Properties

Label 3388.1.s.a.475.1
Level 33883388
Weight 11
Character 3388.475
Analytic conductor 1.6911.691
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3388,1,Mod(475,3388)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3388, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3388.475");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3388=227112 3388 = 2^{2} \cdot 7 \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3388.s (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.690832262801.69083226280
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 308)
Projective image: D10D_{10}
Projective field: Galois closure of 10.2.5797306783837184.1

Embedding invariants

Embedding label 475.1
Root 0.3090170.951057i-0.309017 - 0.951057i of defining polynomial
Character χ\chi == 3388.475
Dual form 3388.1.s.a.699.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q4+(0.8090170.587785i)q71.00000q8+(0.309017+0.951057i)q9+(0.809017+0.587785i)q14+1.00000q16+(0.3090170.951057i)q181.90211iq23+(0.809017+0.587785i)q25+(0.8090170.587785i)q28+(0.6909830.951057i)q291.00000q32+(0.309017+0.951057i)q36+(0.500000+0.363271i)q37+1.61803q43+1.90211iq46+(0.309017+0.951057i)q49+(0.8090170.587785i)q50+(0.5000001.53884i)q53+(0.809017+0.587785i)q56+(0.690983+0.951057i)q58+(0.8090170.587785i)q63+1.00000q641.17557iq67+(1.118030.363271i)q71+(0.3090170.951057i)q72+(0.5000000.363271i)q74+(0.5000001.53884i)q79+(0.8090170.587785i)q811.61803q861.90211iq92+(0.3090170.951057i)q98+O(q100)q-1.00000 q^{2} +1.00000 q^{4} +(-0.809017 - 0.587785i) q^{7} -1.00000 q^{8} +(-0.309017 + 0.951057i) q^{9} +(0.809017 + 0.587785i) q^{14} +1.00000 q^{16} +(0.309017 - 0.951057i) q^{18} -1.90211i q^{23} +(-0.809017 + 0.587785i) q^{25} +(-0.809017 - 0.587785i) q^{28} +(0.690983 - 0.951057i) q^{29} -1.00000 q^{32} +(-0.309017 + 0.951057i) q^{36} +(0.500000 + 0.363271i) q^{37} +1.61803 q^{43} +1.90211i q^{46} +(0.309017 + 0.951057i) q^{49} +(0.809017 - 0.587785i) q^{50} +(0.500000 - 1.53884i) q^{53} +(0.809017 + 0.587785i) q^{56} +(-0.690983 + 0.951057i) q^{58} +(0.809017 - 0.587785i) q^{63} +1.00000 q^{64} -1.17557i q^{67} +(1.11803 - 0.363271i) q^{71} +(0.309017 - 0.951057i) q^{72} +(-0.500000 - 0.363271i) q^{74} +(0.500000 - 1.53884i) q^{79} +(-0.809017 - 0.587785i) q^{81} -1.61803 q^{86} -1.90211i q^{92} +(-0.309017 - 0.951057i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+4q4q74q8+q9+q14+4q16q18q25q28+5q294q32+q36+2q37+2q43q49+q50+2q53+q565q58++q98+O(q100) 4 q - 4 q^{2} + 4 q^{4} - q^{7} - 4 q^{8} + q^{9} + q^{14} + 4 q^{16} - q^{18} - q^{25} - q^{28} + 5 q^{29} - 4 q^{32} + q^{36} + 2 q^{37} + 2 q^{43} - q^{49} + q^{50} + 2 q^{53} + q^{56} - 5 q^{58}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3388Z)×\left(\mathbb{Z}/3388\mathbb{Z}\right)^\times.

