Properties

Label 483.2.a.h.1.2
Level $483$
Weight $2$
Character 483.1
Self dual yes
Analytic conductor $3.857$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.167449\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.167449 q^{2} +1.00000 q^{3} -1.97196 q^{4} +1.16745 q^{5} -0.167449 q^{6} -1.00000 q^{7} +0.665102 q^{8} +1.00000 q^{9} -0.195488 q^{10} -1.80451 q^{11} -1.97196 q^{12} +6.97196 q^{13} +0.167449 q^{14} +1.16745 q^{15} +3.83255 q^{16} +6.13941 q^{17} -0.167449 q^{18} +1.80451 q^{19} -2.30216 q^{20} -1.00000 q^{21} +0.302164 q^{22} -1.00000 q^{23} +0.665102 q^{24} -3.63706 q^{25} -1.16745 q^{26} +1.00000 q^{27} +1.97196 q^{28} +5.46961 q^{29} -0.195488 q^{30} -2.19549 q^{31} -1.97196 q^{32} -1.80451 q^{33} -1.02804 q^{34} -1.16745 q^{35} -1.97196 q^{36} -1.46961 q^{37} -0.302164 q^{38} +6.97196 q^{39} +0.776472 q^{40} +9.74843 q^{41} +0.167449 q^{42} -6.63706 q^{43} +3.55843 q^{44} +1.16745 q^{45} +0.167449 q^{46} -1.94392 q^{47} +3.83255 q^{48} +1.00000 q^{49} +0.609023 q^{50} +6.13941 q^{51} -13.7484 q^{52} +1.16745 q^{53} -0.167449 q^{54} -2.10668 q^{55} -0.665102 q^{56} +1.80451 q^{57} -0.915882 q^{58} +9.11137 q^{59} -2.30216 q^{60} -4.63706 q^{61} +0.367633 q^{62} -1.00000 q^{63} -7.33490 q^{64} +8.13941 q^{65} +0.302164 q^{66} -15.4463 q^{67} -12.1067 q^{68} -1.00000 q^{69} +0.195488 q^{70} -9.25078 q^{71} +0.665102 q^{72} -0.474308 q^{73} +0.246086 q^{74} -3.63706 q^{75} -3.55843 q^{76} +1.80451 q^{77} -1.16745 q^{78} +7.46961 q^{79} +4.47431 q^{80} +1.00000 q^{81} -1.63237 q^{82} +8.13941 q^{83} +1.97196 q^{84} +7.16745 q^{85} +1.11137 q^{86} +5.46961 q^{87} -1.20018 q^{88} +1.02804 q^{89} -0.195488 q^{90} -6.97196 q^{91} +1.97196 q^{92} -2.19549 q^{93} +0.325508 q^{94} +2.10668 q^{95} -1.97196 q^{96} -8.47431 q^{97} -0.167449 q^{98} -1.80451 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 6 q^{4} + 3 q^{5} - 3 q^{7} + 3 q^{8} + 3 q^{9} - 12 q^{10} + 6 q^{11} + 6 q^{12} + 9 q^{13} + 3 q^{15} + 12 q^{16} + 6 q^{17} - 6 q^{19} + 3 q^{20} - 3 q^{21} - 9 q^{22} - 3 q^{23} + 3 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.167449 −0.118404 −0.0592022 0.998246i \(-0.518856\pi\)
−0.0592022 + 0.998246i \(0.518856\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.97196 −0.985980
\(5\) 1.16745 0.522099 0.261050 0.965325i \(-0.415931\pi\)
0.261050 + 0.965325i \(0.415931\pi\)
\(6\) −0.167449 −0.0683608
\(7\) −1.00000 −0.377964
\(8\) 0.665102 0.235149
\(9\) 1.00000 0.333333
\(10\) −0.195488 −0.0618189
\(11\) −1.80451 −0.544081 −0.272040 0.962286i \(-0.587698\pi\)
−0.272040 + 0.962286i \(0.587698\pi\)
\(12\) −1.97196 −0.569256
\(13\) 6.97196 1.93367 0.966837 0.255394i \(-0.0822053\pi\)
0.966837 + 0.255394i \(0.0822053\pi\)
\(14\) 0.167449 0.0447527
\(15\) 1.16745 0.301434
\(16\) 3.83255 0.958138
\(17\) 6.13941 1.48903 0.744513 0.667608i \(-0.232682\pi\)
0.744513 + 0.667608i \(0.232682\pi\)
\(18\) −0.167449 −0.0394682
\(19\) 1.80451 0.413983 0.206992 0.978343i \(-0.433633\pi\)
0.206992 + 0.978343i \(0.433633\pi\)
\(20\) −2.30216 −0.514780
\(21\) −1.00000 −0.218218
\(22\) 0.302164 0.0644216
\(23\) −1.00000 −0.208514
\(24\) 0.665102 0.135763
\(25\) −3.63706 −0.727412
\(26\) −1.16745 −0.228956
\(27\) 1.00000 0.192450
\(28\) 1.97196 0.372666
\(29\) 5.46961 1.01568 0.507841 0.861451i \(-0.330444\pi\)
0.507841 + 0.861451i \(0.330444\pi\)
\(30\) −0.195488 −0.0356911
\(31\) −2.19549 −0.394321 −0.197161 0.980371i \(-0.563172\pi\)
−0.197161 + 0.980371i \(0.563172\pi\)
\(32\) −1.97196 −0.348597
\(33\) −1.80451 −0.314125
\(34\) −1.02804 −0.176307
\(35\) −1.16745 −0.197335
\(36\) −1.97196 −0.328660
\(37\) −1.46961 −0.241603 −0.120801 0.992677i \(-0.538546\pi\)
−0.120801 + 0.992677i \(0.538546\pi\)
\(38\) −0.302164 −0.0490175
\(39\) 6.97196 1.11641
\(40\) 0.776472 0.122771
\(41\) 9.74843 1.52245 0.761225 0.648488i \(-0.224598\pi\)
0.761225 + 0.648488i \(0.224598\pi\)
\(42\) 0.167449 0.0258380
\(43\) −6.63706 −1.01214 −0.506071 0.862492i \(-0.668903\pi\)
−0.506071 + 0.862492i \(0.668903\pi\)
\(44\) 3.55843 0.536453
\(45\) 1.16745 0.174033
\(46\) 0.167449 0.0246890
\(47\) −1.94392 −0.283550 −0.141775 0.989899i \(-0.545281\pi\)
−0.141775 + 0.989899i \(0.545281\pi\)
\(48\) 3.83255 0.553181
\(49\) 1.00000 0.142857
\(50\) 0.609023 0.0861289
\(51\) 6.13941 0.859689
\(52\) −13.7484 −1.90656
\(53\) 1.16745 0.160361 0.0801807 0.996780i \(-0.474450\pi\)
0.0801807 + 0.996780i \(0.474450\pi\)
\(54\) −0.167449 −0.0227869
\(55\) −2.10668 −0.284064
\(56\) −0.665102 −0.0888779
\(57\) 1.80451 0.239013
\(58\) −0.915882 −0.120261
\(59\) 9.11137 1.18620 0.593100 0.805129i \(-0.297904\pi\)
0.593100 + 0.805129i \(0.297904\pi\)
\(60\) −2.30216 −0.297208
\(61\) −4.63706 −0.593715 −0.296857 0.954922i \(-0.595939\pi\)
−0.296857 + 0.954922i \(0.595939\pi\)
\(62\) 0.367633 0.0466894
\(63\) −1.00000 −0.125988
\(64\) −7.33490 −0.916862
\(65\) 8.13941 1.00957
\(66\) 0.302164 0.0371938
\(67\) −15.4463 −1.88706 −0.943531 0.331284i \(-0.892518\pi\)
−0.943531 + 0.331284i \(0.892518\pi\)
\(68\) −12.1067 −1.46815
\(69\) −1.00000 −0.120386
\(70\) 0.195488 0.0233653
\(71\) −9.25078 −1.09787 −0.548933 0.835866i \(-0.684966\pi\)
