Properties

Label 308.1.s.a.195.1
Level $308$
Weight $1$
Character 308.195
Analytic conductor $0.154$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,1,Mod(83,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.83");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 308.s (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.153712023891\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.2.5797306783837184.1

Embedding invariants

Embedding label 195.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 308.195
Dual form 308.1.s.a.139.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{4} +(-0.309017 + 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(0.809017 - 0.587785i) q^{9} +(0.809017 + 0.587785i) q^{11} +(0.809017 - 0.587785i) q^{14} +(-0.809017 + 0.587785i) q^{16} -1.00000 q^{18} +(-0.309017 - 0.951057i) q^{22} -1.90211i q^{23} +(0.309017 + 0.951057i) q^{25} -1.00000 q^{28} +(-1.11803 - 0.363271i) q^{29} +1.00000 q^{32} +(0.809017 + 0.587785i) q^{36} +(-0.190983 + 0.587785i) q^{37} -1.61803 q^{43} +(-0.309017 + 0.951057i) q^{44} +(-1.11803 + 1.53884i) q^{46} +(-0.809017 - 0.587785i) q^{49} +(0.309017 - 0.951057i) q^{50} +(-1.30902 + 0.951057i) q^{53} +(0.809017 + 0.587785i) q^{56} +(0.690983 + 0.951057i) q^{58} +(0.309017 + 0.951057i) q^{63} +(-0.809017 - 0.587785i) q^{64} -1.17557i q^{67} +(-0.690983 + 0.951057i) q^{71} +(-0.309017 - 0.951057i) q^{72} +(0.500000 - 0.363271i) q^{74} +(-0.809017 + 0.587785i) q^{77} +(1.30902 - 0.951057i) q^{79} +(0.309017 - 0.951057i) q^{81} +(1.30902 + 0.951057i) q^{86} +(0.809017 - 0.587785i) q^{88} +(1.80902 - 0.587785i) q^{92} +(0.309017 + 0.951057i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} + q^{7} - q^{8} + q^{9} + q^{11} + q^{14} - q^{16} - 4 q^{18} + q^{22} - q^{25} - 4 q^{28} + 4 q^{32} + q^{36} - 3 q^{37} - 2 q^{43} + q^{44} - q^{49} - q^{50} - 3 q^{53}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.809017 0.587785i
\(3\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(4\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(5\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(8\) 0.309017 0.951057i 0.309017 0.951057i
\(9\) 0.809017 0.587785i 0.809017 0.587785i
\(10\) 0 0
\(11\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(12\) 0 0
\(13\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(14\) 0.809017 0.587785i 0.809017 0.587785i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(17\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(18\) −1.00000 −1.00000
\(19\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.309017 0.951057i −0.309017 0.951057i
\(23\) 1.90211i 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(26\) 0 0
\(27\) 0 0
\(28\) −1.00000 −1.00000
\(29\) −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(32\) 1.00000 1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(37\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(42\) 0 0
\(43\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(44\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(45\) 0 0
\(46\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(47\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.809017 0.587785i
\(50\) 0.309017 0.951057i 0.309017 0.951057i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(57\) 0 0
\(58\) 0.690983 + 0.951057i 0.690983 + 0.951057i
\(59\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(60\) 0 0
\(61\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(62\) 0 0
\(63\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(64\) −0.809017 0.587785i −0.809017 0.587785i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i \(0.400000\pi\)
−1.00000 \(1.00000\pi\)
\(72\) −0.309017 0.951057i −0.309017 0.951057i
\(73\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(74\) 0.500000 0.363271i 0.500000 0.363271i
\(75\) 0 0
\(76\) 0 0
\(77\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(78\) 0 0
\(79\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.309017 0.951057i
\(82\) 0 0
\(83\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(87\) 0 0