nn 365365 969969 16951695
χ(n)\chi(n) e(110)e\left(\frac{1}{10}\right) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −1.00000
33 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
44 1.00000 1.00000
55 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
66 0 0
77 −0.809017 0.587785i −0.809017 0.587785i
88 −1.00000 −1.00000
99 −0.309017 + 0.951057i −0.309017 + 0.951057i
1010 0 0
1111 0 0
1212 0 0
1313 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
1414 0.809017 + 0.587785i 0.809017 + 0.587785i
1515 0 0
1616 1.00000 1.00000
1717 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
1818 0.309017 0.951057i 0.309017 0.951057i
1919 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
2020 0 0
2121 0 0
2222 0 0
2323 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
2424 0 0
2525 −0.809017 + 0.587785i −0.809017 + 0.587785i
2626 0 0
2727 0 0
2828 −0.809017 0.587785i −0.809017 0.587785i
2929 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
1.00000 00
3030 0 0
3131 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
3232 −1.00000 −1.00000
3333 0 0
3434 0 0
3535 0 0
3636 −0.309017 + 0.951057i −0.309017 + 0.951057i
3737 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
4242 0 0
4343 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4444 0 0
4545 0 0
4646 1.90211i 1.90211i
4747 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
4848 0 0
4949 0.309017 + 0.951057i 0.309017 + 0.951057i
5050 0.809017 0.587785i 0.809017 0.587785i
5151 0 0
5252 0 0
5353 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
5454 0 0
5555 0 0
5656 0.809017 + 0.587785i 0.809017 + 0.587785i
5757 0 0
5858 −0.690983 + 0.951057i −0.690983 + 0.951057i
5959 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
6060 0 0
6161 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
6262 0 0
6363 0.809017 0.587785i 0.809017 0.587785i
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
6868 0 0
6969 0 0
7070 0 0
7171 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
7272 0.309017 0.951057i 0.309017 0.951057i
7373 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7474 −0.500000 0.363271i −0.500000 0.363271i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
8080 0 0
8181 −0.809017 0.587785i −0.809017 0.587785i
8282 0 0
8383 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
8484 0 0
8585 0 0
8686 −1.61803 −1.61803
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 1.90211i 1.90211i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9898 −0.309017 0.951057i −0.309017 0.951057i
9999 0 0
100100 −0.809017 + 0.587785i −0.809017 + 0.587785i
101101 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
102102 0 0
103103 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
104104 0 0
105105 0 0
106106 −0.500000 + 1.53884i −0.500000 + 1.53884i
107107 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
108108 0 0
109109 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
110110 0 0
111111 0 0
112112 −0.809017 0.587785i −0.809017 0.587785i
113113 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
114114 0 0
115115 0 0
116116 0.690983 0.951057i 0.690983 0.951057i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 −0.809017 + 0.587785i −0.809017 + 0.587785i
127127 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
128128 −1.00000 −1.00000
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 1.17557i 1.17557i
135135 0 0
136136 0 0
137137 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
138138 0 0
139139 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
140140 0 0
141141 0 0
142142 −1.11803 + 0.363271i −1.11803 + 0.363271i
143143 0 0
144144 −0.309017 + 0.951057i −0.309017 + 0.951057i
145145 0 0
146146 0 0
147147 0 0
148148 0.500000 + 0.363271i 0.500000 + 0.363271i
149149 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
150150 0 0
151151 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
158158 −0.500000 + 1.53884i −0.500000 + 1.53884i
159159 0 0
160160 0 0
161161 −1.11803 + 1.53884i −1.11803 + 1.53884i