−0.548933 + 0.835866i \(0.684966\pi\)
\(72\) 0.665102 0.0783830
\(73\) −0.474308 −0.0555136 −0.0277568 0.999615i \(-0.508836\pi\)
−0.0277568 + 0.999615i \(0.508836\pi\)
\(74\) 0.246086 0.0286069
\(75\) −3.63706 −0.419972
\(76\) −3.55843 −0.408179
\(77\) 1.80451 0.205643
\(78\) −1.16745 −0.132188
\(79\) 7.46961 0.840397 0.420199 0.907432i \(-0.361960\pi\)
0.420199 + 0.907432i \(0.361960\pi\)
\(80\) 4.47431 0.500243
\(81\) 1.00000 0.111111
\(82\) −1.63237 −0.180265
\(83\) 8.13941 0.893416 0.446708 0.894680i \(-0.352596\pi\)
0.446708 + 0.894680i \(0.352596\pi\)
\(84\) 1.97196 0.215159
\(85\) 7.16745 0.777419
\(86\) 1.11137 0.119842
\(87\) 5.46961 0.586404
\(88\) −1.20018 −0.127940
\(89\) 1.02804 0.108972 0.0544860 0.998515i \(-0.482648\pi\)
0.0544860 + 0.998515i \(0.482648\pi\)
\(90\) −0.195488 −0.0206063
\(91\) −6.97196 −0.730860
\(92\) 1.97196 0.205591
\(93\) −2.19549 −0.227662
\(94\) 0.325508 0.0335736
\(95\) 2.10668 0.216140
\(96\) −1.97196 −0.201262
\(97\) −8.47431 −0.860436 −0.430218 0.902725i \(-0.641563\pi\)
−0.430218 + 0.902725i \(0.641563\pi\)
\(98\) −0.167449 −0.0169149
\(99\) −1.80451 −0.181360
\(100\) 7.17214 0.717214
\(101\) −18.7204 −1.86275 −0.931374 0.364063i \(-0.881389\pi\)
−0.931374 + 0.364063i \(0.881389\pi\)
\(102\) −1.02804 −0.101791
\(103\) 4.66980 0.460129 0.230064 0.973175i \(-0.426106\pi\)
0.230064 + 0.973175i \(0.426106\pi\)
\(104\) 4.63706 0.454701
\(105\) −1.16745 −0.113931
\(106\) −0.195488 −0.0189875
\(107\) −1.36294 −0.131760 −0.0658801 0.997828i \(-0.520985\pi\)
−0.0658801 + 0.997828i \(0.520985\pi\)
\(108\) −1.97196 −0.189752
\(109\) −0.497652 −0.0476665 −0.0238332 0.999716i \(-0.507587\pi\)
−0.0238332 + 0.999716i \(0.507587\pi\)
\(110\) 0.352761 0.0336345
\(111\) −1.46961 −0.139490
\(112\) −3.83255 −0.362142
\(113\) −1.44627 −0.136054 −0.0680268 0.997683i \(-0.521670\pi\)
−0.0680268 + 0.997683i \(0.521670\pi\)
\(114\) −0.302164 −0.0283003
\(115\) −1.16745 −0.108865
\(116\) −10.7859 −1.00144
\(117\) 6.97196 0.644558
\(118\) −1.52569 −0.140451
\(119\) −6.13941 −0.562799
\(120\) 0.776472 0.0708819
\(121\) −7.74374 −0.703976
\(122\) 0.776472 0.0702985
\(123\) 9.74843 0.878987
\(124\) 4.32942 0.388793
\(125\) −10.0833 −0.901881
\(126\) 0.167449 0.0149176
\(127\) 7.91119 0.702004 0.351002 0.936375i \(-0.385841\pi\)
0.351002 + 0.936375i \(0.385841\pi\)
\(128\) 5.17214 0.457157
\(129\) −6.63706 −0.584361
\(130\) −1.36294 −0.119538
\(131\) 1.80451 0.157661 0.0788305 0.996888i \(-0.474881\pi\)
0.0788305 + 0.996888i \(0.474881\pi\)
\(132\) 3.55843 0.309721
\(133\) −1.80451 −0.156471
\(134\) 2.58647 0.223437
\(135\) 1.16745 0.100478
\(136\) 4.08333 0.350143
\(137\) −13.4696 −1.15079 −0.575393 0.817877i \(-0.695151\pi\)
−0.575393 + 0.817877i \(0.695151\pi\)
\(138\) 0.167449 0.0142542
\(139\) −15.1674 −1.28649 −0.643243 0.765662i \(-0.722412\pi\)
−0.643243 + 0.765662i \(0.722412\pi\)
\(140\) 2.30216 0.194568
\(141\) −1.94392 −0.163708
\(142\) 1.54904 0.129992
\(143\) −12.5810 −1.05207
\(144\) 3.83255 0.319379
\(145\) 6.38550 0.530287
\(146\) 0.0794225 0.00657306
\(147\) 1.00000 0.0824786
\(148\) 2.89802 0.238216
\(149\) 19.5529 1.60184 0.800920 0.598772i \(-0.204344\pi\)
0.800920 + 0.598772i \(0.204344\pi\)
\(150\) 0.609023 0.0497265
\(151\) −13.2741 −1.08023 −0.540116 0.841590i \(-0.681620\pi\)
−0.540116 + 0.841590i \(0.681620\pi\)
\(152\) 1.20018 0.0973477
\(153\) 6.13941 0.496342
\(154\) −0.302164 −0.0243491
\(155\) −2.56312 −0.205875
\(156\) −13.7484 −1.10076
\(157\) −13.2835 −1.06014 −0.530070 0.847954i \(-0.677834\pi\)
−0.530070 + 0.847954i \(0.677834\pi\)
\(158\) −1.25078 −0.0995068
\(159\) 1.16745 0.0925847
\(160\) −2.30216 −0.182002
\(161\) 1.00000 0.0788110
\(162\) −0.167449 −0.0131561
\(163\) 7.44627 0.583237 0.291618 0.956535i \(-0.405806\pi\)
0.291618 + 0.956535i \(0.405806\pi\)
\(164\) −19.2235 −1.50111
\(165\) −2.10668 −0.164004
\(166\) −1.36294 −0.105784
\(167\) 20.7437 1.60520 0.802599 0.596519i \(-0.203450\pi\)
0.802599 + 0.596519i \(0.203450\pi\)
\(168\) −0.665102 −0.0513137
\(169\) 35.6082 2.73910
\(170\) −1.20018 −0.0920499
\(171\) 1.80451 0.137994
\(172\) 13.0880 0.997953
\(173\) −17.7484 −1.34939 −0.674694 0.738097i \(-0.735724\pi\)
−0.674694 + 0.738097i \(0.735724\pi\)
\(174\) −0.915882 −0.0694329
\(175\) 3.63706 0.274936
\(176\) −6.91588 −0.521304
\(177\) 9.11137 0.684853
\(178\) −0.172144 −0.0129028
\(179\) 4.44157 0.331979 0.165989 0.986128i \(-0.446918\pi\)
0.165989 + 0.986128i \(0.446918\pi\)
\(180\) −2.30216 −0.171593
\(181\) −11.6924 −0.869086 −0.434543 0.900651i \(-0.643090\pi\)
−0.434543 + 0.900651i \(0.643090\pi\)
\(182\) 1.16745 0.0865371
\(183\) −4.63706 −0.342782
\(184\) −0.665102 −0.0490319
\(185\) −1.71570 −0.126141
\(186\) 0.367633 0.0269561
\(187\) −11.0786 −0.810150
\(188\) 3.83334 0.279575
\(189\) −1.00000 −0.0727393
\(190\) −0.352761 −0.0255920
\(191\) 21.2741 1.53934 0.769671 0.638441i \(-0.220420\pi\)
0.769671 + 0.638441i \(0.220420\pi\)
\(192\) −7.33490 −0.529351
\(193\) −3.27412 −0.235677 −0.117838 0.993033i \(-0.537596\pi\)
−0.117838 + 0.993033i \(0.537596\pi\)
\(194\) 1.41902 0.101879
\(195\) 8.13941 0.582875
\(196\) −1.97196 −0.140854
