Properties

Label 340.2.bd.a.57.3
Level $340$
Weight $2$
Character 340.57
Analytic conductor $2.715$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [340,2,Mod(57,340)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(340, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 4, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("340.57");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 340.bd (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.71491366872\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 57.3
Character \(\chi\) \(=\) 340.57
Dual form 340.2.bd.a.173.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25555 + 1.87906i) q^{3} +(0.726829 + 2.11464i) q^{5} +(0.0284166 - 0.142860i) q^{7} +(-0.806426 - 1.94689i) q^{9} +(-1.00307 + 5.04279i) q^{11} -4.88905i q^{13} +(-4.88612 - 1.28928i) q^{15} +(-3.14609 + 2.66498i) q^{17} +(1.19092 - 2.87515i) q^{19} +(0.232765 + 0.232765i) q^{21} +(-5.31781 + 3.55325i) q^{23} +(-3.94344 + 3.07397i) q^{25} +(-1.97869 - 0.393586i) q^{27} +(4.15774 - 6.22249i) q^{29} +(1.27629 + 6.41632i) q^{31} +(-8.21632 - 8.21632i) q^{33} +(0.322752 - 0.0437437i) q^{35} +(-0.0626495 - 0.0418610i) q^{37} +(9.18685 + 6.13846i) q^{39} +(3.08944 + 4.62367i) q^{41} +(-1.83208 + 4.42304i) q^{43} +(3.53084 - 3.12036i) q^{45} +2.27438 q^{47} +(6.44756 + 2.67066i) q^{49} +(-1.05761 - 9.25772i) q^{51} +(7.30566 - 3.02611i) q^{53} +(-11.3928 + 1.54410i) q^{55} +(3.90732 + 5.84772i) q^{57} +(6.44471 - 2.66949i) q^{59} +(5.53142 - 3.69598i) q^{61} +(-0.301048 + 0.0598821i) q^{63} +(10.3386 - 3.55351i) q^{65} +(4.12977 - 4.12977i) q^{67} -14.4538i q^{69} +(-0.386174 + 0.0768148i) q^{71} +(1.88265 + 9.46472i) q^{73} +(-0.824998 - 11.2695i) q^{75} +(0.691909 + 0.286598i) q^{77} +(-8.07724 - 1.60666i) q^{79} +(7.69417 - 7.69417i) q^{81} +(4.48081 + 10.8176i) q^{83} +(-7.92216 - 4.71587i) q^{85} +(6.47222 + 15.6253i) q^{87} +(-9.42104 + 9.42104i) q^{89} +(-0.698450 - 0.138930i) q^{91} +(-13.6591 - 5.65780i) q^{93} +(6.94551 + 0.428642i) q^{95} +(-0.508199 - 2.55489i) q^{97} +(10.6266 - 2.11377i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 24 q^{15} + 8 q^{25} - 48 q^{27} - 32 q^{31} + 16 q^{33} + 32 q^{37} - 32 q^{39} - 40 q^{41} + 80 q^{47} - 40 q^{53} + 16 q^{55} + 8 q^{57} + 112 q^{59} - 48 q^{63} - 32 q^{67} - 16 q^{71} + 8 q^{73}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/340\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(171\) \(241\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.25555 + 1.87906i −0.724893 + 1.08488i 0.267713 + 0.963499i \(0.413732\pi\)
−0.992606 + 0.121380i \(0.961268\pi\)
\(4\) 0 0
\(5\) 0.726829 + 2.11464i 0.325048 + 0.945698i
\(6\) 0 0
\(7\) 0.0284166 0.142860i 0.0107405 0.0539960i −0.975043 0.222014i \(-0.928737\pi\)
0.985784 + 0.168018i \(0.0537368\pi\)
\(8\) 0 0
\(9\) −0.806426 1.94689i −0.268809 0.648962i
\(10\) 0 0
\(11\) −1.00307 + 5.04279i −0.302438 + 1.52046i 0.468451 + 0.883490i \(0.344812\pi\)
−0.770889 + 0.636970i \(0.780188\pi\)
\(12\) 0 0
\(13\) 4.88905i 1.35598i −0.735071 0.677990i \(-0.762851\pi\)
0.735071 0.677990i \(-0.237149\pi\)
\(14\) 0 0
\(15\) −4.88612 1.28928i −1.26159 0.332892i
\(16\) 0 0
\(17\) −3.14609 + 2.66498i −0.763038 + 0.646354i
\(18\) 0 0
\(19\) 1.19092 2.87515i 0.273217 0.659604i −0.726400 0.687272i \(-0.758808\pi\)
0.999617 + 0.0276681i \(0.00880814\pi\)
\(20\) 0 0
\(21\) 0.232765 + 0.232765i 0.0507934 + 0.0507934i
\(22\) 0 0
\(23\) −5.31781 + 3.55325i −1.10884 + 0.740904i −0.968454 0.249193i \(-0.919835\pi\)
−0.140387 + 0.990097i \(0.544835\pi\)
\(24\) 0 0
\(25\) −3.94344 + 3.07397i −0.788688 + 0.614794i
\(26\) 0 0
\(27\) −1.97869 0.393586i −0.380799 0.0757457i
\(28\) 0 0
\(29\) 4.15774 6.22249i 0.772073 1.15549i −0.211922 0.977287i \(-0.567972\pi\)
0.983994 0.178201i \(-0.0570279\pi\)
\(30\) 0 0
\(31\) 1.27629 + 6.41632i 0.229228 + 1.15241i 0.908295 + 0.418330i \(0.137384\pi\)
−0.679068 + 0.734076i \(0.737616\pi\)
\(32\) 0 0
\(33\) −8.21632 8.21632i −1.43028 1.43028i
\(34\) 0 0
\(35\) 0.322752 0.0437437i 0.0545550 0.00739404i
\(36\) 0 0
\(37\) −0.0626495 0.0418610i −0.0102995 0.00688191i 0.550410 0.834895i \(-0.314471\pi\)
−0.560709 + 0.828013i \(0.689471\pi\)
\(38\) 0 0
\(39\) 9.18685 + 6.13846i 1.47107 + 0.982940i
\(40\) 0 0
\(41\) 3.08944 + 4.62367i 0.482489 + 0.722096i 0.990235 0.139411i \(-0.0445210\pi\)
−0.507746 + 0.861507i \(0.669521\pi\)
\(42\) 0 0
\(43\) −1.83208 + 4.42304i −0.279390 + 0.674507i −0.999819 0.0190215i \(-0.993945\pi\)
0.720429 + 0.693529i \(0.243945\pi\)
\(44\) 0 0
\(45\) 3.53084 3.12036i 0.526346 0.465155i
\(46\) 0 0