162162 0.809017 + 0.587785i 0.809017 + 0.587785i
163163 −1.80902 0.587785i −1.80902 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
168168 0 0
169169 0.809017 + 0.587785i 0.809017 + 0.587785i
170170 0 0
171171 0 0
172172 1.61803 1.61803
173173 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
174174 0 0
175175 1.00000 1.00000
176176 0 0
177177 0 0
178178 0 0
179179 −1.11803 1.53884i −1.11803 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
180180 0 0
181181 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
182182 0 0
183183 0 0
184184 1.90211i 1.90211i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
192192 0 0
193193 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
194194 0 0
195195 0 0
196196 0.309017 + 0.951057i 0.309017 + 0.951057i
197197 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0.809017 0.587785i 0.809017 0.587785i
201201 0 0
202202 0 0
203203 −1.11803 + 0.363271i −1.11803 + 0.363271i
204204 0 0
205205 0 0
206206 0 0
207207 1.80902 + 0.587785i 1.80902 + 0.587785i
208208 0 0
209209 0 0
210210 0 0
211211 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
212212 0.500000 1.53884i 0.500000 1.53884i
213213 0 0
214214 0.500000 0.363271i 0.500000 0.363271i
215215 0 0
216216 0 0
217217 0 0
218218 1.90211i 1.90211i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
224224 0.809017 + 0.587785i 0.809017 + 0.587785i
225225 −0.309017 0.951057i −0.309017 0.951057i
226226 −1.30902 + 0.951057i −1.30902 + 0.951057i
227227 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
228228 0 0
229229 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
230230 0 0
231231 0 0
232232 −0.690983 + 0.951057i −0.690983 + 0.951057i
233233 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
252252 0.809017 0.587785i 0.809017 0.587785i
253253 0 0
254254 −0.190983 0.587785i −0.190983 0.587785i
255255 0 0
256256 1.00000 1.00000
257257 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
258258 0 0
259259 −0.190983 0.587785i −0.190983 0.587785i
260260 0 0
261261 0.690983 + 0.951057i 0.690983 + 0.951057i
262262 0 0
263263 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 1.17557i 1.17557i
269269 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
270270 0 0
271271 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
272272 0 0
273273 0 0
274274 0.190983 + 0.587785i 0.190983 + 0.587785i
275275 0 0
276276 0 0
277277 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 00
0.809017 + 0.587785i 0.200000π0.200000\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.11803 + 0.363271i −1.11803 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
282282 0 0
283283 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
284284 1.11803 0.363271i 1.11803 0.363271i
285285 0 0
286286 0 0
287287 0 0
288288 0.309017 0.951057i 0.309017 0.951057i
289289 0.809017 0.587785i 0.809017 0.587785i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
294294 0 0
295295 0 0
296296 −0.500000 0.363271i −0.500000 0.363271i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −1.30902 0.951057i −1.30902 0.951057i
302302 −0.500000 + 0.363271i −0.500000 + 0.363271i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
312312 0 0
313313 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
314314 0 0
315315 0 0
316316 0.500000 1.53884i 0.500000 1.53884i
317317 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 1.11803 1.53884i 1.11803 1.53884i
323323 0 0
324324 −0.809017 0.587785i −0.809017 0.587785i
325325 0 0
326326 1.80902 + 0.587785i 1.80902 + 0.587785i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
332332 0 0
333333 −0.500000 + 0.363271i −0.500000 + 0.363271i
334334 0 0
335335 0 0
336336 0 0
337337 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
338338 −0.809017 0.587785i −0.809017 0.587785i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0.309017 0.951057i 0.309017 0.951057i
344344 −1.61803 −1.61803
345345 0 0
346346 0 0
347347 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
348348 0 0
