.706822 + 0.707391i \(0.749872\pi\)
\(720\) −4.47431 −0.166748
\(721\) 0 0
\(722\) 2.63628 0.0981120
\(723\) 19.6924 0.732367
\(724\) −23.0569 −0.856902
\(725\) −19.8933 −0.738820
\(726\) −1.29668 −0.0481244
\(727\) 42.9010 1.59111 0.795555 0.605881i \(-0.207179\pi\)
0.795555 + 0.605881i \(0.207179\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0.0927218 0.00343179
\(731\) 40.7476 1.50711
\(732\) 9.14411 0.337976
\(733\) −3.27412 −0.120933 −0.0604663 0.998170i \(-0.519259\pi\)
−0.0604663 + 0.998170i \(0.519259\pi\)
\(734\) −3.44627 −0.127204
\(735\) 0 0
\(736\) 1.97196 0.0726874
\(737\) 27.8730 1.02671
\(738\) 1.63237 0.0600883
\(739\) −17.0226 −0.626185 −0.313092 0.949723i \(-0.601365\pi\)
−0.313092 + 0.949723i \(0.601365\pi\)
\(740\) −3.38329 −0.124372
\(741\) −12.5810 −0.462174
\(742\) 0 0
\(743\) 20.0506 0.735585 0.367793 0.929908i \(-0.380114\pi\)
0.367793 + 0.929908i \(0.380114\pi\)
\(744\) −1.46022 −0.0535344
\(745\) −22.8271 −0.836319
\(746\) −0.962570 −0.0352422
\(747\) −8.13941 −0.297805
\(748\) −21.8466 −0.798792
\(749\) 0 0
\(750\) 1.68845 0.0616533
\(751\) −46.7298 −1.70519 −0.852597 0.522569i \(-0.824974\pi\)
−0.852597 + 0.522569i \(0.824974\pi\)
\(752\) 7.45018 0.271680
\(753\) −30.2227 −1.10138
\(754\) 6.38550 0.232546
\(755\) 15.4969 0.563989
\(756\) 0 0
\(757\) 22.8092 0.829015 0.414507 0.910046i \(-0.363954\pi\)
0.414507 + 0.910046i \(0.363954\pi\)
\(758\) −3.66667 −0.133180
\(759\) −1.80451 −0.0654996
\(760\) 1.40115 0.0508252
\(761\) −28.1761 −1.02138 −0.510691 0.859765i \(-0.670610\pi\)
−0.510691 + 0.859765i \(0.670610\pi\)
\(762\) 1.32472 0.0479896
\(763\) 0 0
\(764\) −41.9517 −1.51776
\(765\) 7.16745 0.259140
\(766\) 2.63706 0.0952809
\(767\) 63.5241 2.29372
\(768\) −13.8037 −0.498099
\(769\) 25.8412 0.931856 0.465928 0.884823i \(-0.345721\pi\)
0.465928 + 0.884823i \(0.345721\pi\)
\(770\) 0 0
\(771\) 12.2227 0.440191
\(772\) 6.45645 0.232373
\(773\) −44.0833 −1.58557 −0.792784 0.609503i \(-0.791369\pi\)
−0.792784 + 0.609503i \(0.791369\pi\)
\(774\) 1.11137 0.0399474
\(775\) −7.98513 −0.286834
\(776\) 5.63628 0.202331
\(777\) 0 0
\(778\) 5.46570 0.195955
\(779\) 17.5912 0.630269
\(780\) 16.0506 0.574704
\(781\) 16.6931 0.597328
\(782\) −1.02804 −0.0367626
\(783\) −5.46961 −0.195468
\(784\) 0 0
\(785\) −15.5078 −0.553498
\(786\) −0.302164 −0.0107778
\(787\) 36.7204 1.30894 0.654470 0.756088i \(-0.272892\pi\)
0.654470 + 0.756088i \(0.272892\pi\)
\(788\) −0.706440 −0.0251659
\(789\) −5.47900 −0.195058
\(790\) 1.46022 0.0519524
\(791\) 0 0
\(792\) −1.20018 −0.0426467
