Properties

Label 483.2.a.h.1.2
Level 483483
Weight 22
Character 483.1
Self dual yes
Analytic conductor 3.8573.857
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.856774417633.85677441763
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x36x1 x^{3} - 6x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.167449-0.167449 of defining polynomial
Character χ\chi == 483.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.167449q2+1.00000q31.97196q4+1.16745q50.167449q61.00000q7+0.665102q8+1.00000q90.195488q101.80451q111.97196q12+6.97196q13+0.167449q14+1.16745q15+3.83255q16+6.13941q170.167449q18+1.80451q192.30216q201.00000q21+0.302164q221.00000q23+0.665102q243.63706q251.16745q26+1.00000q27+1.97196q28+5.46961q290.195488q302.19549q311.97196q321.80451q331.02804q341.16745q351.97196q361.46961q370.302164q38+6.97196q39+0.776472q40+9.74843q41+0.167449q426.63706q43+3.55843q44+1.16745q45+0.167449q461.94392q47+3.83255q48+1.00000q49+0.609023q50+6.13941q5113.7484q52+1.16745q530.167449q542.10668q550.665102q56+1.80451q570.915882q58+9.11137q592.30216q604.63706q61+0.367633q621.00000q637.33490q64+8.13941q65+0.302164q6615.4463q6712.1067q681.00000q69+0.195488q709.25078q71+0.665102q720.474308q73+0.246086q743.63706q753.55843q76+1.80451q771.16745q78+7.46961q79+4.47431q80+1.00000q811.63237q82+8.13941q83+1.97196q84+7.16745q85+1.11137q86+5.46961q871.20018q88+1.02804q890.195488q906.97196q91+1.97196q922.19549q93+0.325508q94+2.10668q951.97196q968.47431q970.167449q981.80451q99+O(q100)q-0.167449 q^{2} +1.00000 q^{3} -1.97196 q^{4} +1.16745 q^{5} -0.167449 q^{6} -1.00000 q^{7} +0.665102 q^{8} +1.00000 q^{9} -0.195488 q^{10} -1.80451 q^{11} -1.97196 q^{12} +6.97196 q^{13} +0.167449 q^{14} +1.16745 q^{15} +3.83255 q^{16} +6.13941 q^{17} -0.167449 q^{18} +1.80451 q^{19} -2.30216 q^{20} -1.00000 q^{21} +0.302164 q^{22} -1.00000 q^{23} +0.665102 q^{24} -3.63706 q^{25} -1.16745 q^{26} +1.00000 q^{27} +1.97196 q^{28} +5.46961 q^{29} -0.195488 q^{30} -2.19549 q^{31} -1.97196 q^{32} -1.80451 q^{33} -1.02804 q^{34} -1.16745 q^{35} -1.97196 q^{36} -1.46961 q^{37} -0.302164 q^{38} +6.97196 q^{39} +0.776472 q^{40} +9.74843 q^{41} +0.167449 q^{42} -6.63706 q^{43} +3.55843 q^{44} +1.16745 q^{45} +0.167449 q^{46} -1.94392 q^{47} +3.83255 q^{48} +1.00000 q^{49} +0.609023 q^{50} +6.13941 q^{51} -13.7484 q^{52} +1.16745 q^{53} -0.167449 q^{54} -2.10668 q^{55} -0.665102 q^{56} +1.80451 q^{57} -0.915882 q^{58} +9.11137 q^{59} -2.30216 q^{60} -4.63706 q^{61} +0.367633 q^{62} -1.00000 q^{63} -7.33490 q^{64} +8.13941 q^{65} +0.302164 q^{66} -15.4463 q^{67} -12.1067 q^{68} -1.00000 q^{69} +0.195488 q^{70} -9.25078 q^{71} +0.665102 q^{72} -0.474308 q^{73} +0.246086 q^{74} -3.63706 q^{75} -3.55843 q^{76} +1.80451 q^{77} -1.16745 q^{78} +7.46961 q^{79} +4.47431 q^{80} +1.00000 q^{81} -1.63237 q^{82} +8.13941 q^{83} +1.97196 q^{84} +7.16745 q^{85} +1.11137 q^{86} +5.46961 q^{87} -1.20018 q^{88} +1.02804 q^{89} -0.195488 q^{90} -6.97196 q^{91} +1.97196 q^{92} -2.19549 q^{93} +0.325508 q^{94} +2.10668 q^{95} -1.97196 q^{96} -8.47431 q^{97} -0.167449 q^{98} -1.80451 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q3+6q4+3q53q7+3q8+3q912q10+6q11+6q12+9q13+3q15+12q16+6q176q19+3q203q219q223q23+3q24++6q99+O(q100) 3 q + 3 q^{3} + 6 q^{4} + 3 q^{5} - 3 q^{7} + 3 q^{8} + 3 q^{9} - 12 q^{10} + 6 q^{11} + 6 q^{12} + 9 q^{13} + 3 q^{15} + 12 q^{16} + 6 q^{17} - 6 q^{19} + 3 q^{20} - 3 q^{21} - 9 q^{22} - 3 q^{23} + 3 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.167449 −0.118404 −0.0592022 0.998246i 0.518856π-0.518856\pi
−0.0592022 + 0.998246i 0.518856π0.518856\pi
33 1.00000 0.577350
44 −1.97196 −0.985980
55 1.16745 0.522099 0.261050 0.965325i 0.415931π-0.415931\pi
0.261050 + 0.965325i 0.415931π0.415931\pi
66 −0.167449 −0.0683608
77 −1.00000 −0.377964
88 0.665102 0.235149
99 1.00000 0.333333
1010 −0.195488 −0.0618189
1111 −1.80451 −0.544081 −0.272040 0.962286i 0.587698π-0.587698\pi
−0.272040 + 0.962286i 0.587698π0.587698\pi
1212 −1.97196 −0.569256
1313 6.97196 1.93367 0.966837 0.255394i 0.0822053π-0.0822053\pi
0.966837 + 0.255394i 0.0822053π0.0822053\pi
1414 0.167449 0.0447527
1515 1.16745 0.301434
1616 3.83255 0.958138
1717 6.13941 1.48903 0.744513 0.667608i 0.232682π-0.232682\pi
0.744513 + 0.667608i 0.232682π0.232682\pi
1818 −0.167449 −0.0394682
1919 1.80451 0.413983 0.206992 0.978343i 0.433633π-0.433633\pi
0.206992 + 0.978343i 0.433633π0.433633\pi
2020 −2.30216 −0.514780
2121 −1.00000 −0.218218
2222 0.302164 0.0644216
2323 −1.00000 −0.208514
2424 0.665102 0.135763
2525 −3.63706 −0.727412
2626 −1.16745 −0.228956
2727 1.00000 0.192450
2828 1.97196 0.372666
2929 5.46961 1.01568 0.507841 0.861451i 0.330444π-0.330444\pi
0.507841 + 0.861451i 0.330444π0.330444\pi
3030 −0.195488 −0.0356911
3131 −2.19549 −0.394321 −0.197161 0.980371i 0.563172π-0.563172\pi
−0.197161 + 0.980371i 0.563172π0.563172\pi
3232 −1.97196 −0.348597
3333 −1.80451 −0.314125
3434 −1.02804 −0.176307
3535 −1.16745 −0.197335
3636 −1.97196 −0.328660
3737 −1.46961 −0.241603 −0.120801 0.992677i 0.538546π-0.538546\pi
−0.120801 + 0.992677i 0.538546π0.538546\pi
3838 −0.302164 −0.0490175
3939 6.97196 1.11641
4040 0.776472 0.122771
4141 9.74843 1.52245 0.761225 0.648488i 0.224598π-0.224598\pi
0.761225 + 0.648488i 0.224598π0.224598\pi
4242 0.167449 0.0258380
4343 −6.63706 −1.01214 −0.506071 0.862492i 0.668903π-0.668903\pi
−0.506071 + 0.862492i 0.668903π0.668903\pi