\(197\) 0.358242 0.0255237 0.0127619 0.999919i \(-0.495938\pi\)
0.0127619 + 0.999919i \(0.495938\pi\)
\(198\) 0.302164 0.0214739
\(199\) −23.3808 −1.65742 −0.828710 0.559678i \(-0.810925\pi\)
−0.828710 + 0.559678i \(0.810925\pi\)
\(200\) −2.41902 −0.171050
\(201\) −15.4463 −1.08950
\(202\) 3.13471 0.220558
\(203\) −5.46961 −0.383892
\(204\) −12.1067 −0.847637
\(205\) 11.3808 0.794870
\(206\) −0.781954 −0.0544813
\(207\) −1.00000 −0.0695048
\(208\) 26.7204 1.85273
\(209\) −3.25626 −0.225240
\(210\) 0.195488 0.0134900
\(211\) 13.4135 0.923426 0.461713 0.887029i \(-0.347235\pi\)
0.461713 + 0.887029i \(0.347235\pi\)
\(212\) −2.30216 −0.158113
\(213\) −9.25078 −0.633853
\(214\) 0.228223 0.0156010
\(215\) −7.74843 −0.528439
\(216\) 0.665102 0.0452544
\(217\) 2.19549 0.149039
\(218\) 0.0833315 0.00564392
\(219\) −0.474308 −0.0320508
\(220\) 4.15428 0.280082
\(221\) 42.8037 2.87929
\(222\) 0.246086 0.0165162
\(223\) 8.72039 0.583961 0.291980 0.956424i \(-0.405686\pi\)
0.291980 + 0.956424i \(0.405686\pi\)
\(224\) 1.97196 0.131757
\(225\) −3.63706 −0.242471
\(226\) 0.242177 0.0161093
\(227\) 14.1067 0.936293 0.468146 0.883651i \(-0.344922\pi\)
0.468146 + 0.883651i \(0.344922\pi\)
\(228\) −3.55843 −0.235663
\(229\) 5.05529 0.334063 0.167032 0.985952i \(-0.446582\pi\)
0.167032 + 0.985952i \(0.446582\pi\)
\(230\) 0.195488 0.0128901
\(231\) 1.80451 0.118728
\(232\) 3.63785 0.238836
\(233\) −27.7157 −1.81572 −0.907858 0.419278i \(-0.862283\pi\)
−0.907858 + 0.419278i \(0.862283\pi\)
\(234\) −1.16745 −0.0763185
\(235\) −2.26943 −0.148041
\(236\) −17.9673 −1.16957
\(237\) 7.46961 0.485204
\(238\) 1.02804 0.0666379
\(239\) 7.83725 0.506949 0.253475 0.967342i \(-0.418427\pi\)
0.253475 + 0.967342i \(0.418427\pi\)
\(240\) 4.47431 0.288815
\(241\) 19.6924 1.26850 0.634248 0.773130i \(-0.281310\pi\)
0.634248 + 0.773130i \(0.281310\pi\)
\(242\) 1.29668 0.0833539
\(243\) 1.00000 0.0641500
\(244\) 9.14411 0.585391
\(245\) 1.16745 0.0745856
\(246\) −1.63237 −0.104076
\(247\) 12.5810 0.800509
\(248\) −1.46022 −0.0927242
\(249\) 8.13941 0.515814
\(250\) 1.68845 0.106787
\(251\) −30.2227 −1.90764 −0.953821 0.300375i \(-0.902888\pi\)
−0.953821 + 0.300375i \(0.902888\pi\)
\(252\) 1.97196 0.124222
\(253\) 1.80451 0.113449
\(254\) −1.32472 −0.0831204
\(255\) 7.16745 0.448843
\(256\) 13.8037 0.862733
\(257\) 12.2227 0.762434 0.381217 0.924486i \(-0.375505\pi\)
0.381217 + 0.924486i \(0.375505\pi\)
\(258\) 1.11137 0.0691909
\(259\) 1.46961 0.0913173
\(260\) −16.0506 −0.995416
\(261\) 5.46961 0.338561
\(262\) −0.302164 −0.0186678
\(263\) 5.47900 0.337850 0.168925 0.985629i \(-0.445970\pi\)
0.168925 + 0.985629i \(0.445970\pi\)
\(264\) −1.20018 −0.0738662
\(265\) 1.36294 0.0837246
\(266\) 0.302164 0.0185269
\(267\) 1.02804 0.0629150
\(268\) 30.4594 1.86061
\(269\) 26.8598 1.63767 0.818836 0.574028i \(-0.194620\pi\)
0.818836 + 0.574028i \(0.194620\pi\)
\(270\) −0.195488 −0.0118970
\(271\) −4.13941 −0.251451 −0.125726 0.992065i \(-0.540126\pi\)
−0.125726 + 0.992065i \(0.540126\pi\)
\(272\) 23.5296 1.42669
\(273\) −6.97196 −0.421962
\(274\) 2.25548 0.136258
\(275\) 6.56312 0.395771
\(276\) 1.97196 0.118698
\(277\) 17.2414 1.03593 0.517967 0.855400i \(-0.326689\pi\)
0.517967 + 0.855400i \(0.326689\pi\)
\(278\) 2.53978 0.152326
\(279\) −2.19549 −0.131440
\(280\) −0.776472 −0.0464031
\(281\) −11.8318 −0.705824 −0.352912 0.935657i \(-0.614808\pi\)
−0.352912 + 0.935657i \(0.614808\pi\)
\(282\) 0.325508 0.0193837
\(283\) −13.7812 −0.819205 −0.409603 0.912264i \(-0.634333\pi\)
−0.409603 + 0.912264i \(0.634333\pi\)
\(284\) 18.2422 1.08247
\(285\) 2.10668 0.124789
\(286\) 2.10668 0.124570
\(287\) −9.74843 −0.575432
\(288\) −1.97196 −0.116199
\(289\) 20.6924 1.21720
\(290\) −1.06925 −0.0627883
\(291\) −8.47431 −0.496773
\(292\) 0.935317 0.0547353
\(293\) 20.9392 1.22328 0.611641 0.791135i \(-0.290510\pi\)
0.611641 + 0.791135i \(0.290510\pi\)
\(294\) −0.167449 −0.00976584
\(295\) 10.6371 0.619314
\(296\) −0.977442 −0.0568127
\(297\) −1.80451 −0.104708
\(298\) −3.27412 −0.189665
\(299\) −6.97196 −0.403199
\(300\) 7.17214 0.414084
\(301\) 6.63706 0.382554
\(302\) 2.22274 0.127904
\(303\) −18.7204 −1.07546
\(304\) 6.91588 0.396653
\(305\) −5.41353 −0.309978
\(306\) −1.02804 −0.0587691
\(307\) −9.80451 −0.559573 −0.279787 0.960062i \(-0.590264\pi\)
−0.279787 + 0.960062i \(0.590264\pi\)
\(308\) −3.55843 −0.202760
\(309\) 4.66980 0.265655
\(310\) 0.429193 0.0243765
\(311\) 12.5810 0.713402 0.356701 0.934219i \(-0.383901\pi\)
0.356701 + 0.934219i \(0.383901\pi\)
\(312\) 4.63706 0.262522
\(313\) −18.1667 −1.02684 −0.513420 0.858137i \(-0.671622\pi\)
−0.513420 + 0.858137i \(0.671622\pi\)
\(314\) 2.22431 0.125525
\(315\) −1.16745 −0.0657783
\(316\) −14.7298 −0.828615
\(317\) 5.83725 0.327852 0.163926 0.986473i \(-0.447584\pi\)
0.163926 + 0.986473i \(0.447584\pi\)
\(318\) −0.195488 −0.0109624
\(319\) −9.86998 −0.552613
\(320\) −8.56312 −0.478693
\(321\) −1.36294 −0.0760718
\(322\) −0.167449 −0.00933158
\(323\) 11.0786 0.616432
\(324\) −1.97196 −0.109553
\(325\) −25.3575 −1.40658
\(326\) −1.24687 −0.0690578
\(327\) −0.497652 −0.0275202
\(328\) 6.48370 0.358002
\(329\) 1.94392 0.107172