\(88\) 0.809017 0.587785i 0.809017 0.587785i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.80902 0.587785i 1.80902 0.587785i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(99\) 1.00000 1.00000
\(100\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(101\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(102\) 0 0
\(103\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.61803 1.61803
\(107\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1.90211i 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.309017 0.951057i −0.309017 0.951057i
\(113\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.17557i 1.17557i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.309017 0.951057i 0.309017 0.951057i
\(127\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(128\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.690983 + 0.951057i −0.690983 + 0.951057i
\(135\) 0 0
\(136\) 0 0
\(137\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(138\) 0 0
\(139\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.11803 0.363271i 1.11803 0.363271i
\(143\) 0 0
\(144\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −0.618034 −0.618034
\(149\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(150\) 0 0
\(151\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.00000 1.00000
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(158\) −1.61803 −1.61803
\(159\) 0 0
\(160\) 0 0
\(161\) 1.80902 + 0.587785i 1.80902 + 0.587785i
\(162\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(163\) 1.11803 + 1.53884i 1.11803 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(168\) 0 0
\(169\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.500000 1.53884i −0.500000 1.53884i
\(173\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(174\) 0 0
\(175\) −1.00000 −1.00000
\(176\) −1.00000 −1.00000
\(177\) 0 0
\(178\) 0 0
\(179\) −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i \(0.800000\pi\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.80902 0.587785i −1.80902 0.587785i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(192\) 0 0
\(193\) 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
1.00000 \(0\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.309017 0.951057i 0.309017 0.951057i
\(197\) 1.90211i 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(198\) −0.809017 0.587785i −0.809017 0.587785i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.00000 1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) 0.690983 0.951057i 0.690983 0.951057i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.11803 1.53884i −1.11803 1.53884i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(212\) −1.30902 0.951057i −1.30902 0.951057i
\(213\) 0 0
\(214\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(224\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(225\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(226\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(227\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(228\) 0 0
\(229\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.690983 + 0.951057i −0.690983 + 0.951057i
\(233\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0.309017 0.951057i 0.309017 0.951057i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(252\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(253\) 1.11803 1.53884i 1.11803 1.53884i
\(254\) −0.190983 0.587785i −0.190983 0.587785i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.309017 0.951057i
\(257\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(258\) 0 0
\(259\) −0.500000 0.363271i −0.500000 0.363271i
\(260\) 0 0
\(261\) −1.11803 + 0.363271i −1.11803 + 0.363271i
\(262\) 0 0
\(263\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.11803 0.363271i 1.11803 0.363271i
\(269\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(270\) 0 0
\(271\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.190983 0.587785i −0.190983 0.587785i
\(275\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(276\) 0 0
\(277\) 1.11803 + 1.53884i 1.11803 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i \(0.400000\pi\)
−1.00000 \(1.00000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(284\) −1.11803 0.363271i −1.11803 0.363271i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.809017 0.587785i 0.809017 0.587785i