4444 3.55843 0.536453
4545 1.16745 0.174033
4646 0.167449 0.0246890
4747 −1.94392 −0.283550 −0.141775 0.989899i 0.545281π-0.545281\pi
−0.141775 + 0.989899i 0.545281π0.545281\pi
4848 3.83255 0.553181
4949 1.00000 0.142857
5050 0.609023 0.0861289
5151 6.13941 0.859689
5252 −13.7484 −1.90656
5353 1.16745 0.160361 0.0801807 0.996780i 0.474450π-0.474450\pi
0.0801807 + 0.996780i 0.474450π0.474450\pi
5454 −0.167449 −0.0227869
5555 −2.10668 −0.284064
5656 −0.665102 −0.0888779
5757 1.80451 0.239013
5858 −0.915882 −0.120261
5959 9.11137 1.18620 0.593100 0.805129i 0.297904π-0.297904\pi
0.593100 + 0.805129i 0.297904π0.297904\pi
6060 −2.30216 −0.297208
6161 −4.63706 −0.593715 −0.296857 0.954922i 0.595939π-0.595939\pi
−0.296857 + 0.954922i 0.595939π0.595939\pi
6262 0.367633 0.0466894
6363 −1.00000 −0.125988
6464 −7.33490 −0.916862
6565 8.13941 1.00957
6666 0.302164 0.0371938
6767 −15.4463 −1.88706 −0.943531 0.331284i 0.892518π-0.892518\pi
−0.943531 + 0.331284i 0.892518π0.892518\pi
6868 −12.1067 −1.46815
6969 −1.00000 −0.120386
7070 0.195488 0.0233653
7171 −9.25078 −1.09787 −0.548933 0.835866i 0.684966π-0.684966\pi
−0.548933 + 0.835866i 0.684966π0.684966\pi
7272 0.665102 0.0783830
7373 −0.474308 −0.0555136 −0.0277568 0.999615i 0.508836π-0.508836\pi
−0.0277568 + 0.999615i 0.508836π0.508836\pi
7474 0.246086 0.0286069
7575 −3.63706 −0.419972
7676 −3.55843 −0.408179
7777 1.80451 0.205643
7878 −1.16745 −0.132188
7979 7.46961 0.840397 0.420199 0.907432i 0.361960π-0.361960\pi
0.420199 + 0.907432i 0.361960π0.361960\pi
8080 4.47431 0.500243
8181 1.00000 0.111111
8282 −1.63237 −0.180265
8383 8.13941 0.893416 0.446708 0.894680i 0.352596π-0.352596\pi
0.446708 + 0.894680i 0.352596π0.352596\pi
8484 1.97196 0.215159
8585 7.16745 0.777419
8686 1.11137 0.119842
8787 5.46961 0.586404
8888 −1.20018 −0.127940
8989 1.02804 0.108972 0.0544860 0.998515i 0.482648π-0.482648\pi
0.0544860 + 0.998515i 0.482648π0.482648\pi
9090 −0.195488 −0.0206063
9191 −6.97196 −0.730860
9292 1.97196 0.205591
9393 −2.19549 −0.227662
9494 0.325508 0.0335736
9595 2.10668 0.216140
9696 −1.97196 −0.201262
9797 −8.47431 −0.860436 −0.430218 0.902725i 0.641563π-0.641563\pi
−0.430218 + 0.902725i 0.641563π0.641563\pi
9898 −0.167449 −0.0169149
9999 −1.80451 −0.181360
100100 7.17214 0.717214
101101 −18.7204 −1.86275 −0.931374 0.364063i 0.881389π-0.881389\pi
−0.931374 + 0.364063i 0.881389π0.881389\pi
102102 −1.02804 −0.101791
103103 4.66980 0.460129 0.230064 0.973175i 0.426106π-0.426106\pi
0.230064 + 0.973175i 0.426106π0.426106\pi
104104 4.63706 0.454701
105105 −1.16745 −0.113931
106106 −0.195488 −0.0189875
107107 −1.36294 −0.131760 −0.0658801 0.997828i 0.520985π-0.520985\pi
−0.0658801 + 0.997828i 0.520985π0.520985\pi
108108 −1.97196 −0.189752
109109 −0.497652 −0.0476665 −0.0238332 0.999716i 0.507587π-0.507587\pi
−0.0238332 + 0.999716i 0.507587π0.507587\pi
110110 0.352761 0.0336345
111111 −1.46961 −0.139490
112112 −3.83255 −0.362142
113113 −1.44627 −0.136054 −0.0680268 0.997683i 0.521670π-0.521670\pi
−0.0680268 + 0.997683i 0.521670π0.521670\pi
114114 −0.302164 −0.0283003
115115 −1.16745 −0.108865
116116 −10.7859 −1.00144
117117 6.97196 0.644558
118118 −1.52569 −0.140451
119119 −6.13941 −0.562799
120120 0.776472 0.0708819
121121 −7.74374 −0.703976
122122 0.776472 0.0702985
123123 9.74843 0.878987
124124 4.32942 0.388793
125125 −10.0833 −0.901881
126126 0.167449 0.0149176
127127 7.91119 0.702004 0.351002 0.936375i 0.385841π-0.385841\pi
0.351002 + 0.936375i 0.385841π0.385841\pi
128128 5.17214 0.457157
129129 −6.63706 −0.584361
130130 −1.36294 −0.119538
131131 1.80451 0.157661 0.0788305 0.996888i 0.474881π-0.474881\pi
0.0788305 + 0.996888i 0.474881π0.474881\pi
132132 3.55843 0.309721
133133 −1.80451 −0.156471
134134 2.58647 0.223437
135135 1.16745 0.100478
136136 4.08333 0.350143
137137 −13.4696 −1.15079 −0.575393 0.817877i 0.695151π-0.695151\pi
−0.575393 + 0.817877i 0.695151π0.695151\pi
138138 0.167449 0.0142542
139139 −15.1674 −1.28649 −0.643243 0.765662i 0.722412π-0.722412\pi
−0.643243 + 0.765662i 0.722412π0.722412\pi
140140 2.30216 0.194568
141141 −1.94392 −0.163708
142142 1.54904 0.129992
143143 −12.5810 −1.05207
144144 3.83255 0.319379
145145 6.38550 0.530287
146146 0.0794225 0.00657306
147147 1.00000 0.0824786
148148 2.89802 0.238216
149149 19.5529 1.60184 0.800920 0.598772i 0.204344π-0.204344\pi
0.800920 + 0.598772i 0.204344π0.204344\pi
150150 0.609023 0.0497265
151151 −13.2741 −1.08023 −0.540116 0.841590i 0.681620π-0.681620\pi
−0.540116 + 0.841590i 0.681620π0.681620\pi
152152 1.20018 0.0973477
153153 6.13941 0.496342
154154 −0.302164 −0.0243491
155155 −2.56312 −0.205875
156156 −13.7484 −1.10076
157157 −13.2835 −1.06014 −0.530070 0.847954i 0.677834π-0.677834\pi
−0.530070 + 0.847954i 0.677834π0.677834\pi
158158 −1.25078 −0.0995068
159159 1.16745 0.0925847
160160 −2.30216 −0.182002
161161 1.00000 0.0788110
162162 −0.167449 −0.0131561
163163 7.44627 0.583237 0.291618 0.956535i 0.405806π-0.405806\pi
0.291618 + 0.956535i 0.405806π0.405806\pi
164164 −19.2235 −1.50111
165165 −2.10668 −0.164004
166166 −1.36294 −0.105784
167167 20.7437 1.60520 0.802599 0.596519i 0.203450π-0.203450\pi
0.802599 + 0.596519i 0.203450π0.203450\pi
168168 −0.665102 −0.0513137
169169 35.6082 2.73910
170170 −1.20018 −0.0920499
171171 1.80451 0.137994
172172 13.0880 0.997953
173173 −17.7484 −1.34939 −0.674694 0.738097i 0.735724π-0.735724\pi