\(47\) 2.27438 0.331753 0.165876 0.986147i \(-0.446955\pi\)
0.165876 + 0.986147i \(0.446955\pi\)
\(48\) 0 0
\(49\) 6.44756 + 2.67066i 0.921079 + 0.381524i
\(50\) 0 0
\(51\) −1.05761 9.25772i −0.148095 1.29634i
\(52\) 0 0
\(53\) 7.30566 3.02611i 1.00351 0.415668i 0.180427 0.983588i \(-0.442252\pi\)
0.823083 + 0.567921i \(0.192252\pi\)
\(54\) 0 0
\(55\) −11.3928 + 1.54410i −1.53620 + 0.208207i
\(56\) 0 0
\(57\) 3.90732 + 5.84772i 0.517537 + 0.774549i
\(58\) 0 0
\(59\) 6.44471 2.66949i 0.839030 0.347537i 0.0785588 0.996909i \(-0.474968\pi\)
0.760471 + 0.649372i \(0.224968\pi\)
\(60\) 0 0
\(61\) 5.53142 3.69598i 0.708226 0.473221i −0.148554 0.988904i \(-0.547462\pi\)
0.856780 + 0.515683i \(0.172462\pi\)
\(62\) 0 0
\(63\) −0.301048 + 0.0598821i −0.0379285 + 0.00754444i
\(64\) 0 0
\(65\) 10.3386 3.55351i 1.28235 0.440758i
\(66\) 0 0
\(67\) 4.12977 4.12977i 0.504532 0.504532i −0.408311 0.912843i \(-0.633882\pi\)
0.912843 + 0.408311i \(0.133882\pi\)
\(68\) 0 0
\(69\) 14.4538i 1.74003i
\(70\) 0 0
\(71\) −0.386174 + 0.0768148i −0.0458304 + 0.00911624i −0.217952 0.975959i \(-0.569938\pi\)
0.172122 + 0.985076i \(0.444938\pi\)
\(72\) 0 0
\(73\) 1.88265 + 9.46472i 0.220347 + 1.10776i 0.919591 + 0.392878i \(0.128520\pi\)
−0.699243 + 0.714884i \(0.746480\pi\)
\(74\) 0 0
\(75\) −0.824998 11.2695i −0.0952626 1.30129i
\(76\) 0 0
\(77\) 0.691909 + 0.286598i 0.0788503 + 0.0326609i
\(78\) 0 0
\(79\) −8.07724 1.60666i −0.908761 0.180764i −0.281489 0.959564i \(-0.590828\pi\)
−0.627271 + 0.778801i \(0.715828\pi\)
\(80\) 0 0
\(81\) 7.69417 7.69417i 0.854907 0.854907i
\(82\) 0 0
\(83\) 4.48081 + 10.8176i 0.491833 + 1.18739i 0.953787 + 0.300485i \(0.0971485\pi\)
−0.461954 + 0.886904i \(0.652851\pi\)
\(84\) 0 0
\(85\) −7.92216 4.71587i −0.859279 0.511507i
\(86\) 0 0
\(87\) 6.47222 + 15.6253i 0.693895 + 1.67521i
\(88\) 0 0
\(89\) −9.42104 + 9.42104i −0.998628 + 0.998628i −0.999999 0.00137077i \(-0.999564\pi\)
0.00137077 + 0.999999i \(0.499564\pi\)
\(90\) 0 0
\(91\) −0.698450 0.138930i −0.0732174 0.0145639i
\(92\) 0 0
\(93\) −13.6591 5.65780i −1.41639 0.586686i
\(94\) 0 0
\(95\) 6.94551 + 0.428642i 0.712594 + 0.0439778i
\(96\) 0 0
\(97\) −0.508199 2.55489i −0.0515998 0.259410i 0.946371 0.323082i \(-0.104719\pi\)
−0.997971 + 0.0636720i \(0.979719\pi\)
\(98\) 0 0
\(99\) 10.6266 2.11377i 1.06802 0.212442i
\(100\) 0 0
\(101\) 15.5098i 1.54328i 0.636059 + 0.771641i \(0.280564\pi\)
−0.636059 + 0.771641i \(0.719436\pi\)
\(102\) 0 0
\(103\) 12.2197 12.2197i 1.20405 1.20405i 0.231121 0.972925i \(-0.425761\pi\)
0.972925 0.231121i \(-0.0742394\pi\)
\(104\) 0 0
\(105\) −0.323034 + 0.661394i −0.0315249 + 0.0645455i
\(106\) 0 0
\(107\) 6.60117 1.31305i 0.638159 0.126938i 0.134602 0.990900i \(-0.457024\pi\)
0.503557 + 0.863962i \(0.332024\pi\)
\(108\) 0 0
\(109\) 1.43218 0.956950i 0.137178 0.0916592i −0.485088 0.874465i \(-0.661212\pi\)
0.622266 + 0.782806i \(0.286212\pi\)
\(110\) 0 0
\(111\) 0.157319 0.0651637i 0.0149321 0.00618507i
\(112\) 0 0
\(113\) −3.46941 5.19234i −0.326374 0.488454i 0.631605 0.775290i \(-0.282396\pi\)
−0.957980 + 0.286836i \(0.907396\pi\)
\(114\) 0 0
\(115\) −11.3790 8.66268i −1.06110 0.807799i
\(116\) 0 0
\(117\) −9.51843 + 3.94266i −0.879979 + 0.364499i
\(118\) 0 0
\(119\) 0.291318 + 0.525179i 0.0267051 + 0.0481431i
\(120\) 0 0
\(121\) −14.2609 5.90707i −1.29645 0.537006i
\(122\) 0 0
\(123\) −12.5671 −1.13314
\(124\) 0 0
\(125\) −9.36656 6.10472i −0.837770 0.546023i
\(126\) 0 0
\(127\) −4.65583 + 11.2402i −0.413138 + 0.997404i 0.571152 + 0.820845i \(0.306497\pi\)
−0.984290 + 0.176560i \(0.943503\pi\)
\(128\) 0 0
\(129\) −6.01090 8.99595i −0.529231 0.792050i
\(130\) 0 0
\(131\) 10.8110 + 7.22365i 0.944557 + 0.631133i 0.929527 0.368754i \(-0.120216\pi\)
0.0150303 + 0.999887i \(0.495216\pi\)
\(132\) 0 0
\(133\) −0.376901 0.251837i −0.0326815 0.0218371i
\(134\) 0 0
\(135\) −0.605875 4.47030i −0.0521454 0.384742i
\(136\) 0 0
\(137\) −12.1652 12.1652i −1.03934 1.03934i −0.999194 0.0401490i \(-0.987217\pi\)
−0.0401490 0.999194i \(-0.512783\pi\)
\(138\) 0 0
\(139\) −0.931338 4.68215i −0.0789951 0.397135i −0.999972 0.00751740i \(-0.997607\pi\)
0.920977 0.389618i \(-0.127393\pi\)
\(140\) 0 0
\(141\) −2.85560 + 4.27371i −0.240485 + 0.359911i
\(142\) 0 0
\(143\) 24.6545 + 4.90408i 2.06171 + 0.410100i
\(144\) 0 0
\(145\) 16.1803 + 4.26945i 1.34370 + 0.354558i
\(146\) 0 0
\(147\) −13.1136 + 8.76222i −1.08159 + 0.722696i
\(148\) 0 0
\(149\) 15.0177 + 15.0177i 1.23030 + 1.23030i 0.963849 + 0.266450i \(0.0858508\pi\)
0.266450 + 0.963849i \(0.414149\pi\)
\(150\) 0 0
\(151\) 0.662023 1.59826i 0.0538746 0.130065i −0.894651 0.446767i \(-0.852575\pi\)