\(330\) 0.352761 0.0194189
\(331\) −28.2788 −1.55434 −0.777172 0.629288i \(-0.783347\pi\)
−0.777172 + 0.629288i \(0.783347\pi\)
\(332\) −16.0506 −0.880891
\(333\) −1.46961 −0.0805343
\(334\) −3.47352 −0.190063
\(335\) −18.0327 −0.985234
\(336\) −3.83255 −0.209083
\(337\) 10.9720 0.597681 0.298840 0.954303i \(-0.403400\pi\)
0.298840 + 0.954303i \(0.403400\pi\)
\(338\) −5.96257 −0.324321
\(339\) −1.44627 −0.0785506
\(340\) −14.1339 −0.766520
\(341\) 3.96178 0.214543
\(342\) −0.302164 −0.0163392
\(343\) −1.00000 −0.0539949
\(344\) −4.41432 −0.238004
\(345\) −1.16745 −0.0628534
\(346\) 2.97196 0.159774
\(347\) −10.4088 −0.558776 −0.279388 0.960178i \(-0.590132\pi\)
−0.279388 + 0.960178i \(0.590132\pi\)
\(348\) −10.7859 −0.578183
\(349\) −13.7251 −0.734687 −0.367344 0.930085i \(-0.619733\pi\)
−0.367344 + 0.930085i \(0.619733\pi\)
\(350\) −0.609023 −0.0325537
\(351\) 6.97196 0.372136
\(352\) 3.55843 0.189665
\(353\) −6.02725 −0.320798 −0.160399 0.987052i \(-0.551278\pi\)
−0.160399 + 0.987052i \(0.551278\pi\)
\(354\) −1.52569 −0.0810896
\(355\) −10.7998 −0.573195
\(356\) −2.02725 −0.107444
\(357\) −6.13941 −0.324932
\(358\) −0.743738 −0.0393078
\(359\) −35.1674 −1.85607 −0.928033 0.372497i \(-0.878502\pi\)
−0.928033 + 0.372497i \(0.878502\pi\)
\(360\) 0.776472 0.0409237
\(361\) −15.7437 −0.828618
\(362\) 1.95788 0.102904
\(363\) −7.74374 −0.406441
\(364\) 13.7484 0.720614
\(365\) −0.553731 −0.0289836
\(366\) 0.776472 0.0405869
\(367\) −20.5810 −1.07432 −0.537159 0.843481i \(-0.680503\pi\)
−0.537159 + 0.843481i \(0.680503\pi\)
\(368\) −3.83255 −0.199786
\(369\) 9.74843 0.507483
\(370\) 0.287292 0.0149356
\(371\) −1.16745 −0.0606109
\(372\) 4.32942 0.224470
\(373\) 5.74843 0.297643 0.148821 0.988864i \(-0.452452\pi\)
0.148821 + 0.988864i \(0.452452\pi\)
\(374\) 1.85511 0.0959254
\(375\) −10.0833 −0.520701
\(376\) −1.29291 −0.0666765
\(377\) 38.1339 1.96400
\(378\) 0.167449 0.00861266
\(379\) 21.8972 1.12479 0.562393 0.826870i \(-0.309881\pi\)
0.562393 + 0.826870i \(0.309881\pi\)
\(380\) −4.15428 −0.213110
\(381\) 7.91119 0.405302
\(382\) −3.56233 −0.182265
\(383\) 15.7484 0.804707 0.402354 0.915484i \(-0.368192\pi\)
0.402354 + 0.915484i \(0.368192\pi\)
\(384\) 5.17214 0.263940
\(385\) 2.10668 0.107366
\(386\) 0.548250 0.0279052
\(387\) −6.63706 −0.337381
\(388\) 16.7110 0.848373
\(389\) −32.6410 −1.65496 −0.827481 0.561493i \(-0.810227\pi\)
−0.827481 + 0.561493i \(0.810227\pi\)
\(390\) −1.36294 −0.0690150
\(391\) −6.13941 −0.310483
\(392\) 0.665102 0.0335927
\(393\) 1.80451 0.0910256
\(394\) −0.0599874 −0.00302212
\(395\) 8.72039 0.438771
\(396\) 3.55843 0.178818
\(397\) 34.2134 1.71712 0.858559 0.512714i \(-0.171360\pi\)
0.858559 + 0.512714i \(0.171360\pi\)
\(398\) 3.91510 0.196246
\(399\) −1.80451 −0.0903386
\(400\) −13.9392 −0.696961
\(401\) −35.5802 −1.77679 −0.888395 0.459080i \(-0.848179\pi\)
−0.888395 + 0.459080i \(0.848179\pi\)
\(402\) 2.58647 0.129001
\(403\) −15.3069 −0.762489
\(404\) 36.9159 1.83663
\(405\) 1.16745 0.0580110
\(406\) 0.915882 0.0454545
\(407\) 2.65193 0.131451
\(408\) 4.08333 0.202155
\(409\) 22.4182 1.10851 0.554255 0.832347i \(-0.313003\pi\)
0.554255 + 0.832347i \(0.313003\pi\)
\(410\) −1.90571 −0.0941161
\(411\) −13.4696 −0.664407
\(412\) −9.20866 −0.453678
\(413\) −9.11137 −0.448341
\(414\) 0.167449 0.00822968
\(415\) 9.50235 0.466452
\(416\) −13.7484 −0.674072
\(417\) −15.1674 −0.742753
\(418\) 0.545258 0.0266695
\(419\) −24.7859 −1.21087 −0.605434 0.795895i \(-0.707001\pi\)
−0.605434 + 0.795895i \(0.707001\pi\)
\(420\) 2.30216 0.112334
\(421\) −35.0265 −1.70709 −0.853543 0.521023i \(-0.825551\pi\)
−0.853543 + 0.521023i \(0.825551\pi\)
\(422\) −2.24609 −0.109338
\(423\) −1.94392 −0.0945167
\(424\) 0.776472 0.0377088
\(425\) −22.3294 −1.08314
\(426\) 1.54904 0.0750510
\(427\) 4.63706 0.224403
\(428\) 2.68766 0.129913
\(429\) −12.5810 −0.607416
\(430\) 1.29747 0.0625695
\(431\) 3.37233 0.162439 0.0812197 0.996696i \(-0.474118\pi\)
0.0812197 + 0.996696i \(0.474118\pi\)
\(432\) 3.83255 0.184394
\(433\) 7.83176 0.376371 0.188185 0.982134i \(-0.439739\pi\)
0.188185 + 0.982134i \(0.439739\pi\)
\(434\) −0.367633 −0.0176469
\(435\) 6.38550 0.306161
\(436\) 0.981351 0.0469982
\(437\) −1.80451 −0.0863215
\(438\) 0.0794225 0.00379496
\(439\) 13.0226 0.621533 0.310766 0.950486i \(-0.399414\pi\)
0.310766 + 0.950486i \(0.399414\pi\)
\(440\) −1.40115 −0.0667974
\(441\) 1.00000 0.0476190
\(442\) −7.16745 −0.340921
\(443\) −7.33020 −0.348268 −0.174134 0.984722i \(-0.555713\pi\)
−0.174134 + 0.984722i \(0.555713\pi\)
\(444\) 2.89802 0.137534
\(445\) 1.20018 0.0568942
\(446\) −1.46022 −0.0691436
\(447\) 19.5529 0.924823
\(448\) 7.33490 0.346541
\(449\) −9.49296 −0.448000 −0.224000 0.974589i \(-0.571912\pi\)
−0.224000 + 0.974589i \(0.571912\pi\)
\(450\) 0.609023 0.0287096
\(451\) −17.5912 −0.828335
\(452\) 2.85199 0.134146
\(453\) −13.2741 −0.623673
\(454\) −2.36215 −0.110861
\(455\) −8.13941 −0.381581
\(456\) 1.20018 0.0562037
\(457\) −20.1721 −0.943613 −0.471807 0.881702i \(-0.656398\pi\)
−0.471807 + 0.881702i \(0.656398\pi\)
\(458\) −0.846505 −0.0395546
\(459\) 6.13941 0.286563
\(460\) 2.30216 0.107339