−0.674694 + 0.738097i 0.735724π0.735724\pi
174174 −0.915882 −0.0694329
175175 3.63706 0.274936
176176 −6.91588 −0.521304
177177 9.11137 0.684853
178178 −0.172144 −0.0129028
179179 4.44157 0.331979 0.165989 0.986128i 0.446918π-0.446918\pi
0.165989 + 0.986128i 0.446918π0.446918\pi
180180 −2.30216 −0.171593
181181 −11.6924 −0.869086 −0.434543 0.900651i 0.643090π-0.643090\pi
−0.434543 + 0.900651i 0.643090π0.643090\pi
182182 1.16745 0.0865371
183183 −4.63706 −0.342782
184184 −0.665102 −0.0490319
185185 −1.71570 −0.126141
186186 0.367633 0.0269561
187187 −11.0786 −0.810150
188188 3.83334 0.279575
189189 −1.00000 −0.0727393
190190 −0.352761 −0.0255920
191191 21.2741 1.53934 0.769671 0.638441i 0.220420π-0.220420\pi
0.769671 + 0.638441i 0.220420π0.220420\pi
192192 −7.33490 −0.529351
193193 −3.27412 −0.235677 −0.117838 0.993033i 0.537596π-0.537596\pi
−0.117838 + 0.993033i 0.537596π0.537596\pi
194194 1.41902 0.101879
195195 8.13941 0.582875
196196 −1.97196 −0.140854
197197 0.358242 0.0255237 0.0127619 0.999919i 0.495938π-0.495938\pi
0.0127619 + 0.999919i 0.495938π0.495938\pi
198198 0.302164 0.0214739
199199 −23.3808 −1.65742 −0.828710 0.559678i 0.810925π-0.810925\pi
−0.828710 + 0.559678i 0.810925π0.810925\pi
200200 −2.41902 −0.171050
201201 −15.4463 −1.08950
202202 3.13471 0.220558
203203 −5.46961 −0.383892
204204 −12.1067 −0.847637
205205 11.3808 0.794870
206206 −0.781954 −0.0544813
207207 −1.00000 −0.0695048
208208 26.7204 1.85273
209209 −3.25626 −0.225240
210210 0.195488 0.0134900
211211 13.4135 0.923426 0.461713 0.887029i 0.347235π-0.347235\pi
0.461713 + 0.887029i 0.347235π0.347235\pi
212212 −2.30216 −0.158113
213213 −9.25078 −0.633853
214214 0.228223 0.0156010
215215 −7.74843 −0.528439
216216 0.665102 0.0452544
217217 2.19549 0.149039
218218 0.0833315 0.00564392
219219 −0.474308 −0.0320508
220220 4.15428 0.280082
221221 42.8037 2.87929
222222 0.246086 0.0165162
223223 8.72039 0.583961 0.291980 0.956424i 0.405686π-0.405686\pi
0.291980 + 0.956424i 0.405686π0.405686\pi
224224 1.97196 0.131757
225225 −3.63706 −0.242471
226226 0.242177 0.0161093
227227 14.1067 0.936293 0.468146 0.883651i 0.344922π-0.344922\pi
0.468146 + 0.883651i 0.344922π0.344922\pi
228228 −3.55843 −0.235663
229229 5.05529 0.334063 0.167032 0.985952i 0.446582π-0.446582\pi
0.167032 + 0.985952i 0.446582π0.446582\pi
230230 0.195488 0.0128901
231231 1.80451 0.118728
232232 3.63785 0.238836
233233 −27.7157 −1.81572 −0.907858 0.419278i 0.862283π-0.862283\pi
−0.907858 + 0.419278i 0.862283π0.862283\pi
234234 −1.16745 −0.0763185
235235 −2.26943 −0.148041
236236 −17.9673 −1.16957
237237 7.46961 0.485204
238238 1.02804 0.0666379
239239 7.83725 0.506949 0.253475 0.967342i 0.418427π-0.418427\pi
0.253475 + 0.967342i 0.418427π0.418427\pi
240240 4.47431 0.288815
241241 19.6924 1.26850 0.634248 0.773130i 0.281310π-0.281310\pi
0.634248 + 0.773130i 0.281310π0.281310\pi
242242 1.29668 0.0833539
243243 1.00000 0.0641500
244244 9.14411 0.585391
245245 1.16745 0.0745856
246246 −1.63237 −0.104076
247247 12.5810 0.800509
248248 −1.46022 −0.0927242
249249 8.13941 0.515814
250250 1.68845 0.106787
251251 −30.2227 −1.90764 −0.953821 0.300375i 0.902888π-0.902888\pi
−0.953821 + 0.300375i 0.902888π0.902888\pi
252252 1.97196 0.124222
253253 1.80451 0.113449
254254 −1.32472 −0.0831204
255255 7.16745 0.448843
256256 13.8037 0.862733
257257 12.2227 0.762434 0.381217 0.924486i 0.375505π-0.375505\pi
0.381217 + 0.924486i 0.375505π0.375505\pi
258258 1.11137 0.0691909
259259 1.46961 0.0913173
260260 −16.0506 −0.995416
261261 5.46961 0.338561
262262 −0.302164 −0.0186678
263263 5.47900 0.337850 0.168925 0.985629i 0.445970π-0.445970\pi
0.168925 + 0.985629i 0.445970π0.445970\pi
264264 −1.20018 −0.0738662
265265 1.36294 0.0837246
266266 0.302164 0.0185269
267267 1.02804 0.0629150
268268 30.4594 1.86061
269269 26.8598 1.63767 0.818836 0.574028i 0.194620π-0.194620\pi
0.818836 + 0.574028i 0.194620π0.194620\pi
270270 −0.195488 −0.0118970
271271 −4.13941 −0.251451 −0.125726 0.992065i 0.540126π-0.540126\pi
−0.125726 + 0.992065i 0.540126π0.540126\pi
272272 23.5296 1.42669
273273 −6.97196 −0.421962
274274 2.25548 0.136258
275275 6.56312 0.395771
276276 1.97196 0.118698
277277 17.2414 1.03593 0.517967 0.855400i 0.326689π-0.326689\pi
0.517967 + 0.855400i 0.326689π0.326689\pi
278278 2.53978 0.152326
279279 −2.19549 −0.131440
280280 −0.776472 −0.0464031
281281 −11.8318 −0.705824 −0.352912 0.935657i 0.614808π-0.614808\pi
−0.352912 + 0.935657i 0.614808π0.614808\pi
282282 0.325508 0.0193837
283283 −13.7812 −0.819205 −0.409603 0.912264i 0.634333π-0.634333\pi
−0.409603 + 0.912264i 0.634333π0.634333\pi
284284 18.2422 1.08247
285285 2.10668 0.124789
286286 2.10668 0.124570
287287 −9.74843 −0.575432
288288 −1.97196 −0.116199
289289 20.6924 1.21720
290290 −1.06925 −0.0627883
291291 −8.47431 −0.496773
292292 0.935317 0.0547353
293293 20.9392 1.22328 0.611641 0.791135i 0.290510π-0.290510\pi
0.611641 + 0.791135i 0.290510π0.290510\pi
294294 −0.167449 −0.00976584
295295 10.6371 0.619314
296296 −0.977442 −0.0568127
297297 −1.80451 −0.104708
298298 −3.27412 −0.189665
299299 −6.97196 −0.403199
300300 7.17214 0.414084
301301 6.63706 0.382554
302302 2.22274 0.127904
303303 −18.7204 −1.07546
304304 6.91588 0.396653
305305 −5.41353 −0.309978
306306 −1.02804 −0.0587691
307307 −9.80451 −0.559573 −0.279787 0.960062i 0.590264π-0.590264\pi
−0.279787 + 0.960062i 0.590264π0.590264\pi