0.948525 + 0.316702i \(0.102575\pi\)
\(152\) 0 0
\(153\) 7.72551 + 3.97596i 0.624570 + 0.321437i
\(154\) 0 0
\(155\) −12.6406 + 7.36246i −1.01532 + 0.591367i
\(156\) 0 0
\(157\) 18.3656i 1.46573i 0.680373 + 0.732866i \(0.261818\pi\)
−0.680373 + 0.732866i \(0.738182\pi\)
\(158\) 0 0
\(159\) −3.48639 + 17.5272i −0.276488 + 1.39000i
\(160\) 0 0
\(161\) 0.356503 + 0.860674i 0.0280964 + 0.0678306i
\(162\) 0 0
\(163\) −0.517946 + 2.60389i −0.0405686 + 0.203952i −0.995754 0.0920568i \(-0.970656\pi\)
0.955185 + 0.296009i \(0.0956559\pi\)
\(164\) 0 0
\(165\) 11.4027 23.3465i 0.887702 1.81752i
\(166\) 0 0
\(167\) 5.57418 8.34235i 0.431343 0.645550i −0.550591 0.834775i \(-0.685598\pi\)
0.981934 + 0.189225i \(0.0605975\pi\)
\(168\) 0 0
\(169\) −10.9029 −0.838681
\(170\) 0 0
\(171\) −6.55797 −0.501501
\(172\) 0 0
\(173\) 2.51304 3.76103i 0.191063 0.285945i −0.723554 0.690268i \(-0.757493\pi\)
0.914617 + 0.404322i \(0.132493\pi\)
\(174\) 0 0
\(175\) 0.327088 + 0.650711i 0.0247255 + 0.0491891i
\(176\) 0 0
\(177\) −3.07552 + 15.4617i −0.231171 + 1.16217i
\(178\) 0 0
\(179\) −7.60849 18.3685i −0.568685 1.37293i −0.902664 0.430347i \(-0.858391\pi\)
0.333979 0.942581i \(-0.391609\pi\)
\(180\) 0 0
\(181\) 0.0944716 0.474941i 0.00702202 0.0353021i −0.977115 0.212710i \(-0.931771\pi\)
0.984137 + 0.177408i \(0.0567711\pi\)
\(182\) 0 0
\(183\) 15.0344i 1.11137i
\(184\) 0 0
\(185\) 0.0429857 0.162907i 0.00316037 0.0119772i
\(186\) 0 0
\(187\) −10.2832 18.5382i −0.751983 1.35565i
\(188\) 0 0
\(189\) −0.112455 + 0.271491i −0.00817992 + 0.0197481i
\(190\) 0 0
\(191\) −4.30914 4.30914i −0.311799 0.311799i 0.533807 0.845606i \(-0.320761\pi\)
−0.845606 + 0.533807i \(0.820761\pi\)
\(192\) 0 0
\(193\) −5.32058 + 3.55510i −0.382984 + 0.255902i −0.732128 0.681167i \(-0.761473\pi\)
0.349144 + 0.937069i \(0.386473\pi\)
\(194\) 0 0
\(195\) −6.30338 + 23.8885i −0.451395 + 1.71069i
\(196\) 0 0
\(197\) 0.0854365 + 0.0169944i 0.00608710 + 0.00121080i 0.198133 0.980175i \(-0.436512\pi\)
−0.192046 + 0.981386i \(0.561512\pi\)
\(198\) 0 0
\(199\) 0.929300 1.39080i 0.0658763 0.0985909i −0.797069 0.603888i \(-0.793617\pi\)
0.862945 + 0.505298i \(0.168617\pi\)
\(200\) 0 0
\(201\) 2.57497 + 12.9452i 0.181624 + 0.913087i
\(202\) 0 0
\(203\) −0.770796 0.770796i −0.0540993 0.0540993i
\(204\) 0 0
\(205\) −7.53192 + 9.89367i −0.526052 + 0.691004i
\(206\) 0 0
\(207\) 11.2062 + 7.48774i 0.778884 + 0.520434i
\(208\) 0 0
\(209\) 13.3042 + 8.88957i 0.920269 + 0.614904i
\(210\) 0 0
\(211\) −15.3944 23.0393i −1.05979 1.58609i −0.779734 0.626110i \(-0.784646\pi\)
−0.280059 0.959983i \(-0.590354\pi\)
\(212\) 0 0
\(213\) 0.340521 0.822091i 0.0233321 0.0563287i
\(214\) 0 0
\(215\) −10.6848 0.659410i −0.728695 0.0449714i
\(216\) 0 0
\(217\) 0.952903 0.0646873
\(218\) 0 0
\(219\) −20.1486 8.34581i −1.36151 0.563958i
\(220\) 0 0
\(221\) 13.0293 + 15.3814i 0.876442 + 1.03466i
\(222\) 0 0
\(223\) 10.1557 4.20663i 0.680076 0.281697i −0.0157824 0.999875i \(-0.505024\pi\)
0.695859 + 0.718179i \(0.255024\pi\)
\(224\) 0 0
\(225\) 9.16476 + 5.19849i 0.610984 + 0.346566i
\(226\) 0 0
\(227\) 3.51289 + 5.25741i 0.233159 + 0.348947i 0.929537 0.368728i \(-0.120207\pi\)
−0.696379 + 0.717675i \(0.745207\pi\)
\(228\) 0 0
\(229\) −2.55004 + 1.05626i −0.168512 + 0.0697998i −0.465345 0.885130i \(-0.654070\pi\)
0.296833 + 0.954929i \(0.404070\pi\)
\(230\) 0 0
\(231\) −1.40726 + 0.940303i −0.0925911 + 0.0618674i
\(232\) 0 0
\(233\) −13.0566 + 2.59712i −0.855367 + 0.170143i −0.603249 0.797553i \(-0.706127\pi\)
−0.252119 + 0.967696i \(0.581127\pi\)
\(234\) 0 0
\(235\) 1.65309 + 4.80951i 0.107835 + 0.313738i
\(236\) 0 0
\(237\) 13.1604 13.1604i 0.854861 0.854861i
\(238\) 0 0
\(239\) 7.69856i 0.497979i −0.968506 0.248989i \(-0.919902\pi\)
0.968506 0.248989i \(-0.0800984\pi\)
\(240\) 0 0
\(241\) 1.19133 0.236971i 0.0767405 0.0152646i −0.156571 0.987667i \(-0.550044\pi\)
0.233311 + 0.972402i \(0.425044\pi\)
\(242\) 0 0
\(243\) 3.61666 + 18.1822i 0.232009 + 1.16639i
\(244\) 0 0
\(245\) −0.961236 + 15.5754i −0.0614111 + 0.995076i
\(246\) 0 0
\(247\) −14.0567 5.82250i −0.894409 0.370477i
\(248\) 0 0
\(249\) −25.9529 5.16235i −1.64470 0.327151i
\(250\) 0 0
\(251\) 12.9297 12.9297i 0.816115 0.816115i −0.169428 0.985543i \(-0.554192\pi\)
0.985543 + 0.169428i \(0.0541920\pi\)
\(252\) 0 0
\(253\) −12.5841 30.3808i −0.791158 1.91003i
\(254\) 0 0
\(255\) 18.8081 8.96524i 1.17781 0.561425i
\(256\) 0 0
\(257\) −6.24622 15.0797i −0.389629 0.940647i −0.990018 0.140939i \(-0.954988\pi\)
0.600389 0.799708i \(-0.295012\pi\)
\(258\) 0 0
\(259\) −0.00776055 + 0.00776055i −0.000482217 + 0.000482217i
\(260\) 0 0