\(793\) −32.3294 −1.14805
\(794\) 5.72900 0.203315
\(795\) 1.36294 0.0483384
\(796\) −46.1060 −1.63418
\(797\) −40.7804 −1.44452 −0.722258 0.691624i \(-0.756895\pi\)
−0.722258 + 0.691624i \(0.756895\pi\)
\(798\) 0 0
\(799\) −11.9345 −0.422213
\(800\) 7.17214 0.253574
\(801\) −1.02804 −0.0363240
\(802\) 5.95788 0.210380
\(803\) −0.855895 −0.0302039
\(804\) −30.4594 −1.07422
\(805\) 0 0
\(806\) 2.56312 0.0902821
\(807\) 26.8598 0.945510
\(808\) 12.4510 0.438023
\(809\) 2.46883 0.0867993 0.0433997 0.999058i \(-0.486181\pi\)
0.0433997 + 0.999058i \(0.486181\pi\)
\(810\) 0.195488 0.00686876
\(811\) 16.4182 0.576522 0.288261 0.957552i \(-0.406923\pi\)
0.288261 + 0.957552i \(0.406923\pi\)
\(812\) 0 0
\(813\) −4.13941 −0.145175
\(814\) −0.444064 −0.0155644
\(815\) −8.69314 −0.304507
\(816\) 23.5296 0.823701
\(817\) 11.9767 0.419010
\(818\) 3.75391 0.131253
\(819\) 0 0
\(820\) −22.4425 −0.783726
\(821\) −34.1012 −1.19014 −0.595070 0.803674i \(-0.702876\pi\)
−0.595070 + 0.803674i \(0.702876\pi\)
\(822\) −2.25548 −0.0786688
\(823\) 16.1628 0.563398 0.281699 0.959503i \(-0.409102\pi\)
0.281699 + 0.959503i \(0.409102\pi\)
\(824\) −3.10589 −0.108199
\(825\) −6.56312 −0.228499
\(826\) 0 0
\(827\) −18.5522 −0.645122 −0.322561 0.946549i \(-0.604544\pi\)
−0.322561 + 0.946549i \(0.604544\pi\)
\(828\) 1.97196 0.0685304
\(829\) −45.2453 −1.57143 −0.785717 0.618586i \(-0.787706\pi\)
−0.785717 + 0.618586i \(0.787706\pi\)
\(830\) −1.59116 −0.0552300
\(831\) −17.2414 −0.598097
\(832\) 51.1386 1.77291
\(833\) 0 0
\(834\) 2.53978 0.0879453
\(835\) 24.2173 0.838073
\(836\) −6.42122 −0.222083
\(837\) −2.19549 −0.0758872
\(838\) −4.15037 −0.143372
\(839\) 1.29747 0.0447936 0.0223968 0.999749i \(-0.492870\pi\)
0.0223968 + 0.999749i \(0.492870\pi\)
\(840\) 0 0
\(841\) 0.916669 0.0316093
\(842\) 5.86515 0.202127
\(843\) 11.8318 0.407508
\(844\) −26.4510 −0.910480
\(845\) −41.5708 −1.43008
\(846\) −0.325508 −0.0111912
\(847\) 0 0
\(848\) 4.47431 0.153648
\(849\) −13.7812 −0.472968
\(850\) −3.73904 −0.128248
\(851\) 1.46961 0.0503777
\(852\) −18.2422 −0.624967
\(853\) −33.2835 −1.13961 −0.569803 0.821781i \(-0.692980\pi\)
−0.569803 + 0.821781i \(0.692980\pi\)
\(854\) 0 0
\(855\) 2.10668 0.0720468
\(856\) −0.906492 −0.0309833
\(857\) −9.26473 −0.316477 −0.158239 0.987401i \(-0.550582\pi\)
−0.158239 + 0.987401i \(0.550582\pi\)
\(858\) 2.10668 0.0719207
\(859\) 32.7243 1.11654 0.558269 0.829660i \(-0.311466\pi\)
0.558269 + 0.829660i \(0.311466\pi\)
\(860\) −15.2796 −0.521030
\(861\) 0 0
\(862\) −0.564694 −0.0192335