308308 −3.55843 −0.202760
309309 4.66980 0.265655
310310 0.429193 0.0243765
311311 12.5810 0.713402 0.356701 0.934219i 0.383901π-0.383901\pi
0.356701 + 0.934219i 0.383901π0.383901\pi
312312 4.63706 0.262522
313313 −18.1667 −1.02684 −0.513420 0.858137i 0.671622π-0.671622\pi
−0.513420 + 0.858137i 0.671622π0.671622\pi
314314 2.22431 0.125525
315315 −1.16745 −0.0657783
316316 −14.7298 −0.828615
317317 5.83725 0.327852 0.163926 0.986473i 0.447584π-0.447584\pi
0.163926 + 0.986473i 0.447584π0.447584\pi
318318 −0.195488 −0.0109624
319319 −9.86998 −0.552613
320320 −8.56312 −0.478693
321321 −1.36294 −0.0760718
322322 −0.167449 −0.00933158
323323 11.0786 0.616432
324324 −1.97196 −0.109553
325325 −25.3575 −1.40658
326326 −1.24687 −0.0690578
327327 −0.497652 −0.0275202
328328 6.48370 0.358002
329329 1.94392 0.107172
330330 0.352761 0.0194189
331331 −28.2788 −1.55434 −0.777172 0.629288i 0.783347π-0.783347\pi
−0.777172 + 0.629288i 0.783347π0.783347\pi
332332 −16.0506 −0.880891
333333 −1.46961 −0.0805343
334334 −3.47352 −0.190063
335335 −18.0327 −0.985234
336336 −3.83255 −0.209083
337337 10.9720 0.597681 0.298840 0.954303i 0.403400π-0.403400\pi
0.298840 + 0.954303i 0.403400π0.403400\pi
338338 −5.96257 −0.324321
339339 −1.44627 −0.0785506
340340 −14.1339 −0.766520
341341 3.96178 0.214543
342342 −0.302164 −0.0163392
343343 −1.00000 −0.0539949
344344 −4.41432 −0.238004
345345 −1.16745 −0.0628534
346346 2.97196 0.159774
347347 −10.4088 −0.558776 −0.279388 0.960178i 0.590132π-0.590132\pi
−0.279388 + 0.960178i 0.590132π0.590132\pi
348348 −10.7859 −0.578183
349349 −13.7251 −0.734687 −0.367344 0.930085i 0.619733π-0.619733\pi
−0.367344 + 0.930085i 0.619733π0.619733\pi
350350 −0.609023 −0.0325537
351351 6.97196 0.372136
352352 3.55843 0.189665
353353 −6.02725 −0.320798 −0.160399 0.987052i 0.551278π-0.551278\pi
−0.160399 + 0.987052i 0.551278π0.551278\pi
354354 −1.52569 −0.0810896
355355 −10.7998 −0.573195
356356 −2.02725 −0.107444
357357 −6.13941 −0.324932
358358 −0.743738 −0.0393078
359359 −35.1674 −1.85607 −0.928033 0.372497i 0.878502π-0.878502\pi
−0.928033 + 0.372497i 0.878502π0.878502\pi
360360 0.776472 0.0409237
361361 −15.7437 −0.828618
362362 1.95788 0.102904
363363 −7.74374 −0.406441
364364 13.7484 0.720614
365365 −0.553731 −0.0289836
366366 0.776472 0.0405869
367367 −20.5810 −1.07432 −0.537159 0.843481i 0.680503π-0.680503\pi
−0.537159 + 0.843481i 0.680503π0.680503\pi
368368 −3.83255 −0.199786
369369 9.74843 0.507483
370370 0.287292 0.0149356
371371 −1.16745 −0.0606109
372372 4.32942 0.224470
373373 5.74843 0.297643 0.148821 0.988864i 0.452452π-0.452452\pi
0.148821 + 0.988864i 0.452452π0.452452\pi
374374 1.85511 0.0959254
375375 −10.0833 −0.520701
376376 −1.29291 −0.0666765
377377 38.1339 1.96400
378378 0.167449 0.00861266
379379 21.8972 1.12479 0.562393 0.826870i 0.309881π-0.309881\pi
0.562393 + 0.826870i 0.309881π0.309881\pi
380380 −4.15428 −0.213110
381381 7.91119 0.405302
382382 −3.56233 −0.182265
383383 15.7484 0.804707 0.402354 0.915484i 0.368192π-0.368192\pi
0.402354 + 0.915484i 0.368192π0.368192\pi
384384 5.17214 0.263940
385385 2.10668 0.107366
386386 0.548250 0.0279052
387387 −6.63706 −0.337381
388388 16.7110 0.848373
389389 −32.6410 −1.65496 −0.827481 0.561493i 0.810227π-0.810227\pi
−0.827481 + 0.561493i 0.810227π0.810227\pi
390390 −1.36294 −0.0690150
391391 −6.13941 −0.310483
392392 0.665102 0.0335927
393393 1.80451 0.0910256
394394 −0.0599874 −0.00302212
395395 8.72039 0.438771
396396 3.55843 0.178818
397397 34.2134 1.71712 0.858559 0.512714i 0.171360π-0.171360\pi
0.858559 + 0.512714i 0.171360π0.171360\pi
398398 3.91510 0.196246
399399 −1.80451 −0.0903386
400400 −13.9392 −0.696961
401401 −35.5802 −1.77679 −0.888395 0.459080i 0.848179π-0.848179\pi
−0.888395 + 0.459080i 0.848179π0.848179\pi
402402 2.58647 0.129001
403403 −15.3069 −0.762489
404404 36.9159 1.83663
405405 1.16745 0.0580110
406406 0.915882 0.0454545
407407 2.65193 0.131451
408408 4.08333 0.202155
409409 22.4182 1.10851 0.554255 0.832347i 0.313003π-0.313003\pi
0.554255 + 0.832347i 0.313003π0.313003\pi
410410 −1.90571 −0.0941161
411411 −13.4696 −0.664407
412412 −9.20866 −0.453678
413413 −9.11137 −0.448341
414414 0.167449 0.00822968
415415 9.50235 0.466452
416416 −13.7484 −0.674072
417417 −15.1674 −0.742753
418418 0.545258 0.0266695
419419 −24.7859 −1.21087 −0.605434 0.795895i 0.707001π-0.707001\pi
−0.605434 + 0.795895i 0.707001π0.707001\pi
420420 2.30216 0.112334
421421 −35.0265 −1.70709 −0.853543 0.521023i 0.825551π-0.825551\pi
−0.853543 + 0.521023i 0.825551π0.825551\pi
422422 −2.24609 −0.109338
423423 −1.94392 −0.0945167
424424 0.776472 0.0377088
425425 −22.3294 −1.08314
426426 1.54904 0.0750510
427427 4.63706 0.224403
428428 2.68766 0.129913
429429 −12.5810 −0.607416
430430 1.29747 0.0625695
431431 3.37233 0.162439 0.0812197 0.996696i 0.474118π-0.474118\pi
0.0812197 + 0.996696i 0.474118π0.474118\pi
432432 3.83255 0.184394
433433 7.83176 0.376371 0.188185 0.982134i 0.439739π-0.439739\pi
0.188185 + 0.982134i 0.439739π0.439739\pi
434434 −0.367633 −0.0176469
435435 6.38550 0.306161
436436 0.981351 0.0469982
437437 −1.80451 −0.0863215
438438 0.0794225 0.00379496
439439 13.0226 0.621533 0.310766 0.950486i 0.399414π-0.399414\pi
0.310766 + 0.950486i 0.399414π0.399414\pi
440440 −1.40115 −0.0667974
441441 1.00000 0.0476190
442442 −7.16745 −0.340921
443443 −7.33020 −0.348268 −0.174134 0.984722i 0.555713π-0.555713\pi