\(261\) −15.4674 3.07666i −0.957408 0.190440i
\(262\) 0 0
\(263\) −13.9762 5.78915i −0.861812 0.356974i −0.0923958 0.995722i \(-0.529453\pi\)
−0.769416 + 0.638748i \(0.779453\pi\)
\(264\) 0 0
\(265\) 11.7091 + 13.2494i 0.719285 + 0.813905i
\(266\) 0 0
\(267\) −5.87415 29.5313i −0.359492 1.80729i
\(268\) 0 0
\(269\) −6.71226 + 1.33515i −0.409254 + 0.0814057i −0.395424 0.918499i \(-0.629402\pi\)
−0.0138299 + 0.999904i \(0.504402\pi\)
\(270\) 0 0
\(271\) 19.1695i 1.16446i 0.813023 + 0.582231i \(0.197820\pi\)
−0.813023 + 0.582231i \(0.802180\pi\)
\(272\) 0 0
\(273\) 1.13800 1.13800i 0.0688748 0.0688748i
\(274\) 0 0
\(275\) −11.5458 22.9694i −0.696240 1.38510i
\(276\) 0 0
\(277\) 25.1984 5.01227i 1.51402 0.301158i 0.632971 0.774176i \(-0.281835\pi\)
0.881053 + 0.473018i \(0.156835\pi\)
\(278\) 0 0
\(279\) 11.4626 7.65907i 0.686249 0.458537i
\(280\) 0 0
\(281\) 11.2246 4.64936i 0.669601 0.277358i −0.0218715 0.999761i \(-0.506962\pi\)
0.691472 + 0.722403i \(0.256962\pi\)
\(282\) 0 0
\(283\) −9.33336 13.9684i −0.554811 0.830333i 0.442996 0.896523i \(-0.353915\pi\)
−0.997807 + 0.0661906i \(0.978915\pi\)
\(284\) 0 0
\(285\) −9.52589 + 12.5129i −0.564265 + 0.741199i
\(286\) 0 0
\(287\) 0.748328 0.309968i 0.0441724 0.0182968i
\(288\) 0 0
\(289\) 2.79572 16.7685i 0.164454 0.986385i
\(290\) 0 0
\(291\) 5.43887 + 2.25286i 0.318832 + 0.132065i
\(292\) 0 0
\(293\) 10.5729 0.617678 0.308839 0.951114i \(-0.400060\pi\)
0.308839 + 0.951114i \(0.400060\pi\)
\(294\) 0 0
\(295\) 10.3292 + 11.6880i 0.601390 + 0.680502i
\(296\) 0 0
\(297\) 3.96955 9.58333i 0.230336 0.556081i
\(298\) 0 0
\(299\) 17.3720 + 25.9991i 1.00465 + 1.50357i
\(300\) 0 0
\(301\) 0.579813 + 0.387419i 0.0334199 + 0.0223305i
\(302\) 0 0
\(303\) −29.1439 19.4733i −1.67427 1.11871i
\(304\) 0 0
\(305\) 11.8361 + 9.01064i 0.677732 + 0.515948i
\(306\) 0 0
\(307\) 4.40877 + 4.40877i 0.251622 + 0.251622i 0.821635 0.570013i \(-0.193062\pi\)
−0.570013 + 0.821635i \(0.693062\pi\)
\(308\) 0 0
\(309\) 7.61917 + 38.3042i 0.433440 + 2.17905i
\(310\) 0 0
\(311\) 17.3818 26.0137i 0.985633 1.47510i 0.108943 0.994048i \(-0.465253\pi\)
0.876690 0.481056i \(-0.159747\pi\)
\(312\) 0 0
\(313\) 13.2147 + 2.62856i 0.746937 + 0.148575i 0.553861 0.832609i \(-0.313154\pi\)
0.193076 + 0.981184i \(0.438154\pi\)
\(314\) 0 0
\(315\) −0.345440 0.593085i −0.0194633 0.0334165i
\(316\) 0 0
\(317\) 25.7026 17.1739i 1.44360 0.964583i 0.446023 0.895021i \(-0.352840\pi\)
0.997578 0.0695617i \(-0.0221601\pi\)
\(318\) 0 0
\(319\) 27.2082 + 27.2082i 1.52337 + 1.52337i
\(320\) 0 0
\(321\) −5.82079 + 14.0526i −0.324885 + 0.784341i
\(322\) 0 0
\(323\) 3.91547 + 12.2193i 0.217862 + 0.679897i
\(324\) 0 0
\(325\) 15.0288 + 19.2797i 0.833648 + 1.06944i
\(326\) 0 0
\(327\) 3.89265i 0.215264i
\(328\) 0 0
\(329\) 0.0646302 0.324918i 0.00356318 0.0179133i
\(330\) 0 0
\(331\) −12.3584 29.8359i −0.679280 1.63993i −0.765332 0.643636i \(-0.777425\pi\)
0.0860516 0.996291i \(-0.472575\pi\)
\(332\) 0 0
\(333\) −0.0309765 + 0.155729i −0.00169750 + 0.00853391i
\(334\) 0 0
\(335\) 11.7346 + 5.73136i 0.641131 + 0.313137i
\(336\) 0 0
\(337\) 11.5111 17.2276i 0.627049 0.938445i −0.372895 0.927873i \(-0.621635\pi\)
0.999944 0.0105716i \(-0.00336511\pi\)
\(338\) 0 0
\(339\) 14.1128 0.766500
\(340\) 0 0
\(341\) −33.6364 −1.82151
\(342\) 0 0
\(343\) 1.13121 1.69298i 0.0610798 0.0914124i
\(344\) 0 0
\(345\) 30.5647 10.5054i 1.64555 0.565594i
\(346\) 0 0
\(347\) 0.346328 1.74111i 0.0185918 0.0934675i −0.970375 0.241602i \(-0.922327\pi\)
0.988967 + 0.148135i \(0.0473270\pi\)
\(348\) 0 0
\(349\) 6.03904 + 14.5795i 0.323263 + 0.780425i 0.999060 + 0.0433380i \(0.0137992\pi\)
−0.675798 + 0.737087i \(0.736201\pi\)
\(350\) 0 0
\(351\) −1.92426 + 9.67393i −0.102710 + 0.516356i
\(352\) 0 0
\(353\) 30.2215i 1.60853i 0.594274 + 0.804263i \(0.297440\pi\)
−0.594274 + 0.804263i \(0.702560\pi\)
\(354\) 0 0
\(355\) −0.443118 0.760789i −0.0235183 0.0403785i
\(356\) 0 0
\(357\) −1.35261 0.111984i −0.0715878 0.00592680i
\(358\) 0 0
\(359\) −2.62734 + 6.34295i −0.138665 + 0.334768i −0.977923 0.208966i \(-0.932990\pi\)
0.839257 + 0.543734i \(0.182990\pi\)
\(360\) 0 0
\(361\) 6.58687 + 6.58687i 0.346677 + 0.346677i
\(362\) 0 0
\(363\) 29.0051 19.3806i 1.52237 1.01722i
\(364\) 0 0
\(365\) −18.6461 + 10.8604i −0.975984 + 0.568457i
\(366\) 0 0
\(367\) 5.64667 + 1.12319i 0.294754 + 0.0586302i 0.340252 0.940334i \(-0.389488\pi\)
−0.0454984 + 0.998964i \(0.514488\pi\)
\(368\) 0 0
\(369\) 6.51035 9.74343i 0.338915 0.507223i
\(370\) 0 0
\(371\) −0.224707 1.12968i −0.0116662 0.0586500i
\(372\) 0 0
\(373\) −0.104237 0.104237i −0.00539718 0.00539718i 0.704403 0.709800i \(-0.251215\pi\)