\(289\) −0.309017 0.951057i −0.309017 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.500000 1.53884i 0.500000 1.53884i
\(302\) 0.190983 0.587785i 0.190983 0.587785i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −0.809017 0.587785i −0.809017 0.587785i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(317\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(318\) 0 0
\(319\) −0.690983 0.951057i −0.690983 0.951057i
\(320\) 0 0
\(321\) 0 0
\(322\) −1.11803 1.53884i −1.11803 1.53884i
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 1.90211i 1.90211i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.90211i 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(332\) 0 0
\(333\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.80902 0.587785i −1.80902 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
−1.00000 \(\pi\)
\(338\) 0.809017 0.587785i 0.809017 0.587785i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.809017 0.587785i 0.809017 0.587785i
\(344\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(345\) 0 0
\(346\) 0 0
\(347\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(348\) 0 0
\(349\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(350\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(351\) 0 0
\(352\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 1.80902 + 0.587785i 1.80902 + 0.587785i
\(359\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(360\) 0 0
\(361\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(368\) 1.11803 + 1.53884i 1.11803 + 1.53884i
\(369\) 0 0
\(370\) 0 0
\(371\) −0.500000 1.53884i −0.500000 1.53884i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.690983 + 0.951057i 0.690983 + 0.951057i
\(383\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.11803 + 0.363271i −1.11803 + 0.363271i
\(387\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(388\) 0 0
\(389\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(393\) 0 0
\(394\) 1.11803 1.53884i 1.11803 1.53884i
\(395\) 0 0
\(396\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.809017 0.587785i −0.809017 0.587785i
\(401\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −1.11803 + 0.363271i −1.11803 + 0.363271i
\(407\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(408\) 0 0
\(409\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 1.90211i 1.90211i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(422\) −0.618034 −0.618034
\(423\) 0 0
\(424\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.500000 0.363271i 0.500000 0.363271i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 0 0
\(433\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.80902 0.587785i 1.80902 0.587785i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.00000 −1.00000
\(442\) 0 0
\(443\) −1.11803 + 0.363271i −1.11803 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.809017 0.587785i 0.809017 0.587785i
\(449\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(450\) −0.309017 0.951057i −0.309017 0.951057i
\(451\) 0 0
\(452\) 1.30902 0.951057i 1.30902 0.951057i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.11803 + 1.53884i −1.11803 + 1.53884i −0.309017 + 0.951057i \(0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 1.17557i 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(464\) 1.11803 0.363271i 1.11803 0.363271i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(468\) 0 0
\(469\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.30902 0.951057i −1.30902 0.951057i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(478\) 0.500000 1.53884i 0.500000 1.53884i
\(479\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(485\) 0 0
\(486\) 0 0
\(487\) 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.690983 0.951057i −0.690983 0.951057i
\(498\) 0 0
\(499\) 1.11803 + 0.363271i 1.11803 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(504\) 1.00000 1.00000
\(505\) 0 0
\(506\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(507\) 0 0