\(461\) 22.3949 1.04303 0.521517 0.853241i \(-0.325366\pi\)
0.521517 + 0.853241i \(0.325366\pi\)
\(462\) −0.302164 −0.0140579
\(463\) 20.6970 0.961873 0.480937 0.876755i \(-0.340297\pi\)
0.480937 + 0.876755i \(0.340297\pi\)
\(464\) 20.9626 0.973163
\(465\) −2.56312 −0.118862
\(466\) 4.64097 0.214989
\(467\) 3.74843 0.173457 0.0867284 0.996232i \(-0.472359\pi\)
0.0867284 + 0.996232i \(0.472359\pi\)
\(468\) −13.7484 −0.635522
\(469\) 15.4463 0.713242
\(470\) 0.380014 0.0175287
\(471\) −13.2835 −0.612072
\(472\) 6.05999 0.278934
\(473\) 11.9767 0.550687
\(474\) −1.25078 −0.0574503
\(475\) −6.56312 −0.301137
\(476\) 12.1067 0.554909
\(477\) 1.16745 0.0534538
\(478\) −1.31234 −0.0600251
\(479\) −29.3014 −1.33881 −0.669407 0.742896i \(-0.733452\pi\)
−0.669407 + 0.742896i \(0.733452\pi\)
\(480\) −2.30216 −0.105079
\(481\) −10.2461 −0.467181
\(482\) −3.29747 −0.150196
\(483\) 1.00000 0.0455016
\(484\) 15.2703 0.694107
\(485\) −9.89332 −0.449233
\(486\) −0.167449 −0.00759565
\(487\) 17.0880 0.774332 0.387166 0.922010i \(-0.373454\pi\)
0.387166 + 0.922010i \(0.373454\pi\)
\(488\) −3.08412 −0.139611
\(489\) 7.44627 0.336732
\(490\) −0.195488 −0.00883127
\(491\) −16.3022 −0.735706 −0.367853 0.929884i \(-0.619907\pi\)
−0.367853 + 0.929884i \(0.619907\pi\)
\(492\) −19.2235 −0.866664
\(493\) 33.5802 1.51238
\(494\) −2.10668 −0.0947838
\(495\) −2.10668 −0.0946880
\(496\) −8.41432 −0.377814
\(497\) 9.25078 0.414954
\(498\) −1.36294 −0.0610747
\(499\) 31.7251 1.42021 0.710105 0.704096i \(-0.248647\pi\)
0.710105 + 0.704096i \(0.248647\pi\)
\(500\) 19.8839 0.889237
\(501\) 20.7437 0.926762
\(502\) 5.06077 0.225873
\(503\) −15.1020 −0.673364 −0.336682 0.941618i \(-0.609305\pi\)
−0.336682 + 0.941618i \(0.609305\pi\)
\(504\) −0.665102 −0.0296260
\(505\) −21.8551 −0.972540
\(506\) −0.302164 −0.0134328
\(507\) 35.6082 1.58142
\(508\) −15.6006 −0.692163
\(509\) −28.7804 −1.27567 −0.637834 0.770174i \(-0.720169\pi\)
−0.637834 + 0.770174i \(0.720169\pi\)
\(510\) −1.20018 −0.0531450
\(511\) 0.474308 0.0209822
\(512\) −12.6557 −0.559309
\(513\) 1.80451 0.0796711
\(514\) −2.04669 −0.0902755
\(515\) 5.45175 0.240233
\(516\) 13.0880 0.576168
\(517\) 3.50783 0.154274
\(518\) −0.246086 −0.0108124
\(519\) −17.7484 −0.779070
\(520\) 5.41353 0.237399
\(521\) 30.4455 1.33384 0.666920 0.745129i \(-0.267612\pi\)
0.666920 + 0.745129i \(0.267612\pi\)
\(522\) −0.915882 −0.0400871
\(523\) −29.4875 −1.28940 −0.644699 0.764437i \(-0.723017\pi\)
−0.644699 + 0.764437i \(0.723017\pi\)
\(524\) −3.55843 −0.155451
\(525\) 3.63706 0.158734
\(526\) −0.917455 −0.0400029
\(527\) −13.4790 −0.587155
\(528\) −6.91588 −0.300975
\(529\) 1.00000 0.0434783
\(530\) −0.228223 −0.00991336
\(531\) 9.11137 0.395400
\(532\) 3.55843 0.154277
\(533\) 67.9657 2.94392
\(534\) −0.172144 −0.00744941
\(535\) −1.59116 −0.0687919
\(536\) −10.2733 −0.443741
\(537\) 4.44157 0.191668
\(538\) −4.49765 −0.193908
\(539\) −1.80451 −0.0777258
\(540\) −2.30216 −0.0990694
\(541\) −9.54355 −0.410309 −0.205155 0.978730i \(-0.565770\pi\)
−0.205155 + 0.978730i \(0.565770\pi\)
\(542\) 0.693141 0.0297729
\(543\) −11.6924 −0.501767
\(544\) −12.1067 −0.519069
\(545\) −0.580984 −0.0248866
\(546\) 1.16745 0.0499622
\(547\) −21.2780 −0.909783 −0.454892 0.890547i \(-0.650322\pi\)
−0.454892 + 0.890547i \(0.650322\pi\)
\(548\) 26.5615 1.13465
\(549\) −4.63706 −0.197905
\(550\) −1.09899 −0.0468611
\(551\) 9.86998 0.420475
\(552\) −0.665102 −0.0283086
\(553\) −7.46961 −0.317640
\(554\) −2.88706 −0.122659
\(555\) −1.71570 −0.0728274
\(556\) 29.9096 1.26845
\(557\) −30.4922 −1.29199 −0.645997 0.763340i \(-0.723558\pi\)
−0.645997 + 0.763340i \(0.723558\pi\)
\(558\) 0.367633 0.0155631
\(559\) −46.2733 −1.95715
\(560\) −4.47431 −0.189074
\(561\) −11.0786 −0.467740
\(562\) 1.98122 0.0835727
\(563\) 20.7476 0.874409 0.437205 0.899362i \(-0.355969\pi\)
0.437205 + 0.899362i \(0.355969\pi\)
\(564\) 3.83334 0.161413
\(565\) −1.68845 −0.0710334
\(566\) 2.30765 0.0969976
\(567\) −1.00000 −0.0419961
\(568\) −6.15271 −0.258162
\(569\) −21.4969 −0.901196 −0.450598 0.892727i \(-0.648789\pi\)
−0.450598 + 0.892727i \(0.648789\pi\)
\(570\) −0.352761 −0.0147755
\(571\) −14.1488 −0.592109 −0.296054 0.955171i \(-0.595671\pi\)
−0.296054 + 0.955171i \(0.595671\pi\)
\(572\) 24.8092 1.03733
\(573\) 21.2741 0.888739
\(574\) 1.63237 0.0681337
\(575\) 3.63706 0.151676
\(576\) −7.33490 −0.305621
\(577\) 10.7820 0.448859 0.224429 0.974490i \(-0.427948\pi\)
0.224429 + 0.974490i \(0.427948\pi\)
\(578\) −3.46492 −0.144122
\(579\) −3.27412 −0.136068
\(580\) −12.5919 −0.522852
\(581\) −8.13941 −0.337680
\(582\) 1.41902 0.0588201
\(583\) −2.10668 −0.0872496
\(584\) −0.315463 −0.0130540
\(585\) 8.13941 0.336523
\(586\) −3.50626 −0.144842
\(587\) −20.3676 −0.840662 −0.420331 0.907371i \(-0.638086\pi\)
−0.420331 + 0.907371i \(0.638086\pi\)
\(588\) −1.97196 −0.0813223
\(589\) −3.96178 −0.163242
\(590\) −1.78117 −0.0733295
\(591\) 0.358242 0.0147361
\(592\) −5.63237 −0.231489
\(593\) −15.9439 −0.654738 −0.327369 0.944897i \(-0.606162\pi\)
−0.327369 + 0.944897i \(0.606162\pi\)
\(594\) 0.302164 0.0123979
\(595\) −7.16745 −0.293837
\(596\) −38.5576 −1.57938
\(597\) −23.3808 −0.956912