349349 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
350350 −1.00000 −1.00000
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 1.11803 + 1.53884i 1.11803 + 1.53884i
359359 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
360360 0 0
361361 0.309017 0.951057i 0.309017 0.951057i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
368368 1.90211i 1.90211i
369369 0 0
370370 0 0
371371 −1.30902 + 0.951057i −1.30902 + 0.951057i
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i 0.800000π0.800000\pi
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0.690983 0.951057i 0.690983 0.951057i
383383 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
384384 0 0
385385 0 0
386386 −1.11803 + 0.363271i −1.11803 + 0.363271i
387387 −0.500000 + 1.53884i −0.500000 + 1.53884i
388388 0 0
389389 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
390390 0 0
391391 0 0
392392 −0.309017 0.951057i −0.309017 0.951057i
393393 0 0
394394 1.90211i 1.90211i
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 −0.809017 + 0.587785i −0.809017 + 0.587785i
401401 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 1.11803 0.363271i 1.11803 0.363271i
407407 0 0
408408 0 0
409409 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 −1.80902 0.587785i −1.80902 0.587785i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
422422 −0.190983 + 0.587785i −0.190983 + 0.587785i
423423 0 0
424424 −0.500000 + 1.53884i −0.500000 + 1.53884i
425425 0 0
426426 0 0
427427 0 0
428428 −0.500000 + 0.363271i −0.500000 + 0.363271i
429429 0 0
430430 0 0
431431 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
432432 0 0
433433 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
434434 0 0
435435 0 0
436436 1.90211i 1.90211i
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.809017 0.587785i −0.809017 0.587785i
449449 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
450450 0.309017 + 0.951057i 0.309017 + 0.951057i
451451 0 0
452452 1.30902 0.951057i 1.30902 0.951057i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i 0.800000π0.800000\pi
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
464464 0.690983 0.951057i 0.690983 0.951057i
465465 0 0
466466 0 0
467467 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
468468 0 0
469469 −0.690983 + 0.951057i −0.690983 + 0.951057i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 1.30902 + 0.951057i 1.30902 + 0.951057i
478478 −1.30902 + 0.951057i −1.30902 + 0.951057i
479479 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.690983 + 0.951057i 0.690983 + 0.951057i 1.00000 00
−0.309017 + 0.951057i 0.600000π0.600000\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −1.11803 0.363271i −1.11803 0.363271i
498498 0 0
499499 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
1.00000 00
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
504504 −0.809017 + 0.587785i −0.809017 + 0.587785i
505505 0 0
506506 0 0
507507 0 0
508508 0.190983 + 0.587785i 0.190983 + 0.587785i
509509 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0.190983 + 0.587785i 0.190983 + 0.587785i
519519 0 0
520520 0 0
521521 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
522522 −0.690983 0.951057i −0.690983 0.951057i
523523 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
524524 0 0
525525 0 0
526526 1.61803 1.61803
527527 0 0
528528 0 0
529529 −2.61803 −2.61803
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 1.17557i 1.17557i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −1.80902 0.587785i −1.80902 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
548548 −0.190983 0.587785i −0.190983 0.587785i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 −1.30902 + 0.951057i −1.30902 + 0.951057i
554554 −1.80902 0.587785i −1.80902 0.587785i
555555 0 0
556556 0 0
557557 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 1.11803 0.363271i 1.11803 0.363271i
563563 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0.309017 + 0.951057i 0.309017 + 0.951057i
568568 −1.11803 + 0.363271i −1.11803 + 0.363271i