\(508\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(509\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(522\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(523\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.30902 0.951057i −1.30902 0.951057i
\(527\) 0 0
\(528\) 0 0
\(529\) −2.61803 −2.61803
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.11803 0.363271i −1.11803 0.363271i
\(537\) 0 0
\(538\) 0 0
\(539\) −0.309017 0.951057i −0.309017 0.951057i
\(540\) 0 0
\(541\) −1.11803 1.53884i −1.11803 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(548\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(549\) 0 0
\(550\) 0.809017 0.587785i 0.809017 0.587785i
\(551\) 0 0
\(552\) 0 0
\(553\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(554\) 1.90211i 1.90211i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.11803 + 0.363271i 1.11803 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.11803 0.363271i 1.11803 0.363271i
\(563\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(568\) 0.690983 + 0.951057i 0.690983 + 0.951057i
\(569\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(570\) 0 0
\(571\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.80902 0.587785i 1.80902 0.587785i
\(576\) −1.00000 −1.00000
\(577\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(578\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.61803 −1.61803
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.190983 0.587785i −0.190983 0.587785i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.11803 + 1.53884i −1.11803 + 1.53884i −0.309017 + 0.951057i \(0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(600\) 0 0
\(601\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(602\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(603\) −0.690983 0.951057i −0.690983 0.951057i
\(604\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(617\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(618\) 0 0
\(619\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.80902 0.587785i −1.80902 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
−1.00000 \(\pi\)
\(632\) −0.500000 1.53884i −0.500000 1.53884i
\(633\) 0 0
\(634\) −1.61803 −1.61803
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.17557i 1.17557i
\(639\) 1.17557i 1.17557i
\(640\) 0 0
\(641\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(642\) 0 0
\(643\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(644\) 1.90211i 1.90211i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(648\) −0.809017 0.587785i −0.809017 0.587785i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(653\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 1.11803 1.53884i 1.11803 1.53884i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.190983 0.587785i 0.190983 0.587785i
\(667\) −0.690983 + 2.12663i −0.690983 + 2.12663i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.690983 + 0.951057i 0.690983 + 0.951057i 1.00000 \(0\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(674\) 1.11803 + 1.53884i 1.11803 + 1.53884i
\(675\) 0 0
\(676\) −1.00000 −1.00000
\(677\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.90211i 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −1.00000
\(687\) 0 0
\(688\) 1.30902 0.951057i 1.30902 0.951057i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(692\) 0 0
\(693\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(694\) −0.500000 1.53884i −0.500000 1.53884i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.309017 0.951057i −0.309017 0.951057i
\(701\) 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
1.00000 \(0\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.309017 0.951057i −0.309017 0.951057i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 0.500000 1.53884i 0.500000 1.53884i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.11803 1.53884i −1.11803 1.53884i
\(717\) 0 0
\(718\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(719\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 1.17557i 1.17557i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −0.309017 0.951057i −0.309017 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.90211i 1.90211i
\(737\) 0.690983 0.951057i 0.690983 0.951057i
\(738\) 0 0