−0.174134 + 0.984722i 0.555713π0.555713\pi
444444 2.89802 0.137534
445445 1.20018 0.0568942
446446 −1.46022 −0.0691436
447447 19.5529 0.924823
448448 7.33490 0.346541
449449 −9.49296 −0.448000 −0.224000 0.974589i 0.571912π-0.571912\pi
−0.224000 + 0.974589i 0.571912π0.571912\pi
450450 0.609023 0.0287096
451451 −17.5912 −0.828335
452452 2.85199 0.134146
453453 −13.2741 −0.623673
454454 −2.36215 −0.110861
455455 −8.13941 −0.381581
456456 1.20018 0.0562037
457457 −20.1721 −0.943613 −0.471807 0.881702i 0.656398π-0.656398\pi
−0.471807 + 0.881702i 0.656398π0.656398\pi
458458 −0.846505 −0.0395546
459459 6.13941 0.286563
460460 2.30216 0.107339
461461 22.3949 1.04303 0.521517 0.853241i 0.325366π-0.325366\pi
0.521517 + 0.853241i 0.325366π0.325366\pi
462462 −0.302164 −0.0140579
463463 20.6970 0.961873 0.480937 0.876755i 0.340297π-0.340297\pi
0.480937 + 0.876755i 0.340297π0.340297\pi
464464 20.9626 0.973163
465465 −2.56312 −0.118862
466466 4.64097 0.214989
467467 3.74843 0.173457 0.0867284 0.996232i 0.472359π-0.472359\pi
0.0867284 + 0.996232i 0.472359π0.472359\pi
468468 −13.7484 −0.635522
469469 15.4463 0.713242
470470 0.380014 0.0175287
471471 −13.2835 −0.612072
472472 6.05999 0.278934
473473 11.9767 0.550687
474474 −1.25078 −0.0574503
475475 −6.56312 −0.301137
476476 12.1067 0.554909
477477 1.16745 0.0534538
478478 −1.31234 −0.0600251
479479 −29.3014 −1.33881 −0.669407 0.742896i 0.733452π-0.733452\pi
−0.669407 + 0.742896i 0.733452π0.733452\pi
480480 −2.30216 −0.105079
481481 −10.2461 −0.467181
482482 −3.29747 −0.150196
483483 1.00000 0.0455016
484484 15.2703 0.694107
485485 −9.89332 −0.449233
486486 −0.167449 −0.00759565
487487 17.0880 0.774332 0.387166 0.922010i 0.373454π-0.373454\pi
0.387166 + 0.922010i 0.373454π0.373454\pi
488488 −3.08412 −0.139611
489489 7.44627 0.336732
490490 −0.195488 −0.00883127
491491 −16.3022 −0.735706 −0.367853 0.929884i 0.619907π-0.619907\pi
−0.367853 + 0.929884i 0.619907π0.619907\pi
492492 −19.2235 −0.866664
493493 33.5802 1.51238
494494 −2.10668 −0.0947838
495495 −2.10668 −0.0946880
496496 −8.41432 −0.377814
497497 9.25078 0.414954
498498 −1.36294 −0.0610747
499499 31.7251 1.42021 0.710105 0.704096i 0.248647π-0.248647\pi
0.710105 + 0.704096i 0.248647π0.248647\pi
500500 19.8839 0.889237
501501 20.7437 0.926762
502502 5.06077 0.225873
503503 −15.1020 −0.673364 −0.336682 0.941618i 0.609305π-0.609305\pi
−0.336682 + 0.941618i 0.609305π0.609305\pi
504504 −0.665102 −0.0296260
505505 −21.8551 −0.972540
506506 −0.302164 −0.0134328
507507 35.6082 1.58142
508508 −15.6006 −0.692163
509509 −28.7804 −1.27567 −0.637834 0.770174i 0.720169π-0.720169\pi
−0.637834 + 0.770174i 0.720169π0.720169\pi
510510 −1.20018 −0.0531450
511511 0.474308 0.0209822
512512 −12.6557 −0.559309
513513 1.80451 0.0796711
514514 −2.04669 −0.0902755
515515 5.45175 0.240233
516516 13.0880 0.576168
517517 3.50783 0.154274
518518 −0.246086 −0.0108124
519519 −17.7484 −0.779070
520520 5.41353 0.237399
521521 30.4455 1.33384 0.666920 0.745129i 0.267612π-0.267612\pi
0.666920 + 0.745129i 0.267612π0.267612\pi
522522 −0.915882 −0.0400871
523523 −29.4875 −1.28940 −0.644699 0.764437i 0.723017π-0.723017\pi
−0.644699 + 0.764437i 0.723017π0.723017\pi
524524 −3.55843 −0.155451
525525 3.63706 0.158734
526526 −0.917455 −0.0400029
527527 −13.4790 −0.587155
528528 −6.91588 −0.300975
529529 1.00000 0.0434783
530530 −0.228223 −0.00991336
531531 9.11137 0.395400
532532 3.55843 0.154277
533533 67.9657 2.94392
534534 −0.172144 −0.00744941
535535 −1.59116 −0.0687919
536536 −10.2733 −0.443741
537537 4.44157 0.191668
538538 −4.49765 −0.193908
539539 −1.80451 −0.0777258
540540 −2.30216 −0.0990694
541541 −9.54355 −0.410309 −0.205155 0.978730i 0.565770π-0.565770\pi
−0.205155 + 0.978730i 0.565770π0.565770\pi
542542 0.693141 0.0297729
543543 −11.6924 −0.501767
544544 −12.1067 −0.519069
545545 −0.580984 −0.0248866
546546 1.16745 0.0499622
547547 −21.2780 −0.909783 −0.454892 0.890547i 0.650322π-0.650322\pi
−0.454892 + 0.890547i 0.650322π0.650322\pi
548548 26.5615 1.13465
549549 −4.63706 −0.197905
550550 −1.09899 −0.0468611
551551 9.86998 0.420475
552552 −0.665102 −0.0283086
553553 −7.46961 −0.317640
554554 −2.88706 −0.122659
555555 −1.71570 −0.0728274
556556 29.9096 1.26845
557557 −30.4922 −1.29199 −0.645997 0.763340i 0.723558π-0.723558\pi
−0.645997 + 0.763340i 0.723558π0.723558\pi
558558 0.367633 0.0155631
559559 −46.2733 −1.95715
560560 −4.47431 −0.189074
561561 −11.0786 −0.467740
562562 1.98122 0.0835727
563563 20.7476 0.874409 0.437205 0.899362i 0.355969π-0.355969\pi
0.437205 + 0.899362i 0.355969π0.355969\pi
564564 3.83334 0.161413
565565 −1.68845 −0.0710334
566566 2.30765 0.0969976
567567 −1.00000 −0.0419961
568568 −6.15271 −0.258162
569569 −21.4969 −0.901196 −0.450598 0.892727i 0.648789π-0.648789\pi
−0.450598 + 0.892727i 0.648789π0.648789\pi
570570 −0.352761 −0.0147755
571571 −14.1488 −0.592109 −0.296054 0.955171i 0.595671π-0.595671\pi
−0.296054 + 0.955171i 0.595671π0.595671\pi
572572 24.8092 1.03733
573573 21.2741 0.888739
574574 1.63237 0.0681337
575575 3.63706 0.151676
576576 −7.33490 −0.305621
577577 10.7820 0.448859 0.224429 0.974490i 0.427948π-0.427948\pi
0.224429 + 0.974490i 0.427948π0.427948\pi
578578 −3.46492 −0.144122
579579 −3.27412 −0.136068
580580 −12.5919 −0.522852
581581 −8.13941 −0.337680
582582 1.41902 0.0588201
583583 −2.10668 −0.0872496
584584 −0.315463 −0.0130540