−0.709800 + 0.704403i \(0.751215\pi\)
\(374\) 0 0
\(375\) 23.2314 9.93558i 1.19966 0.513071i
\(376\) 0 0
\(377\) −30.4221 20.3274i −1.56682 1.04691i
\(378\) 0 0
\(379\) −27.6046 18.4448i −1.41795 0.947445i −0.999226 0.0393313i \(-0.987477\pi\)
−0.418725 0.908113i \(-0.637523\pi\)
\(380\) 0 0
\(381\) −15.2754 22.8612i −0.782581 1.17122i
\(382\) 0 0
\(383\) −8.23126 + 19.8720i −0.420597 + 1.01541i 0.561574 + 0.827426i \(0.310196\pi\)
−0.982172 + 0.187986i \(0.939804\pi\)
\(384\) 0 0
\(385\) −0.103153 + 1.67145i −0.00525719 + 0.0851849i
\(386\) 0 0
\(387\) 10.0886 0.512832
\(388\) 0 0
\(389\) −29.5773 12.2513i −1.49963 0.621166i −0.526241 0.850335i \(-0.676399\pi\)
−0.973387 + 0.229169i \(0.926399\pi\)
\(390\) 0 0
\(391\) 7.26095 25.3507i 0.367202 1.28204i
\(392\) 0 0
\(393\) −27.1474 + 11.2448i −1.36941 + 0.567226i
\(394\) 0 0
\(395\) −2.47325 18.2483i −0.124443 0.918170i
\(396\) 0 0
\(397\) −0.234611 0.351120i −0.0117748 0.0176222i 0.825536 0.564350i \(-0.190873\pi\)
−0.837310 + 0.546728i \(0.815873\pi\)
\(398\) 0 0
\(399\) 0.946437 0.392027i 0.0473811 0.0196259i
\(400\) 0 0
\(401\) −22.1326 + 14.7885i −1.10525 + 0.738504i −0.967729 0.251994i \(-0.918914\pi\)
−0.137521 + 0.990499i \(0.543914\pi\)
\(402\) 0 0
\(403\) 31.3697 6.23983i 1.56264 0.310828i
\(404\) 0 0
\(405\) 21.8628 + 10.6781i 1.08637 + 0.530598i
\(406\) 0 0
\(407\) 0.273939 0.273939i 0.0135786 0.0135786i
\(408\) 0 0
\(409\) 33.0879i 1.63609i −0.575153 0.818046i \(-0.695058\pi\)
0.575153 0.818046i \(-0.304942\pi\)
\(410\) 0 0
\(411\) 38.1332 7.58517i 1.88097 0.374149i
\(412\) 0 0
\(413\) −0.198226 0.996548i −0.00975405 0.0490369i
\(414\) 0 0
\(415\) −19.6187 + 17.3379i −0.963042 + 0.851083i
\(416\) 0 0
\(417\) 9.96742 + 4.12864i 0.488106 + 0.202180i
\(418\) 0 0
\(419\) −14.9919 2.98207i −0.732401 0.145684i −0.185219 0.982697i \(-0.559299\pi\)
−0.547182 + 0.837014i \(0.684299\pi\)
\(420\) 0 0
\(421\) −9.05493 + 9.05493i −0.441310 + 0.441310i −0.892452 0.451142i \(-0.851017\pi\)
0.451142 + 0.892452i \(0.351017\pi\)
\(422\) 0 0
\(423\) −1.83412 4.42796i −0.0891780 0.215295i
\(424\) 0 0
\(425\) 4.21432 20.1802i 0.204425 0.978882i
\(426\) 0 0
\(427\) −0.370823 0.895246i −0.0179454 0.0433240i
\(428\) 0 0
\(429\) −40.1701 + 40.1701i −1.93943 + 1.93943i
\(430\) 0 0
\(431\) 35.6602 + 7.09326i 1.71769 + 0.341670i 0.953057 0.302791i \(-0.0979185\pi\)
0.764637 + 0.644462i \(0.222918\pi\)
\(432\) 0 0
\(433\) 23.3826 + 9.68540i 1.12370 + 0.465451i 0.865634 0.500677i \(-0.166916\pi\)
0.258063 + 0.966128i \(0.416916\pi\)
\(434\) 0 0
\(435\) −28.3378 + 25.0434i −1.35869 + 1.20074i
\(436\) 0 0
\(437\) 3.88300 + 19.5211i 0.185749 + 0.933823i
\(438\) 0 0
\(439\) −22.5630 + 4.48807i −1.07687 + 0.214204i −0.701500 0.712669i \(-0.747486\pi\)
−0.375375 + 0.926873i \(0.622486\pi\)
\(440\) 0 0
\(441\) 14.7063i 0.700302i
\(442\) 0 0
\(443\) 14.6033 14.6033i 0.693824 0.693824i −0.269247 0.963071i \(-0.586775\pi\)
0.963071 + 0.269247i \(0.0867749\pi\)
\(444\) 0 0
\(445\) −26.7696 13.0747i −1.26900 0.619798i
\(446\) 0 0
\(447\) −47.0748 + 9.36375i −2.22656 + 0.442890i
\(448\) 0 0
\(449\) −16.5492 + 11.0578i −0.781006 + 0.521852i −0.880989 0.473138i \(-0.843121\pi\)
0.0999825 + 0.994989i \(0.468121\pi\)
\(450\) 0 0
\(451\) −26.4151 + 10.9415i −1.24384 + 0.515215i
\(452\) 0 0
\(453\) 2.17204 + 3.25069i 0.102051 + 0.152731i
\(454\) 0 0
\(455\) −0.213865 1.57795i −0.0100262 0.0739755i
\(456\) 0 0
\(457\) 16.7056 6.91968i 0.781455 0.323689i 0.0439524 0.999034i \(-0.486005\pi\)
0.737502 + 0.675344i \(0.236005\pi\)
\(458\) 0 0
\(459\) 7.27403 4.03492i 0.339523 0.188334i
\(460\) 0 0
\(461\) −6.65135 2.75508i −0.309784 0.128317i 0.222375 0.974961i \(-0.428619\pi\)
−0.532159 + 0.846644i \(0.678619\pi\)
\(462\) 0 0
\(463\) 25.8848 1.20297 0.601485 0.798884i \(-0.294576\pi\)
0.601485 + 0.798884i \(0.294576\pi\)
\(464\) 0 0
\(465\) 2.03638 32.9964i 0.0944346 1.53017i
\(466\) 0 0
\(467\) −7.04646 + 17.0117i −0.326071 + 0.787206i 0.672805 + 0.739820i \(0.265089\pi\)
−0.998877 + 0.0473865i \(0.984911\pi\)
\(468\) 0 0
\(469\) −0.472624 0.707332i −0.0218238 0.0326616i
\(470\) 0 0
\(471\) −34.5101 23.0589i −1.59014 1.06250i
\(472\) 0 0
\(473\) −20.4668 13.6754i −0.941062 0.628798i
\(474\) 0 0
\(475\) 4.14177 + 14.9988i 0.190038 + 0.688193i
\(476\) 0 0
\(477\) −11.7830 11.7830i −0.539505 0.539505i
\(478\) 0 0
\(479\) 3.42177 + 17.2024i 0.156345 + 0.785997i 0.976778 + 0.214255i \(0.0687323\pi\)
−0.820433 + 0.571742i \(0.806268\pi\)
\(480\) 0 0
\(481\) −0.204661 + 0.306297i −0.00933173 + 0.0139659i
\(482\) 0 0
\(483\) −2.06487 0.410728i −0.0939548 0.0186888i