\(739\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(743\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.618034 0.618034
\(750\) 0 0
\(751\) 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(758\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(762\) 0 0
\(763\) 1.80902 + 0.587785i 1.80902 + 0.587785i
\(764\) 1.17557i 1.17557i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(773\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(774\) 1.61803 1.61803
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(779\) 0 0
\(780\) 0 0
\(781\) −1.11803 + 0.363271i −1.11803 + 0.363271i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(788\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.61803 1.61803
\(792\) 0.309017 0.951057i 0.309017 0.951057i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(801\) 0 0
\(802\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(810\) 0 0
\(811\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(812\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(813\) 0 0
\(814\) 0.618034 0.618034
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(822\) 0 0
\(823\) 0.690983 + 0.951057i 0.690983 + 0.951057i 1.00000 \(0\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(828\) 1.11803 1.53884i 1.11803 1.53884i
\(829\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(840\) 0 0
\(841\) 0.309017 + 0.224514i 0.309017 + 0.224514i
\(842\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(843\) 0 0
\(844\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(845\) 0 0
\(846\) 0 0
\(847\) −1.00000 −1.00000
\(848\) 0.500000 1.53884i 0.500000 1.53884i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(852\) 0 0
\(853\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.618034 −0.618034
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.618034 0.618034
\(863\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.61803 1.61803
\(870\) 0 0
\(871\) 0 0
\(872\) −1.80902 0.587785i −1.80902 0.587785i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(883\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(887\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(888\) 0 0
\(889\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(890\) 0 0
\(891\) 0.809017 0.587785i 0.809017 0.587785i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −1.00000
\(897\) 0 0
\(898\) −0.618034 −0.618034
\(899\) 0 0
\(900\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.61803 −1.61803
\(905\) 0 0
\(906\) 0 0
\(907\) 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
1.00000 \(0\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.80902 0.587785i 1.80902 0.587785i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.618034 −0.618034
\(926\) 0.690983 0.951057i 0.690983 0.951057i
\(927\) 0 0
\(928\) −1.11803 0.363271i −1.11803 0.363271i
\(929\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(938\) −0.690983 0.951057i −0.690983 0.951057i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.80902 0.587785i −1.80902 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
−1.00000 \(\pi\)
\(954\) 1.30902 0.951057i 1.30902 0.951057i
\(955\) 0 0
\(956\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(957\) 0 0
\(958\) 0 0
\(959\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(960\) 0 0
\(961\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(962\) 0 0
\(963\) −0.500000 0.363271i −0.500000 0.363271i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(968\) 1.00000 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.11803 0.363271i −1.11803 0.363271i
\(975\) 0 0
\(976\) 0 0
\(977\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.11803 1.53884i −1.11803 1.53884i
\(982\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(983\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.07768i 3.07768i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 1.17557i 1.17557i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(998\) −0.690983 0.951057i −0.690983 0.951057i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.1.s.a.195.1 yes 4
3.2 odd 2 2772.1.dl.b.811.1 4
4.3 odd 2 308.1.s.b.195.1 yes 4
7.2 even 3 2156.1.bm.b.1207.1 8
7.3 odd 6 2156.1.bm.b.19.1 8