\(598\) 1.16745 0.0477405
\(599\) 18.9159 0.772882 0.386441 0.922314i \(-0.373704\pi\)
0.386441 + 0.922314i \(0.373704\pi\)
\(600\) −2.41902 −0.0987559
\(601\) −48.3388 −1.97178 −0.985891 0.167391i \(-0.946466\pi\)
−0.985891 + 0.167391i \(0.946466\pi\)
\(602\) −1.11137 −0.0452961
\(603\) −15.4463 −0.629021
\(604\) 26.1761 1.06509
\(605\) −9.04042 −0.367545
\(606\) 3.13471 0.127339
\(607\) −9.29747 −0.377373 −0.188686 0.982037i \(-0.560423\pi\)
−0.188686 + 0.982037i \(0.560423\pi\)
\(608\) −3.55843 −0.144313
\(609\) −5.46961 −0.221640
\(610\) 0.906492 0.0367028
\(611\) −13.5529 −0.548293
\(612\) −12.1067 −0.489383
\(613\) 41.3108 1.66853 0.834263 0.551367i \(-0.185893\pi\)
0.834263 + 0.551367i \(0.185893\pi\)
\(614\) 1.64176 0.0662559
\(615\) 11.3808 0.458918
\(616\) 1.20018 0.0483568
\(617\) −36.4782 −1.46856 −0.734279 0.678848i \(-0.762480\pi\)
−0.734279 + 0.678848i \(0.762480\pi\)
\(618\) −0.781954 −0.0314548
\(619\) 7.41902 0.298195 0.149098 0.988822i \(-0.452363\pi\)
0.149098 + 0.988822i \(0.452363\pi\)
\(620\) 5.05437 0.202989
\(621\) −1.00000 −0.0401286
\(622\) −2.10668 −0.0844700
\(623\) −1.02804 −0.0411875
\(624\) 26.7204 1.06967
\(625\) 6.41353 0.256541
\(626\) 3.04199 0.121582
\(627\) −3.25626 −0.130043
\(628\) 26.1946 1.04528
\(629\) −9.02256 −0.359753
\(630\) 0.195488 0.00778845
\(631\) 23.0132 0.916140 0.458070 0.888916i \(-0.348541\pi\)
0.458070 + 0.888916i \(0.348541\pi\)
\(632\) 4.96805 0.197618
\(633\) 13.4135 0.533140
\(634\) −0.977442 −0.0388192
\(635\) 9.23591 0.366516
\(636\) −2.30216 −0.0912867
\(637\) 6.97196 0.276239
\(638\) 1.65272 0.0654318
\(639\) −9.25078 −0.365955
\(640\) 6.03822 0.238681
\(641\) 26.1433 1.03260 0.516300 0.856408i \(-0.327309\pi\)
0.516300 + 0.856408i \(0.327309\pi\)
\(642\) 0.228223 0.00900724
\(643\) −5.47509 −0.215917 −0.107958 0.994155i \(-0.534431\pi\)
−0.107958 + 0.994155i \(0.534431\pi\)
\(644\) −1.97196 −0.0777061
\(645\) −7.74843 −0.305094
\(646\) −1.85511 −0.0729883
\(647\) 43.8263 1.72299 0.861494 0.507767i \(-0.169529\pi\)
0.861494 + 0.507767i \(0.169529\pi\)
\(648\) 0.665102 0.0261277
\(649\) −16.4416 −0.645388
\(650\) 4.24609 0.166545
\(651\) 2.19549 0.0860480
\(652\) −14.6838 −0.575060
\(653\) 28.7298 1.12428 0.562142 0.827041i \(-0.309978\pi\)
0.562142 + 0.827041i \(0.309978\pi\)
\(654\) 0.0833315 0.00325852
\(655\) 2.10668 0.0823146
\(656\) 37.3614 1.45872
\(657\) −0.474308 −0.0185045
\(658\) −0.325508 −0.0126896
\(659\) −6.47431 −0.252203 −0.126102 0.992017i \(-0.540247\pi\)
−0.126102 + 0.992017i \(0.540247\pi\)
\(660\) 4.15428 0.161705
\(661\) −5.03195 −0.195720 −0.0978601 0.995200i \(-0.531200\pi\)
−0.0978601 + 0.995200i \(0.531200\pi\)
\(662\) 4.73527 0.184041
\(663\) 42.8037 1.66236
\(664\) 5.41353 0.210086
\(665\) −2.10668 −0.0816934
\(666\) 0.246086 0.00953562
\(667\) −5.46961 −0.211784
\(668\) −40.9058 −1.58269
\(669\) 8.72039 0.337150
\(670\) 3.01957 0.116656
\(671\) 8.36763 0.323029
\(672\) 1.97196 0.0760700
\(673\) 37.9618 1.46332 0.731660 0.681670i \(-0.238746\pi\)
0.731660 + 0.681670i \(0.238746\pi\)
\(674\) −1.83725 −0.0707681
\(675\) −3.63706 −0.139991
\(676\) −70.2180 −2.70069
\(677\) −13.1947 −0.507114 −0.253557 0.967320i \(-0.581600\pi\)
−0.253557 + 0.967320i \(0.581600\pi\)
\(678\) 0.242177 0.00930074
\(679\) 8.47431 0.325214
\(680\) 4.76708 0.182809
\(681\) 14.1067 0.540569
\(682\) −0.663398 −0.0254028
\(683\) 18.4088 0.704395 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(684\) −3.55843 −0.136060
\(685\) −15.7251 −0.600825
\(686\) 0.167449 0.00639324
\(687\) 5.05529 0.192871
\(688\) −25.4369 −0.969772
\(689\) 8.13941 0.310087
\(690\) 0.195488 0.00744212
\(691\) 32.5343 1.23766 0.618831 0.785524i \(-0.287606\pi\)
0.618831 + 0.785524i \(0.287606\pi\)
\(692\) 34.9992 1.33047
\(693\) 1.80451 0.0685477
\(694\) 1.74295 0.0661615
\(695\) −17.7072 −0.671673
\(696\) 3.63785 0.137892
\(697\) 59.8496 2.26697
\(698\) 2.29826 0.0869902
\(699\) −27.7157 −1.04830
\(700\) −7.17214 −0.271082
\(701\) 39.9290 1.50810 0.754050 0.656817i \(-0.228098\pi\)
0.754050 + 0.656817i \(0.228098\pi\)
\(702\) −1.16745 −0.0440625
\(703\) −2.65193 −0.100020
\(704\) 13.2359 0.498847
\(705\) −2.26943 −0.0854717
\(706\) 1.00926 0.0379840
\(707\) 18.7204 0.704053
\(708\) −17.9673 −0.675251
\(709\) −30.2555 −1.13627 −0.568134 0.822936i \(-0.692335\pi\)
−0.568134 + 0.822936i \(0.692335\pi\)
\(710\) 1.80842 0.0678688
\(711\) 7.46961 0.280132
\(712\) 0.683751 0.0256246
\(713\) 2.19549 0.0822217
\(714\) 1.02804 0.0384734
\(715\) −14.6877 −0.549287
\(716\) −8.75861 −0.327325
\(717\) 7.83725 0.292687
\(718\) 5.88876 0.219767
\(719\) 37.9057 1.41364 0.706822 0.707391i \(-0.250128\pi\)
0.706822 + 0.707391i \(0.250128\pi\)
\(720\) 4.47431 0.166748
\(721\) −4.66980 −0.173912
\(722\) 2.63628 0.0981120
\(723\) 19.6924 0.732367
\(724\) 23.0569 0.856902
\(725\) −19.8933 −0.738820
\(726\) 1.29668 0.0481244
\(727\) −42.9010 −1.59111 −0.795555 0.605881i \(-0.792821\pi\)
−0.795555 + 0.605881i \(0.792821\pi\)
\(728\) −4.63706 −0.171861
\(729\) 1.00000 0.0370370
\(730\) 0.0927218 0.00343179
\(731\) −40.7476 −1.50711
\(732\) 9.14411 0.337976