\(863\) −40.1012 −1.36506 −0.682530 0.730857i \(-0.739120\pi\)
−0.682530 + 0.730857i \(0.739120\pi\)
\(864\) 1.97196 0.0670875
\(865\) −20.7204 −0.704515
\(866\) 1.31142 0.0445640
\(867\) −20.6924 −0.702749
\(868\) 0 0
\(869\) −13.4790 −0.457244
\(870\) −1.06925 −0.0362508
\(871\) 107.691 3.64896
\(872\) −0.330989 −0.0112087
\(873\) 8.47431 0.286812
\(874\) −0.302164 −0.0102208
\(875\) 0 0
\(876\) 0.935317 0.0316014
\(877\) 41.6090 1.40504 0.702518 0.711666i \(-0.252059\pi\)
0.702518 + 0.711666i \(0.252059\pi\)
\(878\) 2.18062 0.0735923
\(879\) 20.9392 0.706263
\(880\) 8.07394 0.272173
\(881\) 31.9439 1.07622 0.538109 0.842875i \(-0.319139\pi\)
0.538109 + 0.842875i \(0.319139\pi\)
\(882\) 0 0
\(883\) −0.0778502 −0.00261987 −0.00130993 0.999999i \(-0.500417\pi\)
−0.00130993 + 0.999999i \(0.500417\pi\)
\(884\) −84.4073 −2.83892
\(885\) −10.6371 −0.357561
\(886\) 1.22744 0.0412365
\(887\) −4.80530 −0.161346 −0.0806731 0.996741i \(-0.525707\pi\)
−0.0806731 + 0.996741i \(0.525707\pi\)
\(888\) 0.977442 0.0328008
\(889\) 0 0
\(890\) −0.200970 −0.00673652
\(891\) −1.80451 −0.0604534
\(892\) 17.1963 0.575774
\(893\) −3.50783 −0.117385
\(894\) 3.27412 0.109503
\(895\) −5.18531 −0.173326
\(896\) 0 0
\(897\) −6.97196 −0.232787
\(898\) 1.58959 0.0530452
\(899\) 12.0085 0.400505
\(900\) 7.17214 0.239071
\(901\) −7.16745 −0.238782
\(902\) −2.94563 −0.0980786
\(903\) 0 0
\(904\) −0.961916 −0.0319928
\(905\) −13.6502 −0.453749
\(906\) −2.22274 −0.0738456
\(907\) 56.9337 1.89045 0.945227 0.326414i \(-0.105840\pi\)
0.945227 + 0.326414i \(0.105840\pi\)
\(908\) 27.8178 0.923166
\(909\) 18.7204 0.620916
\(910\) 0 0
\(911\) −5.27412 −0.174740 −0.0873698 0.996176i \(-0.527846\pi\)
−0.0873698 + 0.996176i \(0.527846\pi\)
\(912\) 6.91588 0.229008
\(913\) 14.6877 0.486091
\(914\) 3.37781 0.111728
\(915\) 5.41353 0.178966
\(916\) 9.96884 0.329380
\(917\) 0 0
\(918\) −1.02804 −0.0339304
\(919\) −26.1955 −0.864109 −0.432055 0.901847i \(-0.642211\pi\)
−0.432055 + 0.901847i \(0.642211\pi\)
\(920\) 0.776472 0.0255995
\(921\) −9.80451 −0.323070
\(922\) 3.75001 0.123500
\(923\) 64.4961 2.12291
\(924\) 0 0
\(925\) 5.34507 0.175745
\(926\) −3.46570 −0.113890
\(927\) −4.66980 −0.153376
\(928\) −10.7859 −0.354063
\(929\) 40.6643 1.33415 0.667076 0.744989i \(-0.267545\pi\)
0.667076 + 0.744989i \(0.267545\pi\)
\(930\) −0.429193 −0.0140738
\(931\) 0 0
\(932\) 54.6543 1.79026
\(933\) 12.5810 0.411883
\(934\) 0.627672 0.0205381
\(935\) −12.9337 −0.422979
\(936\) −4.63706 −0.151567
\(937\) −12.4276 −0.405993 −0.202996 0.979179i \(-0.565068\pi\)