\(484\) 0 0
\(485\) 5.03331 2.93163i 0.228551 0.133118i
\(486\) 0 0
\(487\) −33.4007 + 22.3176i −1.51353 + 1.01131i −0.526607 + 0.850109i \(0.676536\pi\)
−0.986922 + 0.161199i \(0.948464\pi\)
\(488\) 0 0
\(489\) −4.24257 4.24257i −0.191856 0.191856i
\(490\) 0 0
\(491\) 1.76892 4.27055i 0.0798302 0.192727i −0.878925 0.476960i \(-0.841739\pi\)
0.958755 + 0.284233i \(0.0917388\pi\)
\(492\) 0 0
\(493\) 3.50225 + 30.6568i 0.157733 + 1.38071i
\(494\) 0 0
\(495\) 12.1936 + 20.9352i 0.548063 + 0.940968i
\(496\) 0 0
\(497\) 0.0573516i 0.00257257i
\(498\) 0 0
\(499\) 1.72698 8.68211i 0.0773102 0.388665i −0.922685 0.385555i \(-0.874010\pi\)
0.999995 0.00310992i \(-0.000989920\pi\)
\(500\) 0 0
\(501\) 8.67715 + 20.9485i 0.387666 + 0.935909i
\(502\) 0 0
\(503\) 5.44421 27.3699i 0.242745 1.22036i −0.646493 0.762920i \(-0.723765\pi\)
0.889239 0.457443i \(-0.151235\pi\)
\(504\) 0 0
\(505\) −32.7977 + 11.2730i −1.45948 + 0.501640i
\(506\) 0 0
\(507\) 13.6891 20.4872i 0.607954 0.909868i
\(508\) 0 0
\(509\) −20.1658 −0.893832 −0.446916 0.894576i \(-0.647478\pi\)
−0.446916 + 0.894576i \(0.647478\pi\)
\(510\) 0 0
\(511\) 1.40563 0.0621813
\(512\) 0 0
\(513\) −3.48809 + 5.22029i −0.154003 + 0.230482i
\(514\) 0 0
\(515\) 34.7220 + 16.9587i 1.53004 + 0.747291i
\(516\) 0 0
\(517\) −2.28137 + 11.4692i −0.100335 + 0.504416i
\(518\) 0 0
\(519\) 3.91197 + 9.44432i 0.171716 + 0.414560i
\(520\) 0 0
\(521\) −2.25339 + 11.3286i −0.0987229 + 0.496313i 0.899511 + 0.436899i \(0.143923\pi\)
−0.998233 + 0.0594144i \(0.981077\pi\)
\(522\) 0 0
\(523\) 21.3896i 0.935304i 0.883913 + 0.467652i \(0.154900\pi\)
−0.883913 + 0.467652i \(0.845100\pi\)
\(524\) 0 0
\(525\) −1.63340 0.202382i −0.0712876 0.00883267i
\(526\) 0 0
\(527\) −21.1147 16.7850i −0.919771 0.731167i
\(528\) 0 0
\(529\) 6.85185 16.5418i 0.297906 0.719210i
\(530\) 0 0
\(531\) −10.3944 10.3944i −0.451077 0.451077i
\(532\) 0 0
\(533\) 22.6054 15.1044i 0.979147 0.654245i
\(534\) 0 0
\(535\) 7.57456 + 13.0048i 0.327477 + 0.562244i
\(536\) 0 0
\(537\) 44.0685 + 8.76577i 1.90170 + 0.378271i
\(538\) 0 0
\(539\) −19.9350 + 29.8348i −0.858661 + 1.28508i
\(540\) 0 0
\(541\) 8.30277 + 41.7409i 0.356964 + 1.79458i 0.574475 + 0.818522i \(0.305206\pi\)
−0.217511 + 0.976058i \(0.569794\pi\)
\(542\) 0 0
\(543\) 0.773831 + 0.773831i 0.0332083 + 0.0332083i
\(544\) 0 0
\(545\) 3.06456 + 2.33301i 0.131271 + 0.0999350i
\(546\) 0 0
\(547\) 17.0000 + 11.3590i 0.726868 + 0.485677i 0.863121 0.504997i \(-0.168506\pi\)
−0.136254 + 0.990674i \(0.543506\pi\)
\(548\) 0 0
\(549\) −11.6563 7.78851i −0.497480 0.332406i
\(550\) 0 0
\(551\) −12.9390 19.3646i −0.551221 0.824961i
\(552\) 0 0
\(553\) −0.459056 + 1.10826i −0.0195210 + 0.0471279i
\(554\) 0 0
\(555\) 0.252142 + 0.285311i 0.0107028 + 0.0121108i
\(556\) 0 0
\(557\) −5.16909 −0.219021 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(558\) 0 0
\(559\) 21.6245 + 8.95715i 0.914618 + 0.378847i
\(560\) 0 0
\(561\) 47.7456 + 3.95289i 2.01582 + 0.166891i
\(562\) 0 0
\(563\) −22.5784 + 9.35229i −0.951568 + 0.394152i −0.803820 0.594873i \(-0.797202\pi\)
−0.147748 + 0.989025i \(0.547202\pi\)
\(564\) 0 0
\(565\) 8.45828 11.1105i 0.355842 0.467422i
\(566\) 0 0
\(567\) −0.880546 1.31783i −0.0369794 0.0553437i
\(568\) 0 0
\(569\) −1.57885 + 0.653980i −0.0661887 + 0.0274163i −0.415532 0.909578i \(-0.636405\pi\)
0.349343 + 0.936995i \(0.386405\pi\)
\(570\) 0 0
\(571\) −30.9104 + 20.6536i −1.29356 + 0.864328i −0.995910 0.0903473i \(-0.971202\pi\)
−0.297648 + 0.954676i \(0.596202\pi\)
\(572\) 0 0
\(573\) 13.5075 2.68681i 0.564284 0.112243i
\(574\) 0 0
\(575\) 10.0479 30.3588i 0.419026 1.26605i
\(576\) 0 0
\(577\) −26.2464 + 26.2464i −1.09265 + 1.09265i −0.0974080 + 0.995245i \(0.531055\pi\)
−0.995245 + 0.0974080i \(0.968945\pi\)
\(578\) 0 0
\(579\) 14.4613i 0.600993i
\(580\) 0 0
\(581\) 1.67273 0.332728i 0.0693967 0.0138039i
\(582\) 0 0
\(583\) 7.93190 + 39.8764i 0.328506 + 1.65151i
\(584\) 0 0
\(585\) −15.2556 17.2624i −0.630741 0.713714i
\(586\) 0 0
\(587\) 1.80716 + 0.748550i 0.0745894 + 0.0308960i 0.419666 0.907678i \(-0.362147\pi\)
−0.345077 + 0.938574i \(0.612147\pi\)
\(588\) 0 0
\(589\) 19.9678 + 3.97185i 0.822760 + 0.163657i
\(590\) 0 0
\(591\) −0.139203 + 0.139203i −0.00572606 + 0.00572606i
\(592\) 0 0
\(593\) −4.41519 10.6592i −0.181310 0.437721i 0.806927 0.590651i \(-0.201129\pi\)
−0.988237 + 0.152930i \(0.951129\pi\)
\(594\) 0 0
\(595\) −0.898829 + 0.997750i −0.0368484 + 0.0409038i
\(596\) 0 0
\(597\) 1.44661 + 3.49243i 0.0592059 + 0.142936i
\(598\) 0 0
\(599\) 8.24683 8.24683i 0.336956 0.336956i −0.518264 0.855221i \(-0.673422\pi\)