\(733\) 3.27412 0.120933 0.0604663 0.998170i \(-0.480741\pi\)
0.0604663 + 0.998170i \(0.480741\pi\)
\(734\) 3.44627 0.127204
\(735\) 1.16745 0.0430620
\(736\) 1.97196 0.0726874
\(737\) 27.8730 1.02671
\(738\) −1.63237 −0.0600883
\(739\) −17.0226 −0.626185 −0.313092 0.949723i \(-0.601365\pi\)
−0.313092 + 0.949723i \(0.601365\pi\)
\(740\) 3.38329 0.124372
\(741\) 12.5810 0.462174
\(742\) 0.195488 0.00717661
\(743\) 20.0506 0.735585 0.367793 0.929908i \(-0.380114\pi\)
0.367793 + 0.929908i \(0.380114\pi\)
\(744\) −1.46022 −0.0535344
\(745\) 22.8271 0.836319
\(746\) −0.962570 −0.0352422
\(747\) 8.13941 0.297805
\(748\) 21.8466 0.798792
\(749\) 1.36294 0.0498007
\(750\) 1.68845 0.0616533
\(751\) −46.7298 −1.70519 −0.852597 0.522569i \(-0.824974\pi\)
−0.852597 + 0.522569i \(0.824974\pi\)
\(752\) −7.45018 −0.271680
\(753\) −30.2227 −1.10138
\(754\) −6.38550 −0.232546
\(755\) −15.4969 −0.563989
\(756\) 1.97196 0.0717195
\(757\) 22.8092 0.829015 0.414507 0.910046i \(-0.363954\pi\)
0.414507 + 0.910046i \(0.363954\pi\)
\(758\) −3.66667 −0.133180
\(759\) 1.80451 0.0654996
\(760\) 1.40115 0.0508252
\(761\) 28.1761 1.02138 0.510691 0.859765i \(-0.329390\pi\)
0.510691 + 0.859765i \(0.329390\pi\)
\(762\) −1.32472 −0.0479896
\(763\) 0.497652 0.0180162
\(764\) −41.9517 −1.51776
\(765\) 7.16745 0.259140
\(766\) −2.63706 −0.0952809
\(767\) 63.5241 2.29372
\(768\) 13.8037 0.498099
\(769\) −25.8412 −0.931856 −0.465928 0.884823i \(-0.654279\pi\)
−0.465928 + 0.884823i \(0.654279\pi\)
\(770\) −0.352761 −0.0127126
\(771\) 12.2227 0.440191
\(772\) 6.45645 0.232373
\(773\) 44.0833 1.58557 0.792784 0.609503i \(-0.208631\pi\)
0.792784 + 0.609503i \(0.208631\pi\)
\(774\) 1.11137 0.0399474
\(775\) 7.98513 0.286834
\(776\) −5.63628 −0.202331
\(777\) 1.46961 0.0527221
\(778\) 5.46570 0.195955
\(779\) 17.5912 0.630269
\(780\) −16.0506 −0.574704
\(781\) 16.6931 0.597328
\(782\) 1.02804 0.0367626
\(783\) 5.46961 0.195468
\(784\) 3.83255 0.136877
\(785\) −15.5078 −0.553498
\(786\) −0.302164 −0.0107778
\(787\) −36.7204 −1.30894 −0.654470 0.756088i \(-0.727108\pi\)
−0.654470 + 0.756088i \(0.727108\pi\)
\(788\) −0.706440 −0.0251659
\(789\) 5.47900 0.195058
\(790\) −1.46022 −0.0519524
\(791\) 1.44627 0.0514234
\(792\) −1.20018 −0.0426467
\(793\) −32.3294 −1.14805
\(794\) −5.72900 −0.203315
\(795\) 1.36294 0.0483384
\(796\) 46.1060 1.63418
\(797\) 40.7804 1.44452 0.722258 0.691624i \(-0.243105\pi\)
0.722258 + 0.691624i \(0.243105\pi\)
\(798\) 0.302164 0.0106965
\(799\) −11.9345 −0.422213
\(800\) 7.17214 0.253574
\(801\) 1.02804 0.0363240
\(802\) 5.95788 0.210380
\(803\) 0.855895 0.0302039
\(804\) 30.4594 1.07422
\(805\) 1.16745 0.0411472
\(806\) 2.56312 0.0902821
\(807\) 26.8598 0.945510
\(808\) −12.4510 −0.438023
\(809\) 2.46883 0.0867993 0.0433997 0.999058i \(-0.486181\pi\)
0.0433997 + 0.999058i \(0.486181\pi\)
\(810\) −0.195488 −0.00686876
\(811\) −16.4182 −0.576522 −0.288261 0.957552i \(-0.593077\pi\)
−0.288261 + 0.957552i \(0.593077\pi\)
\(812\) 10.7859 0.378510
\(813\) −4.13941 −0.145175
\(814\) −0.444064 −0.0155644
\(815\) 8.69314 0.304507
\(816\) 23.5296 0.823701
\(817\) −11.9767 −0.419010
\(818\) −3.75391 −0.131253
\(819\) −6.97196 −0.243620
\(820\) −22.4425 −0.783726
\(821\) −34.1012 −1.19014 −0.595070 0.803674i \(-0.702876\pi\)
−0.595070 + 0.803674i \(0.702876\pi\)
\(822\) 2.25548 0.0786688
\(823\) 16.1628 0.563398 0.281699 0.959503i \(-0.409102\pi\)
0.281699 + 0.959503i \(0.409102\pi\)
\(824\) 3.10589 0.108199
\(825\) 6.56312 0.228499
\(826\) 1.52569 0.0530856
\(827\) −18.5522 −0.645122 −0.322561 0.946549i \(-0.604544\pi\)
−0.322561 + 0.946549i \(0.604544\pi\)
\(828\) 1.97196 0.0685304
\(829\) 45.2453 1.57143 0.785717 0.618586i \(-0.212294\pi\)
0.785717 + 0.618586i \(0.212294\pi\)
\(830\) −1.59116 −0.0552300
\(831\) 17.2414 0.598097
\(832\) −51.1386 −1.77291
\(833\) 6.13941 0.212718
\(834\) 2.53978 0.0879453
\(835\) 24.2173 0.838073
\(836\) 6.42122 0.222083
\(837\) −2.19549 −0.0758872
\(838\) 4.15037 0.143372
\(839\) −1.29747 −0.0447936 −0.0223968 0.999749i \(-0.507130\pi\)
−0.0223968 + 0.999749i \(0.507130\pi\)
\(840\) −0.776472 −0.0267908
\(841\) 0.916669 0.0316093
\(842\) 5.86515 0.202127
\(843\) −11.8318 −0.407508
\(844\) −26.4510 −0.910480
\(845\) 41.5708 1.43008
\(846\) 0.325508 0.0111912
\(847\) 7.74374 0.266078
\(848\) 4.47431 0.153648
\(849\) −13.7812 −0.472968
\(850\) 3.73904 0.128248
\(851\) 1.46961 0.0503777
\(852\) 18.2422 0.624967
\(853\) 33.2835 1.13961 0.569803 0.821781i \(-0.307020\pi\)
0.569803 + 0.821781i \(0.307020\pi\)
\(854\) −0.776472 −0.0265703
\(855\) 2.10668 0.0720468
\(856\) −0.906492 −0.0309833
\(857\) 9.26473 0.316477 0.158239 0.987401i \(-0.449418\pi\)
0.158239 + 0.987401i \(0.449418\pi\)
\(858\) 2.10668 0.0719207
\(859\) −32.7243 −1.11654 −0.558269 0.829660i \(-0.688534\pi\)
−0.558269 + 0.829660i \(0.688534\pi\)
\(860\) 15.2796 0.521030
\(861\) −9.74843 −0.332226
\(862\) −0.564694 −0.0192335
\(863\) −40.1012 −1.36506 −0.682530 0.730857i \(-0.739120\pi\)
−0.682530 + 0.730857i \(0.739120\pi\)
\(864\) −1.97196 −0.0670875
\(865\) −20.7204 −0.704515
\(866\) −1.31142 −0.0445640
\(867\) 20.6924 0.702749
\(868\) −4.32942 −0.146950
\(869\) −13.4790 −0.457244