569569 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
570570 0 0
571571 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
572572 0 0
573573 0 0
574574 0 0
575575 1.11803 + 1.53884i 1.11803 + 1.53884i
576576 −0.309017 + 0.951057i −0.309017 + 0.951057i
577577 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
578578 −0.809017 + 0.587785i −0.809017 + 0.587785i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0.500000 + 0.363271i 0.500000 + 0.363271i
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000 00
600600 0 0
601601 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
602602 1.30902 + 0.951057i 1.30902 + 0.951057i
603603 1.11803 + 0.363271i 1.11803 + 0.363271i
604604 0.500000 0.363271i 0.500000 0.363271i
605605 0 0
606606 0 0
607607 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
618618 0 0
619619 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.309017 0.951057i 0.309017 0.951057i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.11803 + 1.53884i −1.11803 + 1.53884i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
632632 −0.500000 + 1.53884i −0.500000 + 1.53884i
633633 0 0
634634 0.500000 1.53884i 0.500000 1.53884i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 1.17557i 1.17557i
640640 0 0
641641 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
642642 0 0
643643 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
644644 −1.11803 + 1.53884i −1.11803 + 1.53884i
645645 0 0
646646 0 0
647647 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
648648 0.809017 + 0.587785i 0.809017 + 0.587785i
649649 0 0
650650 0 0
651651 0 0
652652 −1.80902 0.587785i −1.80902 0.587785i
653653 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 1.90211i 1.90211i
663663 0 0
664664 0 0
665665 0 0
666666 0.500000 0.363271i 0.500000 0.363271i
667667 −1.80902 1.31433i −1.80902 1.31433i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.11803 + 0.363271i 1.11803 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
674674 −1.11803 + 1.53884i −1.11803 + 1.53884i
675675 0 0
676676 0.809017 + 0.587785i 0.809017 + 0.587785i
677677 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
684684 0 0
685685 0 0
686686 −0.309017 + 0.951057i −0.309017 + 0.951057i
687687 0 0
688688 1.61803 1.61803
689689 0 0
690690 0 0
691691 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
692692 0 0
693693 0 0
694694 −0.500000 1.53884i −0.500000 1.53884i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1.00000 1.00000
701701 −1.11803 1.53884i −1.11803 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
710710 0 0
711711 1.30902 + 0.951057i 1.30902 + 0.951057i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −1.11803 1.53884i −1.11803 1.53884i
717717 0 0
718718 −0.500000 0.363271i −0.500000 0.363271i
719719 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
720720 0 0
721721 0 0
722722 −0.309017 + 0.951057i −0.309017 + 0.951057i
723723 0 0
724724 0 0
725725 1.17557i 1.17557i
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0.809017 0.587785i 0.809017 0.587785i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
734734 0 0
735735 0 0
736736 1.90211i 1.90211i
737737 0 0
738738 0 0
739739 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
740740 0 0
741741 0 0
742742 1.30902 0.951057i 1.30902 0.951057i
743743 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0.618034 0.618034
750750 0 0
751751 1.11803 + 1.53884i 1.11803 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
758758 1.80902 0.587785i 1.80902 0.587785i
759759 0 0
760760 0 0
761761 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
762762 0 0
763763 1.11803 1.53884i 1.11803 1.53884i
764764 −0.690983 + 0.951057i −0.690983 + 0.951057i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 0 0
772772 1.11803 0.363271i 1.11803 0.363271i
773773 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
774774 0.500000 1.53884i 0.500000 1.53884i
775775 0 0
776776 0 0
777777 0 0