0.855221 + 0.518264i \(0.173422\pi\)
\(600\) 0 0
\(601\) −37.3744 7.43422i −1.52453 0.303248i −0.639504 0.768787i \(-0.720860\pi\)
−0.885027 + 0.465539i \(0.845860\pi\)
\(602\) 0 0
\(603\) −11.3705 4.70983i −0.463044 0.191799i
\(604\) 0 0
\(605\) 2.12610 34.4502i 0.0864381 1.40060i
\(606\) 0 0
\(607\) −3.55178 17.8560i −0.144162 0.724753i −0.983466 0.181091i \(-0.942037\pi\)
0.839304 0.543662i \(-0.182963\pi\)
\(608\) 0 0
\(609\) 2.41615 0.480602i 0.0979073 0.0194750i
\(610\) 0 0
\(611\) 11.1196i 0.449850i
\(612\) 0 0
\(613\) 17.3366 17.3366i 0.700217 0.700217i −0.264240 0.964457i \(-0.585121\pi\)
0.964457 + 0.264240i \(0.0851212\pi\)
\(614\) 0 0
\(615\) −9.13414 26.5750i −0.368324 1.07161i
\(616\) 0 0
\(617\) −25.0260 + 4.97798i −1.00751 + 0.200406i −0.671145 0.741327i \(-0.734197\pi\)
−0.336363 + 0.941732i \(0.609197\pi\)
\(618\) 0 0
\(619\) −5.31105 + 3.54873i −0.213469 + 0.142635i −0.657708 0.753273i \(-0.728474\pi\)
0.444239 + 0.895908i \(0.353474\pi\)
\(620\) 0 0
\(621\) 11.9208 4.93777i 0.478366 0.198146i
\(622\) 0 0
\(623\) 1.07817 + 1.61360i 0.0431962 + 0.0646476i
\(624\) 0 0
\(625\) 6.10143 24.2440i 0.244057 0.969761i
\(626\) 0 0
\(627\) −33.4082 + 13.8381i −1.33419 + 0.552641i
\(628\) 0 0
\(629\) 0.308660 0.0352614i 0.0123071 0.00140596i
\(630\) 0 0
\(631\) −9.60924 3.98028i −0.382538 0.158452i 0.183124 0.983090i \(-0.441379\pi\)
−0.565661 + 0.824638i \(0.691379\pi\)
\(632\) 0 0
\(633\) 62.6208 2.48896
\(634\) 0 0
\(635\) −27.1530 1.67574i −1.07753 0.0664999i
\(636\) 0 0
\(637\) 13.0570 31.5225i 0.517338 1.24897i
\(638\) 0 0
\(639\) 0.460970 + 0.689891i 0.0182357 + 0.0272917i
\(640\) 0 0
\(641\) 29.4482 + 19.6767i 1.16313 + 0.777181i 0.978626 0.205650i \(-0.0659308\pi\)
0.184508 + 0.982831i \(0.440931\pi\)
\(642\) 0 0
\(643\) 5.46538 + 3.65185i 0.215534 + 0.144015i 0.658651 0.752449i \(-0.271127\pi\)
−0.443117 + 0.896464i \(0.646127\pi\)
\(644\) 0 0
\(645\) 14.6543 19.2494i 0.577014 0.757946i
\(646\) 0 0
\(647\) 26.2688 + 26.2688i 1.03273 + 1.03273i 0.999446 + 0.0332876i \(0.0105977\pi\)
0.0332876 + 0.999446i \(0.489402\pi\)
\(648\) 0 0
\(649\) 6.99715 + 35.1770i 0.274662 + 1.38082i
\(650\) 0 0
\(651\) −1.19642 + 1.79057i −0.0468913 + 0.0701778i
\(652\) 0 0
\(653\) −28.0429 5.57808i −1.09740 0.218287i −0.386999 0.922080i \(-0.626488\pi\)
−0.710405 + 0.703793i \(0.751488\pi\)
\(654\) 0 0
\(655\) −7.41773 + 28.1117i −0.289835 + 1.09841i
\(656\) 0 0
\(657\) 16.9085 11.2979i 0.659663 0.440773i
\(658\) 0 0
\(659\) −0.237874 0.237874i −0.00926624 0.00926624i 0.702458 0.711725i \(-0.252086\pi\)
−0.711725 + 0.702458i \(0.752086\pi\)
\(660\) 0 0
\(661\) 14.8040 35.7401i 0.575810 1.39013i −0.320731 0.947170i \(-0.603929\pi\)
0.896542 0.442959i \(-0.146071\pi\)
\(662\) 0 0
\(663\) −45.2615 + 5.17070i −1.75781 + 0.200813i
\(664\) 0 0
\(665\) 0.258604 0.980054i 0.0100282 0.0380049i
\(666\) 0 0
\(667\) 47.8636i 1.85328i
\(668\) 0 0
\(669\) −4.84647 + 24.3649i −0.187376 + 0.942000i
\(670\) 0 0
\(671\) 13.0896 + 31.6012i 0.505319 + 1.21995i
\(672\) 0 0
\(673\) 2.78502 14.0012i 0.107355 0.539708i −0.889254 0.457414i \(-0.848776\pi\)
0.996608 0.0822932i \(-0.0262244\pi\)
\(674\) 0 0
\(675\) 9.01272 4.53035i 0.346900 0.174373i
\(676\) 0 0
\(677\) 6.74082 10.0884i 0.259071 0.387727i −0.679018 0.734122i \(-0.737594\pi\)
0.938089 + 0.346395i \(0.112594\pi\)
\(678\) 0 0
\(679\) −0.379433 −0.0145613
\(680\) 0 0
\(681\) −14.2896 −0.547580
\(682\) 0 0
\(683\) −5.28252 + 7.90585i −0.202130 + 0.302509i −0.918661 0.395046i \(-0.870729\pi\)
0.716531 + 0.697555i \(0.245729\pi\)
\(684\) 0 0
\(685\) 16.8830 34.5671i 0.645068 1.32074i
\(686\) 0 0
\(687\) 1.21692 6.11789i 0.0464286 0.233412i
\(688\) 0 0
\(689\) −14.7948 35.7178i −0.563637 1.36074i
\(690\) 0 0
\(691\) 4.11755 20.7003i 0.156639 0.787477i −0.819962 0.572418i \(-0.806005\pi\)
0.976601 0.215059i \(-0.0689945\pi\)
\(692\) 0 0
\(693\) 1.57819i 0.0599504i
\(694\) 0 0
\(695\) 9.22417 5.37258i 0.349893 0.203793i
\(696\) 0 0
\(697\) −22.0416 6.31316i −0.834886 0.239128i
\(698\) 0 0
\(699\) 11.5131 27.7950i 0.435465 1.05130i
\(700\) 0 0
\(701\) −6.92839 6.92839i −0.261682 0.261682i 0.564055 0.825737i \(-0.309240\pi\)
−0.825737 + 0.564055i \(0.809240\pi\)
\(702\) 0 0
\(703\) −0.194967 + 0.130273i −0.00735333 + 0.00491334i
\(704\) 0 0
\(705\) −11.1129 2.93233i −0.418536 0.110438i
\(706\) 0 0
\(707\) 2.21573 + 0.440735i 0.0833310 + 0.0165756i
\(708\) 0 0
\(709\) 16.2911 24.3814i 0.611826 0.915663i −0.388156 0.921594i \(-0.626888\pi\)
0.999982 + 0.00593073i \(0.00188782\pi\)
\(710\) 0 0
\(711\) 3.38571 + 17.0211i 0.126974 + 0.638342i
\(712\) 0 0