585585 8.13941 0.336523
586586 −3.50626 −0.144842
587587 −20.3676 −0.840662 −0.420331 0.907371i 0.638086π-0.638086\pi
−0.420331 + 0.907371i 0.638086π0.638086\pi
588588 −1.97196 −0.0813223
589589 −3.96178 −0.163242
590590 −1.78117 −0.0733295
591591 0.358242 0.0147361
592592 −5.63237 −0.231489
593593 −15.9439 −0.654738 −0.327369 0.944897i 0.606162π-0.606162\pi
−0.327369 + 0.944897i 0.606162π0.606162\pi
594594 0.302164 0.0123979
595595 −7.16745 −0.293837
596596 −38.5576 −1.57938
597597 −23.3808 −0.956912
598598 1.16745 0.0477405
599599 18.9159 0.772882 0.386441 0.922314i 0.373704π-0.373704\pi
0.386441 + 0.922314i 0.373704π0.373704\pi
600600 −2.41902 −0.0987559
601601 −48.3388 −1.97178 −0.985891 0.167391i 0.946466π-0.946466\pi
−0.985891 + 0.167391i 0.946466π0.946466\pi
602602 −1.11137 −0.0452961
603603 −15.4463 −0.629021
604604 26.1761 1.06509
605605 −9.04042 −0.367545
606606 3.13471 0.127339
607607 −9.29747 −0.377373 −0.188686 0.982037i 0.560423π-0.560423\pi
−0.188686 + 0.982037i 0.560423π0.560423\pi
608608 −3.55843 −0.144313
609609 −5.46961 −0.221640
610610 0.906492 0.0367028
611611 −13.5529 −0.548293
612612 −12.1067 −0.489383
613613 41.3108 1.66853 0.834263 0.551367i 0.185893π-0.185893\pi
0.834263 + 0.551367i 0.185893π0.185893\pi
614614 1.64176 0.0662559
615615 11.3808 0.458918
616616 1.20018 0.0483568
617617 −36.4782 −1.46856 −0.734279 0.678848i 0.762480π-0.762480\pi
−0.734279 + 0.678848i 0.762480π0.762480\pi
618618 −0.781954 −0.0314548
619619 7.41902 0.298195 0.149098 0.988822i 0.452363π-0.452363\pi
0.149098 + 0.988822i 0.452363π0.452363\pi
620620 5.05437 0.202989
621621 −1.00000 −0.0401286
622622 −2.10668 −0.0844700
623623 −1.02804 −0.0411875
624624 26.7204 1.06967
625625 6.41353 0.256541
626626 3.04199 0.121582
627627 −3.25626 −0.130043
628628 26.1946 1.04528
629629 −9.02256 −0.359753
630630 0.195488 0.00778845
631631 23.0132 0.916140 0.458070 0.888916i 0.348541π-0.348541\pi
0.458070 + 0.888916i 0.348541π0.348541\pi
632632 4.96805 0.197618
633633 13.4135 0.533140
634634 −0.977442 −0.0388192
635635 9.23591 0.366516
636636 −2.30216 −0.0912867
637637 6.97196 0.276239
638638 1.65272 0.0654318
639639 −9.25078 −0.365955
640640 6.03822 0.238681
641641 26.1433 1.03260 0.516300 0.856408i 0.327309π-0.327309\pi
0.516300 + 0.856408i 0.327309π0.327309\pi
642642 0.228223 0.00900724
643643 −5.47509 −0.215917 −0.107958 0.994155i 0.534431π-0.534431\pi
−0.107958 + 0.994155i 0.534431π0.534431\pi
644644 −1.97196 −0.0777061
645645 −7.74843 −0.305094
646646 −1.85511 −0.0729883
647647 43.8263 1.72299 0.861494 0.507767i 0.169529π-0.169529\pi
0.861494 + 0.507767i 0.169529π0.169529\pi
648648 0.665102 0.0261277
649649 −16.4416 −0.645388
650650 4.24609 0.166545
651651 2.19549 0.0860480
652652 −14.6838 −0.575060
653653 28.7298 1.12428 0.562142 0.827041i 0.309978π-0.309978\pi
0.562142 + 0.827041i 0.309978π0.309978\pi
654654 0.0833315 0.00325852
655655 2.10668 0.0823146
656656 37.3614 1.45872
657657 −0.474308 −0.0185045
658658 −0.325508 −0.0126896
659659 −6.47431 −0.252203 −0.126102 0.992017i 0.540247π-0.540247\pi
−0.126102 + 0.992017i 0.540247π0.540247\pi
660660 4.15428 0.161705
661661 −5.03195 −0.195720 −0.0978601 0.995200i 0.531200π-0.531200\pi
−0.0978601 + 0.995200i 0.531200π0.531200\pi
662662 4.73527 0.184041
663663 42.8037 1.66236
664664 5.41353 0.210086
665665 −2.10668 −0.0816934
666666 0.246086 0.00953562
667667 −5.46961 −0.211784
668668 −40.9058 −1.58269
669669 8.72039 0.337150
670670 3.01957 0.116656
671671 8.36763 0.323029
672672 1.97196 0.0760700
673673 37.9618 1.46332 0.731660 0.681670i 0.238746π-0.238746\pi
0.731660 + 0.681670i 0.238746π0.238746\pi
674674 −1.83725 −0.0707681
675675 −3.63706 −0.139991
676676 −70.2180 −2.70069
677677 −13.1947 −0.507114 −0.253557 0.967320i 0.581600π-0.581600\pi
−0.253557 + 0.967320i 0.581600π0.581600\pi
678678 0.242177 0.00930074
679679 8.47431 0.325214
680680 4.76708 0.182809
681681 14.1067 0.540569
682682 −0.663398 −0.0254028
683683 18.4088 0.704395 0.352197 0.935926i 0.385435π-0.385435\pi
0.352197 + 0.935926i 0.385435π0.385435\pi
684684 −3.55843 −0.136060
685685 −15.7251 −0.600825
686686 0.167449 0.00639324
687687 5.05529 0.192871
688688 −25.4369 −0.969772
689689 8.13941 0.310087
690690 0.195488 0.00744212
691691 32.5343 1.23766 0.618831 0.785524i 0.287606π-0.287606\pi
0.618831 + 0.785524i 0.287606π0.287606\pi
692692 34.9992 1.33047
693693 1.80451 0.0685477
694694 1.74295 0.0661615
695695 −17.7072 −0.671673
696696 3.63785 0.137892
697697 59.8496 2.26697
698698 2.29826 0.0869902
699699 −27.7157 −1.04830
700700 −7.17214 −0.271082
701701 39.9290 1.50810 0.754050 0.656817i 0.228098π-0.228098\pi
0.754050 + 0.656817i 0.228098π0.228098\pi
702702 −1.16745 −0.0440625
703703 −2.65193 −0.100020
704704 13.2359 0.498847
705705 −2.26943 −0.0854717
706706 1.00926 0.0379840
707707 18.7204 0.704053
708708 −17.9673 −0.675251
709709 −30.2555 −1.13627 −0.568134 0.822936i 0.692335π-0.692335\pi
−0.568134 + 0.822936i 0.692335π0.692335\pi
710710 1.80842 0.0678688
711711 7.46961 0.280132
712712 0.683751 0.0256246
713713 2.19549 0.0822217
714714 1.02804 0.0384734
715715 −14.6877 −0.549287
716716 −8.75861 −0.327325
717717 7.83725 0.292687
718718 5.88876 0.219767
719719 37.9057 1.41364 0.706822 0.707391i 0.250128π-0.250128\pi
0.706822 + 0.707391i 0.250128π0.250128\pi
720720 4.47431 0.166748
721721 −4.66980 −0.173912
722722 2.63628 0.0981120