−0.202996 + 0.979179i \(0.565068\pi\)
\(938\) 0 0
\(939\) −18.1667 −0.592847
\(940\) 4.47523 0.145966
\(941\) −36.7149 −1.19687 −0.598436 0.801171i \(-0.704211\pi\)
−0.598436 + 0.801171i \(0.704211\pi\)
\(942\) 2.22431 0.0724721
\(943\) 9.74843 0.317453
\(944\) −34.9198 −1.13654
\(945\) 0 0
\(946\) −2.00548 −0.0652038
\(947\) 2.38159 0.0773912 0.0386956 0.999251i \(-0.487680\pi\)
0.0386956 + 0.999251i \(0.487680\pi\)
\(948\) 14.7298 0.478401
\(949\) −3.30686 −0.107345
\(950\) −1.09899 −0.0356559
\(951\) −5.83725 −0.189286
\(952\) 0 0
\(953\) −42.5810 −1.37933 −0.689667 0.724127i \(-0.742243\pi\)
−0.689667 + 0.724127i \(0.742243\pi\)
\(954\) −0.195488 −0.00632917
\(955\) −24.8365 −0.803689
\(956\) −15.4547 −0.499842
\(957\) 9.86998 0.319051
\(958\) −4.90649 −0.158522
\(959\) 0 0
\(960\) −8.56312 −0.276374
\(961\) −26.1798 −0.844511
\(962\) −1.71570 −0.0553163
\(963\) −1.36294 −0.0439201
\(964\) 38.8326 1.25071
\(965\) 3.82237 0.123047
\(966\) 0 0
\(967\) −27.3847 −0.880633 −0.440316 0.897843i \(-0.645134\pi\)
−0.440316 + 0.897843i \(0.645134\pi\)
\(968\) −5.15037 −0.165539
\(969\) −11.0786 −0.355897
\(970\) 1.65663 0.0531912
\(971\) −16.2555 −0.521663 −0.260832 0.965384i \(-0.583997\pi\)
−0.260832 + 0.965384i \(0.583997\pi\)
\(972\) 1.97196 0.0632507
\(973\) 0 0
\(974\) −2.86138 −0.0916844
\(975\) −25.3575 −0.812089
\(976\) 17.7718 0.568861
\(977\) −14.1900 −0.453979 −0.226989 0.973897i \(-0.572888\pi\)
−0.226989 + 0.973897i \(0.572888\pi\)
\(978\) 1.24687 0.0398706
\(979\) 1.85511 0.0592895
\(980\) 0 0
\(981\) −0.497652 −0.0158888
\(982\) 2.72978 0.0871109
\(983\) −35.8606 −1.14378 −0.571888 0.820332i \(-0.693789\pi\)
−0.571888 + 0.820332i \(0.693789\pi\)
\(984\) 6.48370 0.206693
\(985\) −0.418230 −0.0133259
\(986\) 5.62298 0.179072
\(987\) 0 0
\(988\) −24.8092 −0.789286
\(989\) 6.63706 0.211046
\(990\) −0.352761 −0.0112115
\(991\) 13.1853 0.418845 0.209423 0.977825i \(-0.432842\pi\)
0.209423 + 0.977825i \(0.432842\pi\)
\(992\) −4.32942 −0.137459
\(993\) 28.2788 0.897401
\(994\) 0 0
\(995\) −27.2959 −0.865338
\(996\) −16.0506 −0.508583
\(997\) −59.2547 −1.87661 −0.938307 0.345802i \(-0.887607\pi\)
−0.938307 + 0.345802i \(0.887607\pi\)
\(998\) −5.31234 −0.168159
\(999\) 1.46961 0.0464965
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3381.2.a.v.1.2 3
7.6 odd 2 483.2.a.h.1.2 3
21.20 even 2 1449.2.a.l.1.2 3
28.27 even 2 7728.2.a.bt.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.h.1.2 3 7.6 odd 2
1449.2.a.l.1.2 3 21.20 even 2
3381.2.a.v.1.2 3 1.1 even 1 trivial
7728.2.a.bt.1.2 3 28.27 even 2