\(870\) −1.06925 −0.0362508
\(871\) −107.691 −3.64896
\(872\) −0.330989 −0.0112087
\(873\) −8.47431 −0.286812
\(874\) 0.302164 0.0102208
\(875\) 10.0833 0.340879
\(876\) 0.935317 0.0316014
\(877\) 41.6090 1.40504 0.702518 0.711666i \(-0.252059\pi\)
0.702518 + 0.711666i \(0.252059\pi\)
\(878\) −2.18062 −0.0735923
\(879\) 20.9392 0.706263
\(880\) −8.07394 −0.272173
\(881\) −31.9439 −1.07622 −0.538109 0.842875i \(-0.680861\pi\)
−0.538109 + 0.842875i \(0.680861\pi\)
\(882\) −0.167449 −0.00563831
\(883\) −0.0778502 −0.00261987 −0.00130993 0.999999i \(-0.500417\pi\)
−0.00130993 + 0.999999i \(0.500417\pi\)
\(884\) −84.4073 −2.83892
\(885\) 10.6371 0.357561
\(886\) 1.22744 0.0412365
\(887\) 4.80530 0.161346 0.0806731 0.996741i \(-0.474293\pi\)
0.0806731 + 0.996741i \(0.474293\pi\)
\(888\) −0.977442 −0.0328008
\(889\) −7.91119 −0.265333
\(890\) −0.200970 −0.00673652
\(891\) −1.80451 −0.0604534
\(892\) −17.1963 −0.575774
\(893\) −3.50783 −0.117385
\(894\) −3.27412 −0.109503
\(895\) 5.18531 0.173326
\(896\) −5.17214 −0.172789
\(897\) −6.97196 −0.232787
\(898\) 1.58959 0.0530452
\(899\) −12.0085 −0.400505
\(900\) 7.17214 0.239071
\(901\) 7.16745 0.238782
\(902\) 2.94563 0.0980786
\(903\) 6.63706 0.220868
\(904\) −0.961916 −0.0319928
\(905\) −13.6502 −0.453749
\(906\) 2.22274 0.0738456
\(907\) 56.9337 1.89045 0.945227 0.326414i \(-0.105840\pi\)
0.945227 + 0.326414i \(0.105840\pi\)
\(908\) −27.8178 −0.923166
\(909\) −18.7204 −0.620916
\(910\) 1.36294 0.0451809
\(911\) −5.27412 −0.174740 −0.0873698 0.996176i \(-0.527846\pi\)
−0.0873698 + 0.996176i \(0.527846\pi\)
\(912\) 6.91588 0.229008
\(913\) −14.6877 −0.486091
\(914\) 3.37781 0.111728
\(915\) −5.41353 −0.178966
\(916\) −9.96884 −0.329380
\(917\) −1.80451 −0.0595902
\(918\) −1.02804 −0.0339304
\(919\) −26.1955 −0.864109 −0.432055 0.901847i \(-0.642211\pi\)
−0.432055 + 0.901847i \(0.642211\pi\)
\(920\) −0.776472 −0.0255995
\(921\) −9.80451 −0.323070
\(922\) −3.75001 −0.123500
\(923\) −64.4961 −2.12291
\(924\) −3.55843 −0.117064
\(925\) 5.34507 0.175745
\(926\) −3.46570 −0.113890
\(927\) 4.66980 0.153376
\(928\) −10.7859 −0.354063
\(929\) −40.6643 −1.33415 −0.667076 0.744989i \(-0.732455\pi\)
−0.667076 + 0.744989i \(0.732455\pi\)
\(930\) 0.429193 0.0140738
\(931\) 1.80451 0.0591405
\(932\) 54.6543 1.79026
\(933\) 12.5810 0.411883
\(934\) −0.627672 −0.0205381
\(935\) −12.9337 −0.422979
\(936\) 4.63706 0.151567
\(937\) 12.4276 0.405993 0.202996 0.979179i \(-0.434932\pi\)
0.202996 + 0.979179i \(0.434932\pi\)
\(938\) −2.58647 −0.0844511
\(939\) −18.1667 −0.592847
\(940\) 4.47523 0.145966
\(941\) 36.7149 1.19687 0.598436 0.801171i \(-0.295789\pi\)
0.598436 + 0.801171i \(0.295789\pi\)
\(942\) 2.22431 0.0724721
\(943\) −9.74843 −0.317453
\(944\) 34.9198 1.13654
\(945\) −1.16745 −0.0379771
\(946\) −2.00548 −0.0652038
\(947\) 2.38159 0.0773912 0.0386956 0.999251i \(-0.487680\pi\)
0.0386956 + 0.999251i \(0.487680\pi\)
\(948\) −14.7298 −0.478401
\(949\) −3.30686 −0.107345
\(950\) 1.09899 0.0356559
\(951\) 5.83725 0.189286
\(952\) −4.08333 −0.132342
\(953\) −42.5810 −1.37933 −0.689667 0.724127i \(-0.742243\pi\)
−0.689667 + 0.724127i \(0.742243\pi\)
\(954\) −0.195488 −0.00632917
\(955\) 24.8365 0.803689
\(956\) −15.4547 −0.499842
\(957\) −9.86998 −0.319051
\(958\) 4.90649 0.158522
\(959\) 13.4696 0.434956
\(960\) −8.56312 −0.276374
\(961\) −26.1798 −0.844511
\(962\) 1.71570 0.0553163
\(963\) −1.36294 −0.0439201
\(964\) −38.8326 −1.25071
\(965\) −3.82237 −0.123047
\(966\) −0.167449 −0.00538759
\(967\) −27.3847 −0.880633 −0.440316 0.897843i \(-0.645134\pi\)
−0.440316 + 0.897843i \(0.645134\pi\)
\(968\) −5.15037 −0.165539
\(969\) 11.0786 0.355897
\(970\) 1.65663 0.0531912
\(971\) 16.2555 0.521663 0.260832 0.965384i \(-0.416003\pi\)
0.260832 + 0.965384i \(0.416003\pi\)
\(972\) −1.97196 −0.0632507
\(973\) 15.1674 0.486246
\(974\) −2.86138 −0.0916844
\(975\) −25.3575 −0.812089
\(976\) −17.7718 −0.568861
\(977\) −14.1900 −0.453979 −0.226989 0.973897i \(-0.572888\pi\)
−0.226989 + 0.973897i \(0.572888\pi\)
\(978\) −1.24687 −0.0398706
\(979\) −1.85511 −0.0592895
\(980\) −2.30216 −0.0735399
\(981\) −0.497652 −0.0158888
\(982\) 2.72978 0.0871109
\(983\) 35.8606 1.14378 0.571888 0.820332i \(-0.306211\pi\)
0.571888 + 0.820332i \(0.306211\pi\)
\(984\) 6.48370 0.206693
\(985\) 0.418230 0.0133259
\(986\) −5.62298 −0.179072
\(987\) 1.94392 0.0618757
\(988\) −24.8092 −0.789286
\(989\) 6.63706 0.211046
\(990\) 0.352761 0.0112115
\(991\) 13.1853 0.418845 0.209423 0.977825i \(-0.432842\pi\)
0.209423 + 0.977825i \(0.432842\pi\)
\(992\) 4.32942 0.137459
\(993\) −28.2788 −0.897401
\(994\) −1.54904 −0.0491324
\(995\) −27.2959 −0.865338
\(996\) −16.0506 −0.508583
\(997\) 59.2547 1.87661 0.938307 0.345802i \(-0.112393\pi\)
0.938307 + 0.345802i \(0.112393\pi\)
\(998\) −5.31234 −0.168159
\(999\) −1.46961 −0.0464965
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.h.1.2 3
3.2 odd 2 1449.2.a.l.1.2 3
4.3 odd 2 7728.2.a.bt.1.2 3
7.6 odd 2 3381.2.a.v.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.h.1.2 3 1.1 even 1 trivial
1449.2.a.l.1.2 3 3.2 odd 2
3381.2.a.v.1.2 3 7.6 odd 2
7728.2.a.bt.1.2 3 4.3 odd 2