723723 19.6924 0.732367
724724 23.0569 0.856902
725725 −19.8933 −0.738820
726726 1.29668 0.0481244
727727 −42.9010 −1.59111 −0.795555 0.605881i 0.792821π-0.792821\pi
−0.795555 + 0.605881i 0.792821π0.792821\pi
728728 −4.63706 −0.171861
729729 1.00000 0.0370370
730730 0.0927218 0.00343179
731731 −40.7476 −1.50711
732732 9.14411 0.337976
733733 3.27412 0.120933 0.0604663 0.998170i 0.480741π-0.480741\pi
0.0604663 + 0.998170i 0.480741π0.480741\pi
734734 3.44627 0.127204
735735 1.16745 0.0430620
736736 1.97196 0.0726874
737737 27.8730 1.02671
738738 −1.63237 −0.0600883
739739 −17.0226 −0.626185 −0.313092 0.949723i 0.601365π-0.601365\pi
−0.313092 + 0.949723i 0.601365π0.601365\pi
740740 3.38329 0.124372
741741 12.5810 0.462174
742742 0.195488 0.00717661
743743 20.0506 0.735585 0.367793 0.929908i 0.380114π-0.380114\pi
0.367793 + 0.929908i 0.380114π0.380114\pi
744744 −1.46022 −0.0535344
745745 22.8271 0.836319
746746 −0.962570 −0.0352422
747747 8.13941 0.297805
748748 21.8466 0.798792
749749 1.36294 0.0498007
750750 1.68845 0.0616533
751751 −46.7298 −1.70519 −0.852597 0.522569i 0.824974π-0.824974\pi
−0.852597 + 0.522569i 0.824974π0.824974\pi
752752 −7.45018 −0.271680
753753 −30.2227 −1.10138
754754 −6.38550 −0.232546
755755 −15.4969 −0.563989
756756 1.97196 0.0717195
757757 22.8092 0.829015 0.414507 0.910046i 0.363954π-0.363954\pi
0.414507 + 0.910046i 0.363954π0.363954\pi
758758 −3.66667 −0.133180
759759 1.80451 0.0654996
760760 1.40115 0.0508252
761761 28.1761 1.02138 0.510691 0.859765i 0.329390π-0.329390\pi
0.510691 + 0.859765i 0.329390π0.329390\pi
762762 −1.32472 −0.0479896
763763 0.497652 0.0180162
764764 −41.9517 −1.51776
765765 7.16745 0.259140
766766 −2.63706 −0.0952809
767767 63.5241 2.29372
768768 13.8037 0.498099
769769 −25.8412 −0.931856 −0.465928 0.884823i 0.654279π-0.654279\pi
−0.465928 + 0.884823i 0.654279π0.654279\pi
770770 −0.352761 −0.0127126
771771 12.2227 0.440191
772772 6.45645 0.232373
773773 44.0833 1.58557 0.792784 0.609503i 0.208631π-0.208631\pi
0.792784 + 0.609503i 0.208631π0.208631\pi
774774 1.11137 0.0399474
775775 7.98513 0.286834
776776 −5.63628 −0.202331
777777 1.46961 0.0527221
778778 5.46570 0.195955
779779 17.5912 0.630269
780780 −16.0506 −0.574704
781781 16.6931 0.597328
782782 1.02804 0.0367626
783783 5.46961 0.195468
784784 3.83255 0.136877
785785 −15.5078 −0.553498
786786 −0.302164 −0.0107778
787787 −36.7204 −1.30894 −0.654470 0.756088i 0.727108π-0.727108\pi
−0.654470 + 0.756088i 0.727108π0.727108\pi
788788 −0.706440 −0.0251659
789789 5.47900 0.195058
790790 −1.46022 −0.0519524
791791 1.44627 0.0514234
792792 −1.20018 −0.0426467
793793 −32.3294 −1.14805
794794 −5.72900 −0.203315
795795 1.36294 0.0483384
796796 46.1060 1.63418
797797 40.7804 1.44452 0.722258 0.691624i 0.243105π-0.243105\pi
0.722258 + 0.691624i 0.243105π0.243105\pi
798798 0.302164 0.0106965
799799 −11.9345 −0.422213
800800 7.17214 0.253574
801801 1.02804 0.0363240
802802 5.95788 0.210380
803803 0.855895 0.0302039
804804 30.4594 1.07422
805805 1.16745 0.0411472
806806 2.56312 0.0902821
807807 26.8598 0.945510
808808 −12.4510 −0.438023
809809 2.46883 0.0867993 0.0433997 0.999058i 0.486181π-0.486181\pi
0.0433997 + 0.999058i 0.486181π0.486181\pi
810810 −0.195488 −0.00686876
811811 −16.4182 −0.576522 −0.288261 0.957552i 0.593077π-0.593077\pi
−0.288261 + 0.957552i 0.593077π0.593077\pi
812812 10.7859 0.378510
813813 −4.13941 −0.145175
814814 −0.444064 −0.0155644
815815 8.69314 0.304507
816816 23.5296 0.823701
817817 −11.9767 −0.419010
818818 −3.75391 −0.131253
819819 −6.97196 −0.243620
820820 −22.4425 −0.783726
821821 −34.1012 −1.19014 −0.595070 0.803674i 0.702876π-0.702876\pi
−0.595070 + 0.803674i 0.702876π0.702876\pi
822822 2.25548 0.0786688
823823 16.1628 0.563398 0.281699 0.959503i 0.409102π-0.409102\pi
0.281699 + 0.959503i 0.409102π0.409102\pi
824824 3.10589 0.108199
825825 6.56312 0.228499
826826 1.52569 0.0530856
827827 −18.5522 −0.645122 −0.322561 0.946549i 0.604544π-0.604544\pi
−0.322561 + 0.946549i 0.604544π0.604544\pi
828828 1.97196 0.0685304
829829 45.2453 1.57143 0.785717 0.618586i 0.212294π-0.212294\pi
0.785717 + 0.618586i 0.212294π0.212294\pi
830830 −1.59116 −0.0552300
831831 17.2414 0.598097
832832 −51.1386 −1.77291
833833 6.13941 0.212718
834834 2.53978 0.0879453
835835 24.2173 0.838073
836836 6.42122 0.222083
837837 −2.19549 −0.0758872
838838 4.15037 0.143372
839839 −1.29747 −0.0447936 −0.0223968 0.999749i 0.507130π-0.507130\pi
−0.0223968 + 0.999749i 0.507130π0.507130\pi
840840 −0.776472 −0.0267908
841841 0.916669 0.0316093
842842 5.86515 0.202127
843843 −11.8318 −0.407508
844844 −26.4510 −0.910480
845845 41.5708 1.43008
846846 0.325508 0.0111912
847847 7.74374 0.266078
848848 4.47431 0.153648
849849 −13.7812 −0.472968
850850 3.73904 0.128248
851851 1.46961 0.0503777
852852 18.2422 0.624967
853853 33.2835 1.13961 0.569803 0.821781i 0.307020π-0.307020\pi
0.569803 + 0.821781i 0.307020π0.307020\pi
854854 −0.776472 −0.0265703
855855 2.10668 0.0720468
856856 −0.906492 −0.0309833
857857 9.26473 0.316477 0.158239 0.987401i 0.449418π-0.449418\pi
0.158239 + 0.987401i 0.449418π0.449418\pi
858858 2.10668 0.0719207
859859 −32.7243 −1.11654 −0.558269 0.829660i 0.688534π-0.688534\pi
−0.558269 + 0.829660i 0.688534π0.688534\pi
860860 15.2796 0.521030
861861 −9.74843 −0.332226
862862 −0.564694 −0.0192335
863863 −40.1012 −1.36506 −0.682530 0.730857i 0.739120π-0.739120\pi