7.4 even 3 2156.1.bm.b.19.1 8
7.5 odd 6 2156.1.bm.b.1207.1 8
7.6 odd 2 CM 308.1.s.a.195.1 yes 4
11.2 odd 10 3388.1.g.b.3387.1 4
11.3 even 5 3388.1.s.d.699.1 4
11.4 even 5 3388.1.s.b.1371.1 4
11.5 even 5 3388.1.s.h.475.1 4
11.6 odd 10 3388.1.s.a.475.1 4
11.7 odd 10 308.1.s.b.139.1 yes 4
11.8 odd 10 3388.1.s.e.699.1 4
11.9 even 5 3388.1.g.a.3387.4 4
11.10 odd 2 3388.1.s.g.2659.1 4
12.11 even 2 2772.1.dl.a.811.1 4
21.20 even 2 2772.1.dl.b.811.1 4
28.3 even 6 2156.1.bm.a.19.1 8
28.11 odd 6 2156.1.bm.a.19.1 8
28.19 even 6 2156.1.bm.a.1207.1 8
28.23 odd 6 2156.1.bm.a.1207.1 8
28.27 even 2 308.1.s.b.195.1 yes 4
33.29 even 10 2772.1.dl.a.1063.1 4
44.3 odd 10 3388.1.s.a.699.1 4
44.7 even 10 inner 308.1.s.a.139.1 4
44.15 odd 10 3388.1.s.g.1371.1 4
44.19 even 10 3388.1.s.h.699.1 4
44.27 odd 10 3388.1.s.e.475.1 4
44.31 odd 10 3388.1.g.b.3387.2 4
44.35 even 10 3388.1.g.a.3387.3 4
44.39 even 10 3388.1.s.d.475.1 4
44.43 even 2 3388.1.s.b.2659.1 4
77.6 even 10 3388.1.s.a.475.1 4
77.13 even 10 3388.1.g.b.3387.1 4
77.18 odd 30 2156.1.bm.a.1195.1 8
77.20 odd 10 3388.1.g.a.3387.4 4
77.27 odd 10 3388.1.s.h.475.1 4
77.40 even 30 2156.1.bm.a.227.1 8
77.41 even 10 3388.1.s.e.699.1 4
77.48 odd 10 3388.1.s.b.1371.1 4
77.51 odd 30 2156.1.bm.a.227.1 8
77.62 even 10 308.1.s.b.139.1 yes 4
77.69 odd 10 3388.1.s.d.699.1 4
77.73 even 30 2156.1.bm.a.1195.1 8
77.76 even 2 3388.1.s.g.2659.1 4
84.83 odd 2 2772.1.dl.a.811.1 4
132.95 odd 10 2772.1.dl.b.1063.1 4
231.62 odd 10 2772.1.dl.a.1063.1 4
308.27 even 10 3388.1.s.e.475.1 4
308.51 even 30 2156.1.bm.b.227.1 8
308.83 odd 10 3388.1.s.d.475.1 4
308.95 even 30 2156.1.bm.b.1195.1 8
308.139 odd 10 inner 308.1.s.a.139.1 4
308.167 odd 10 3388.1.g.a.3387.3 4
308.195 odd 10 3388.1.s.h.699.1 4
308.223 even 10 3388.1.s.a.699.1 4
308.227 odd 30 2156.1.bm.b.1195.1 8
308.251 even 10 3388.1.g.b.3387.2 4
308.271 odd 30 2156.1.bm.b.227.1 8
308.279 even 10 3388.1.s.g.1371.1 4
308.307 odd 2 3388.1.s.b.2659.1 4
924.755 even 10 2772.1.dl.b.1063.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.1.s.a.139.1 4 44.7 even 10 inner
308.1.s.a.139.1 4 308.139 odd 10 inner
308.1.s.a.195.1 yes 4 1.1 even 1 trivial
308.1.s.a.195.1 yes 4 7.6 odd 2 CM
308.1.s.b.139.1 yes 4 11.7 odd 10
308.1.s.b.139.1 yes 4 77.62 even 10
308.1.s.b.195.1 yes 4 4.3 odd 2
308.1.s.b.195.1 yes 4 28.27 even 2
2156.1.bm.a.19.1 8 28.3 even 6
2156.1.bm.a.19.1 8 28.11 odd 6
2156.1.bm.a.227.1 8 77.40 even 30
2156.1.bm.a.227.1 8 77.51 odd 30
2156.1.bm.a.1195.1 8 77.18 odd 30
2156.1.bm.a.1195.1 8 77.73 even 30
2156.1.bm.a.1207.1 8 28.19 even 6
2156.1.bm.a.1207.1 8 28.23 odd 6
2156.1.bm.b.19.1 8 7.3 odd 6
2156.1.bm.b.19.1 8 7.4 even 3
2156.1.bm.b.227.1 8 308.51 even 30
2156.1.bm.b.227.1 8 308.271 odd 30
2156.1.bm.b.1195.1 8 308.95 even 30
2156.1.bm.b.1195.1 8 308.227 odd 30
2156.1.bm.b.1207.1 8 7.2 even 3
2156.1.bm.b.1207.1 8 7.5 odd 6
2772.1.dl.a.811.1 4 12.11 even 2
2772.1.dl.a.811.1 4 84.83 odd 2
2772.1.dl.a.1063.1 4 33.29 even 10
2772.1.dl.a.1063.1 4 231.62 odd 10
2772.1.dl.b.811.1 4 3.2 odd 2
2772.1.dl.b.811.1 4 21.20 even 2
2772.1.dl.b.1063.1 4 132.95 odd 10
2772.1.dl.b.1063.1 4 924.755 even 10
3388.1.g.a.3387.3 4 44.35 even 10
3388.1.g.a.3387.3 4 308.167 odd 10
3388.1.g.a.3387.4 4 11.9 even 5
3388.1.g.a.3387.4 4 77.20 odd 10
3388.1.g.b.3387.1 4 11.2 odd 10
3388.1.g.b.3387.1 4 77.13 even 10
3388.1.g.b.3387.2 4 44.31 odd 10
3388.1.g.b.3387.2 4 308.251 even 10
3388.1.s.a.475.1 4 11.6 odd 10
3388.1.s.a.475.1 4 77.6 even 10
3388.1.s.a.699.1 4 44.3 odd 10
3388.1.s.a.699.1 4 308.223 even 10
3388.1.s.b.1371.1 4 11.4 even 5
3388.1.s.b.1371.1 4 77.48 odd 10
3388.1.s.b.2659.1 4 44.43 even 2
3388.1.s.b.2659.1 4 308.307 odd 2
3388.1.s.d.475.1 4 44.39 even 10
3388.1.s.d.475.1 4 308.83 odd 10
3388.1.s.d.699.1 4 11.3 even 5
3388.1.s.d.699.1 4 77.69 odd 10
3388.1.s.e.475.1 4 44.27 odd 10
3388.1.s.e.475.1 4 308.27 even 10
3388.1.s.e.699.1 4 11.8 odd 10
3388.1.s.e.699.1 4 77.41 even 10
3388.1.s.g.1371.1 4 44.15 odd 10
3388.1.s.g.1371.1 4 308.279 even 10
3388.1.s.g.2659.1 4 11.10 odd 2
3388.1.s.g.2659.1 4 77.76 even 2
3388.1.s.h.475.1 4 11.5 even 5
3388.1.s.h.475.1 4 77.27 odd 10
3388.1.s.h.699.1 4 44.19 even 10
3388.1.s.h.699.1 4 308.195 odd 10