778778 0.500000 + 0.363271i 0.500000 + 0.363271i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0.309017 + 0.951057i 0.309017 + 0.951057i
785785 0 0
786786 0 0
787787 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
788788 1.90211i 1.90211i
789789 0 0
790790 0 0
791791 −1.61803 −1.61803
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
798798 0 0
799799 0 0
800800 0.809017 0.587785i 0.809017 0.587785i
801801 0 0
802802 −0.190983 0.587785i −0.190983 0.587785i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000 00
810810 0 0
811811 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
812812 −1.11803 + 0.363271i −1.11803 + 0.363271i
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
822822 0 0
823823 −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
828828 1.80902 + 0.587785i 1.80902 + 0.587785i
829829 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
840840 0 0
841841 −0.118034 0.363271i −0.118034 0.363271i
842842 −0.500000 + 0.363271i −0.500000 + 0.363271i
843843 0 0
844844 0.190983 0.587785i 0.190983 0.587785i
845845 0 0
846846 0 0
847847 0 0
848848 0.500000 1.53884i 0.500000 1.53884i
849849 0 0
850850 0 0
851851 0.690983 0.951057i 0.690983 0.951057i
852852 0 0
853853 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
854854 0 0
855855 0 0
856856 0.500000 0.363271i 0.500000 0.363271i
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0.190983 0.587785i 0.190983 0.587785i
863863 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 1.90211i 1.90211i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 1.00000 1.00000
883883 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
884884 0 0
885885 0 0
886886 0.690983 + 0.951057i 0.690983 + 0.951057i
887887 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
888888 0 0
889889 0.190983 0.587785i 0.190983 0.587785i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0.809017 + 0.587785i 0.809017 + 0.587785i
897897 0 0
898898 0.190983 0.587785i 0.190983 0.587785i
899899 0 0
900900 −0.309017 0.951057i −0.309017 0.951057i
901901 0 0
902902 0 0
903903 0 0
904904 −1.30902 + 0.951057i −1.30902 + 0.951057i
905905 0 0
906906 0 0
907907 −1.11803 + 0.363271i −1.11803 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
912912 0 0
913913 0 0
914914 1.80902 0.587785i 1.80902 0.587785i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −0.618034 −0.618034
926926 1.17557i 1.17557i
927927 0 0
928928 −0.690983 + 0.951057i −0.690983 + 0.951057i
929929 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
938938 0.690983 0.951057i 0.690983 0.951057i
939939 0 0
940940 0 0
941941 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
954954 −1.30902 0.951057i −1.30902 0.951057i
955955 0 0
956956 1.30902 0.951057i 1.30902 0.951057i
957957 0 0
958958 0 0
959959 −0.190983 + 0.587785i −0.190983 + 0.587785i
960960 0 0
961961 0.809017 + 0.587785i 0.809017 + 0.587785i
962962 0 0
963963 −0.190983 0.587785i −0.190983 0.587785i
964964 0 0
965965 0 0
966966 0 0
967967 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
972972 0 0
973973 0 0
974974 −0.690983 0.951057i −0.690983 0.951057i
975975 0 0
976976 0 0
977977 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
978978 0 0
979979 0 0
980980 0 0
981981 −1.80902 0.587785i −1.80902 0.587785i
982982 −1.61803 1.17557i −1.61803 1.17557i
983983 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 3.07768i 3.07768i
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 1.11803 + 0.363271i 1.11803 + 0.363271i
995995 0 0
996996 0 0
997997 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
998998 −0.690983 + 0.951057i −0.690983 + 0.951057i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3388.1.s.a.475.1 4
4.3 odd 2 3388.1.s.d.475.1 4
7.6 odd 2 CM 3388.1.s.a.475.1 4
11.2 odd 10 308.1.s.a.195.1 yes 4
11.3 even 5 308.1.s.b.139.1 yes 4
11.4 even 5 3388.1.g.b.3387.1 4
11.5 even 5 3388.1.s.e.699.1 4
11.6 odd 10 3388.1.s.d.699.1 4
11.7 odd 10 3388.1.g.a.3387.4 4
11.8 odd 10 3388.1.s.b.1371.1 4
11.9 even 5 3388.1.s.g.2659.1 4
11.10 odd 2 3388.1.s.h.475.1 4