−0.682530 + 0.730857i 0.739120π0.739120\pi
864864 −1.97196 −0.0670875
865865 −20.7204 −0.704515
866866 −1.31142 −0.0445640
867867 20.6924 0.702749
868868 −4.32942 −0.146950
869869 −13.4790 −0.457244
870870 −1.06925 −0.0362508
871871 −107.691 −3.64896
872872 −0.330989 −0.0112087
873873 −8.47431 −0.286812
874874 0.302164 0.0102208
875875 10.0833 0.340879
876876 0.935317 0.0316014
877877 41.6090 1.40504 0.702518 0.711666i 0.252059π-0.252059\pi
0.702518 + 0.711666i 0.252059π0.252059\pi
878878 −2.18062 −0.0735923
879879 20.9392 0.706263
880880 −8.07394 −0.272173
881881 −31.9439 −1.07622 −0.538109 0.842875i 0.680861π-0.680861\pi
−0.538109 + 0.842875i 0.680861π0.680861\pi
882882 −0.167449 −0.00563831
883883 −0.0778502 −0.00261987 −0.00130993 0.999999i 0.500417π-0.500417\pi
−0.00130993 + 0.999999i 0.500417π0.500417\pi
884884 −84.4073 −2.83892
885885 10.6371 0.357561
886886 1.22744 0.0412365
887887 4.80530 0.161346 0.0806731 0.996741i 0.474293π-0.474293\pi
0.0806731 + 0.996741i 0.474293π0.474293\pi
888888 −0.977442 −0.0328008
889889 −7.91119 −0.265333
890890 −0.200970 −0.00673652
891891 −1.80451 −0.0604534
892892 −17.1963 −0.575774
893893 −3.50783 −0.117385
894894 −3.27412 −0.109503
895895 5.18531 0.173326
896896 −5.17214 −0.172789
897897 −6.97196 −0.232787
898898 1.58959 0.0530452
899899 −12.0085 −0.400505
900900 7.17214 0.239071
901901 7.16745 0.238782
902902 2.94563 0.0980786
903903 6.63706 0.220868
904904 −0.961916 −0.0319928
905905 −13.6502 −0.453749
906906 2.22274 0.0738456
907907 56.9337 1.89045 0.945227 0.326414i 0.105840π-0.105840\pi
0.945227 + 0.326414i 0.105840π0.105840\pi
908908 −27.8178 −0.923166
909909 −18.7204 −0.620916
910910 1.36294 0.0451809
911911 −5.27412 −0.174740 −0.0873698 0.996176i 0.527846π-0.527846\pi
−0.0873698 + 0.996176i 0.527846π0.527846\pi
912912 6.91588 0.229008
913913 −14.6877 −0.486091
914914 3.37781 0.111728
915915 −5.41353 −0.178966
916916 −9.96884 −0.329380
917917 −1.80451 −0.0595902
918918 −1.02804 −0.0339304
919919 −26.1955 −0.864109 −0.432055 0.901847i 0.642211π-0.642211\pi
−0.432055 + 0.901847i 0.642211π0.642211\pi
920920 −0.776472 −0.0255995
921921 −9.80451 −0.323070
922922 −3.75001 −0.123500
923923 −64.4961 −2.12291
924924 −3.55843 −0.117064
925925 5.34507 0.175745
926926 −3.46570 −0.113890
927927 4.66980 0.153376
928928 −10.7859 −0.354063
929929 −40.6643 −1.33415 −0.667076 0.744989i 0.732455π-0.732455\pi
−0.667076 + 0.744989i 0.732455π0.732455\pi
930930 0.429193 0.0140738
931931 1.80451 0.0591405
932932 54.6543 1.79026
933933 12.5810 0.411883
934934 −0.627672 −0.0205381
935935 −12.9337 −0.422979
936936 4.63706 0.151567
937937 12.4276 0.405993 0.202996 0.979179i 0.434932π-0.434932\pi
0.202996 + 0.979179i 0.434932π0.434932\pi
938938 −2.58647 −0.0844511
939939 −18.1667 −0.592847
940940 4.47523 0.145966
941941 36.7149 1.19687 0.598436 0.801171i 0.295789π-0.295789\pi
0.598436 + 0.801171i 0.295789π0.295789\pi
942942 2.22431 0.0724721
943943 −9.74843 −0.317453
944944 34.9198 1.13654
945945 −1.16745 −0.0379771
946946 −2.00548 −0.0652038
947947 2.38159 0.0773912 0.0386956 0.999251i 0.487680π-0.487680\pi
0.0386956 + 0.999251i 0.487680π0.487680\pi
948948 −14.7298 −0.478401
949949 −3.30686 −0.107345
950950 1.09899 0.0356559
951951 5.83725 0.189286
952952 −4.08333 −0.132342
953953 −42.5810 −1.37933 −0.689667 0.724127i 0.742243π-0.742243\pi
−0.689667 + 0.724127i 0.742243π0.742243\pi
954954 −0.195488 −0.00632917
955955 24.8365 0.803689
956956 −15.4547 −0.499842
957957 −9.86998 −0.319051
958958 4.90649 0.158522
959959 13.4696 0.434956
960960 −8.56312 −0.276374
961961 −26.1798 −0.844511
962962 1.71570 0.0553163
963963 −1.36294 −0.0439201
964964 −38.8326 −1.25071
965965 −3.82237 −0.123047
966966 −0.167449 −0.00538759
967967 −27.3847 −0.880633 −0.440316 0.897843i 0.645134π-0.645134\pi
−0.440316 + 0.897843i 0.645134π0.645134\pi
968968 −5.15037 −0.165539
969969 11.0786 0.355897
970970 1.65663 0.0531912
971971 16.2555 0.521663 0.260832 0.965384i 0.416003π-0.416003\pi
0.260832 + 0.965384i 0.416003π0.416003\pi
972972 −1.97196 −0.0632507
973973 15.1674 0.486246
974974 −2.86138 −0.0916844
975975 −25.3575 −0.812089
976976 −17.7718 −0.568861
977977 −14.1900 −0.453979 −0.226989 0.973897i 0.572888π-0.572888\pi
−0.226989 + 0.973897i 0.572888π0.572888\pi
978978 −1.24687 −0.0398706
979979 −1.85511 −0.0592895
980980 −2.30216 −0.0735399
981981 −0.497652 −0.0158888
982982 2.72978 0.0871109
983983 35.8606 1.14378 0.571888 0.820332i 0.306211π-0.306211\pi
0.571888 + 0.820332i 0.306211π0.306211\pi
984984 6.48370 0.206693
985985 0.418230 0.0133259
986986 −5.62298 −0.179072
987987 1.94392 0.0618757
988988 −24.8092 −0.789286
989989 6.63706 0.211046
990990 0.352761 0.0112115
991991 13.1853 0.418845 0.209423 0.977825i 0.432842π-0.432842\pi
0.209423 + 0.977825i 0.432842π0.432842\pi
992992 4.32942 0.137459
993993 −28.2788 −0.897401
994994 −1.54904 −0.0491324
995995 −27.2959 −0.865338
996996 −16.0506 −0.508583
997997 59.2547 1.87661 0.938307 0.345802i 0.112393π-0.112393\pi
0.938307 + 0.345802i 0.112393π0.112393\pi
998998 −5.31234 −0.168159
999999 −1.46961 −0.0464965
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.h.1.2 3
3.2 odd 2 1449.2.a.l.1.2 3
4.3 odd 2 7728.2.a.bt.1.2 3
7.6 odd 2 3381.2.a.v.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.h.1.2 3 1.1 even 1 trivial
1449.2.a.l.1.2 3 3.2 odd 2
3381.2.a.v.1.2 3 7.6 odd 2
7728.2.a.bt.1.2 3 4.3 odd 2