28.27 even 2 3388.1.s.d.475.1 4
33.2 even 10 2772.1.dl.b.811.1 4
33.14 odd 10 2772.1.dl.a.1063.1 4
44.3 odd 10 308.1.s.a.139.1 4
44.7 even 10 3388.1.g.b.3387.2 4
44.15 odd 10 3388.1.g.a.3387.3 4
44.19 even 10 3388.1.s.g.1371.1 4
44.27 odd 10 3388.1.s.h.699.1 4
44.31 odd 10 3388.1.s.b.2659.1 4
44.35 even 10 308.1.s.b.195.1 yes 4
44.39 even 10 inner 3388.1.s.a.699.1 4
44.43 even 2 3388.1.s.e.475.1 4
77.2 odd 30 2156.1.bm.b.1207.1 8
77.3 odd 30 2156.1.bm.a.1195.1 8
77.6 even 10 3388.1.s.d.699.1 4
77.13 even 10 308.1.s.a.195.1 yes 4
77.20 odd 10 3388.1.s.g.2659.1 4
77.24 even 30 2156.1.bm.b.19.1 8
77.25 even 15 2156.1.bm.a.1195.1 8
77.27 odd 10 3388.1.s.e.699.1 4
77.41 even 10 3388.1.s.b.1371.1 4
77.46 odd 30 2156.1.bm.b.19.1 8
77.47 odd 30 2156.1.bm.a.227.1 8
77.48 odd 10 3388.1.g.b.3387.1 4
77.58 even 15 2156.1.bm.a.227.1 8
77.62 even 10 3388.1.g.a.3387.4 4
77.68 even 30 2156.1.bm.b.1207.1 8
77.69 odd 10 308.1.s.b.139.1 yes 4
77.76 even 2 3388.1.s.h.475.1 4
132.35 odd 10 2772.1.dl.a.811.1 4
132.47 even 10 2772.1.dl.b.1063.1 4
231.146 even 10 2772.1.dl.a.1063.1 4
231.167 odd 10 2772.1.dl.b.811.1 4
308.3 even 30 2156.1.bm.b.1195.1 8
308.27 even 10 3388.1.s.h.699.1 4
308.47 even 30 2156.1.bm.b.227.1 8
308.79 even 30 2156.1.bm.a.1207.1 8
308.83 odd 10 inner 3388.1.s.a.699.1 4
308.123 even 30 2156.1.bm.a.19.1 8
308.135 odd 30 2156.1.bm.b.227.1 8
308.139 odd 10 3388.1.g.b.3387.2 4
308.167 odd 10 308.1.s.b.195.1 yes 4
308.179 odd 30 2156.1.bm.b.1195.1 8
308.195 odd 10 3388.1.s.g.1371.1 4
308.223 even 10 308.1.s.a.139.1 4
308.251 even 10 3388.1.s.b.2659.1 4
308.255 odd 30 2156.1.bm.a.19.1 8
308.279 even 10 3388.1.g.a.3387.3 4
308.299 odd 30 2156.1.bm.a.1207.1 8
308.307 odd 2 3388.1.s.e.475.1 4
924.167 even 10 2772.1.dl.a.811.1 4
924.839 odd 10 2772.1.dl.b.1063.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.1.s.a.139.1 4 44.3 odd 10
308.1.s.a.139.1 4 308.223 even 10
308.1.s.a.195.1 yes 4 11.2 odd 10
308.1.s.a.195.1 yes 4 77.13 even 10
308.1.s.b.139.1 yes 4 11.3 even 5
308.1.s.b.139.1 yes 4 77.69 odd 10
308.1.s.b.195.1 yes 4 44.35 even 10
308.1.s.b.195.1 yes 4 308.167 odd 10
2156.1.bm.a.19.1 8 308.123 even 30
2156.1.bm.a.19.1 8 308.255 odd 30
2156.1.bm.a.227.1 8 77.47 odd 30
2156.1.bm.a.227.1 8 77.58 even 15
2156.1.bm.a.1195.1 8 77.3 odd 30
2156.1.bm.a.1195.1 8 77.25 even 15
2156.1.bm.a.1207.1 8 308.79 even 30
2156.1.bm.a.1207.1 8 308.299 odd 30
2156.1.bm.b.19.1 8 77.24 even 30
2156.1.bm.b.19.1 8 77.46 odd 30
2156.1.bm.b.227.1 8 308.47 even 30
2156.1.bm.b.227.1 8 308.135 odd 30
2156.1.bm.b.1195.1 8 308.3 even 30
2156.1.bm.b.1195.1 8 308.179 odd 30
2156.1.bm.b.1207.1 8 77.2 odd 30
2156.1.bm.b.1207.1 8 77.68 even 30
2772.1.dl.a.811.1 4 132.35 odd 10
2772.1.dl.a.811.1 4 924.167 even 10
2772.1.dl.a.1063.1 4 33.14 odd 10
2772.1.dl.a.1063.1 4 231.146 even 10
2772.1.dl.b.811.1 4 33.2 even 10
2772.1.dl.b.811.1 4 231.167 odd 10
2772.1.dl.b.1063.1 4 132.47 even 10
2772.1.dl.b.1063.1 4 924.839 odd 10
3388.1.g.a.3387.3 4 44.15 odd 10
3388.1.g.a.3387.3 4 308.279 even 10
3388.1.g.a.3387.4 4 11.7 odd 10
3388.1.g.a.3387.4 4 77.62 even 10
3388.1.g.b.3387.1 4 11.4 even 5
3388.1.g.b.3387.1 4 77.48 odd 10
3388.1.g.b.3387.2 4 44.7 even 10
3388.1.g.b.3387.2 4 308.139 odd 10
3388.1.s.a.475.1 4 1.1 even 1 trivial
3388.1.s.a.475.1 4 7.6 odd 2 CM
3388.1.s.a.699.1 4 44.39 even 10 inner
3388.1.s.a.699.1 4 308.83 odd 10 inner
3388.1.s.b.1371.1 4 11.8 odd 10
3388.1.s.b.1371.1 4 77.41 even 10
3388.1.s.b.2659.1 4 44.31 odd 10
3388.1.s.b.2659.1 4 308.251 even 10
3388.1.s.d.475.1 4 4.3 odd 2
3388.1.s.d.475.1 4 28.27 even 2
3388.1.s.d.699.1 4 11.6 odd 10
3388.1.s.d.699.1 4 77.6 even 10
3388.1.s.e.475.1 4 44.43 even 2
3388.1.s.e.475.1 4 308.307 odd 2
3388.1.s.e.699.1 4 11.5 even 5
3388.1.s.e.699.1 4 77.27 odd 10
3388.1.s.g.1371.1 4 44.19 even 10
3388.1.s.g.1371.1 4 308.195 odd 10
3388.1.s.g.2659.1 4 11.9 even 5
3388.1.s.g.2659.1 4 77.20 odd 10
3388.1.s.h.475.1 4 11.10 odd 2
3388.1.s.h.475.1 4 77.76 even 2
3388.1.s.h.699.1 4 44.27 odd 10
3388.1.s.h.699.1 4 308.27 even 10