\(713\) −29.5858 29.5858i −1.10800 1.10800i
\(714\) 0 0
\(715\) 7.54921 + 55.6999i 0.282324 + 2.08306i
\(716\) 0 0
\(717\) 14.4661 + 9.66594i 0.540246 + 0.360981i
\(718\) 0 0
\(719\) −23.1362 15.4591i −0.862833 0.576527i 0.0435175 0.999053i \(-0.486144\pi\)
−0.906351 + 0.422526i \(0.861144\pi\)
\(720\) 0 0
\(721\) −1.39847 2.09295i −0.0520816 0.0779457i
\(722\) 0 0
\(723\) −1.05050 + 2.53612i −0.0390683 + 0.0943193i
\(724\) 0 0
\(725\) 2.73197 + 37.3188i 0.101463 + 1.38598i
\(726\) 0 0
\(727\) 3.29271 0.122120 0.0610598 0.998134i \(-0.480552\pi\)
0.0610598 + 0.998134i \(0.480552\pi\)
\(728\) 0 0
\(729\) −8.54767 3.54056i −0.316580 0.131132i
\(730\) 0 0
\(731\) −6.02344 18.7977i −0.222785 0.695259i
\(732\) 0 0
\(733\) 7.11097 2.94546i 0.262650 0.108793i −0.247473 0.968895i \(-0.579600\pi\)
0.510123 + 0.860102i \(0.329600\pi\)
\(734\) 0 0
\(735\) −28.0603 21.3619i −1.03502 0.787947i
\(736\) 0 0
\(737\) 16.6831 + 24.9680i 0.614530 + 0.919709i
\(738\) 0 0
\(739\) 34.9301 14.4685i 1.28493 0.532234i 0.367457 0.930041i \(-0.380229\pi\)
0.917469 + 0.397807i \(0.130229\pi\)
\(740\) 0 0
\(741\) 28.5898 19.1031i 1.05027 0.701770i
\(742\) 0 0
\(743\) −5.23703 + 1.04171i −0.192128 + 0.0382166i −0.290216 0.956961i \(-0.593727\pi\)
0.0980884 + 0.995178i \(0.468727\pi\)
\(744\) 0 0
\(745\) −20.8418 + 42.6724i −0.763585 + 1.56340i
\(746\) 0 0
\(747\) 17.4472 17.4472i 0.638361 0.638361i
\(748\) 0 0
\(749\) 0.980354i 0.0358214i
\(750\) 0 0
\(751\) −23.2719 + 4.62908i −0.849205 + 0.168917i −0.600463 0.799652i \(-0.705017\pi\)
−0.248742 + 0.968570i \(0.580017\pi\)
\(752\) 0 0
\(753\) 8.06184 + 40.5296i 0.293790 + 1.47698i
\(754\) 0 0
\(755\) 3.86094 + 0.238278i 0.140514 + 0.00867181i
\(756\) 0 0
\(757\) −4.25401 1.76207i −0.154615 0.0640434i 0.304034 0.952661i \(-0.401666\pi\)
−0.458649 + 0.888618i \(0.651666\pi\)
\(758\) 0 0
\(759\) 72.8875 + 14.4982i 2.64565 + 0.526253i
\(760\) 0 0
\(761\) 33.0842 33.0842i 1.19930 1.19930i 0.224925 0.974376i \(-0.427786\pi\)
0.974376 0.224925i \(-0.0722136\pi\)
\(762\) 0 0
\(763\) −0.0960122 0.231794i −0.00347587 0.00839150i
\(764\) 0 0
\(765\) −2.79261 + 19.2265i −0.100967 + 0.695137i
\(766\) 0 0
\(767\) −13.0513 31.5085i −0.471254 1.13771i
\(768\) 0 0
\(769\) 36.7419 36.7419i 1.32495 1.32495i 0.415228 0.909717i \(-0.363702\pi\)
0.909717 0.415228i \(-0.136298\pi\)
\(770\) 0 0
\(771\) 36.1782 + 7.19630i 1.30293 + 0.259168i
\(772\) 0 0
\(773\) −25.9297 10.7404i −0.932627 0.386307i −0.135952 0.990715i \(-0.543409\pi\)
−0.796674 + 0.604409i \(0.793409\pi\)
\(774\) 0 0
\(775\) −24.7565 21.3791i −0.889281 0.767960i
\(776\) 0 0
\(777\) −0.00483881 0.0243263i −0.000173591 0.000872702i
\(778\) 0 0
\(779\) 16.9730 3.37614i 0.608121 0.120963i
\(780\) 0 0
\(781\) 2.02445i 0.0724404i
\(782\) 0 0
\(783\) −10.6760 + 10.6760i −0.381528 + 0.381528i
\(784\) 0 0
\(785\) −38.8366 + 13.3486i −1.38614 + 0.476433i
\(786\) 0 0
\(787\) 52.5875 10.4603i 1.87454 0.372869i 0.879805 0.475335i \(-0.157673\pi\)
0.994737 + 0.102466i \(0.0326732\pi\)
\(788\) 0 0
\(789\) 28.4261 18.9937i 1.01199 0.676193i
\(790\) 0 0
\(791\) −0.840365 + 0.348091i −0.0298800 + 0.0123767i
\(792\) 0 0
\(793\) −18.0698 27.0434i −0.641679 0.960340i
\(794\) 0 0
\(795\) −39.5979 + 5.36684i −1.40439 + 0.190342i
\(796\) 0 0
\(797\) 14.2805 5.91516i 0.505840 0.209526i −0.115144 0.993349i \(-0.536733\pi\)
0.620984 + 0.783823i \(0.286733\pi\)
\(798\) 0 0
\(799\) −7.15540 + 6.06119i −0.253140 + 0.214430i
\(800\) 0 0
\(801\) 25.9391 + 10.7443i 0.916512 + 0.379632i
\(802\) 0 0
\(803\) −49.6170 −1.75095
\(804\) 0 0
\(805\) −1.56090 + 1.37944i −0.0550146 + 0.0486188i
\(806\) 0 0
\(807\) 5.91875 14.2891i 0.208350 0.503001i
\(808\) 0 0
\(809\) 18.0736 + 27.0490i 0.635433 + 0.950992i 0.999805 + 0.0197388i \(0.00628345\pi\)
−0.364373 + 0.931253i \(0.618717\pi\)
\(810\) 0 0
\(811\) 27.2786 + 18.2270i 0.957882 + 0.640036i 0.933085 0.359656i \(-0.117106\pi\)
0.0247971 + 0.999693i \(0.492106\pi\)
\(812\) 0 0
\(813\) −36.0207 24.0683i −1.26330 0.844110i
\(814\) 0 0
\(815\) −5.88276 + 0.797311i −0.206064 + 0.0279286i
\(816\) 0 0
\(817\) 10.5350 + 10.5350i 0.368573 + 0.368573i
\(818\) 0 0
\(819\) 0.292767 + 1.47184i 0.0102301 + 0.0514302i
\(820\) 0 0
\(821\) −14.6490 + 21.9237i −0.511253 + 0.765144i −0.993854 0.110696i \(-0.964692\pi\)
0.482602 + 0.875840i \(0.339692\pi\)
\(822\) 0 0
\(823\) 43.0570 + 8.56458i 1.50087 + 0.298542i 0.876049 0.482223i \(-0.160170\pi\)
0.624825 + 0.780765i \(0.285170\pi\)
\(824\) 0 0
\(825\) 57.6573 + 7.14385i 2.00737 + 0.248717i
\(826\) 0 0
\(827\) 4.90120 3.27488i 0.170431 0.113879i −0.467429 0.884031i \(-0.654820\pi\)
0.637860 + 0.770152i \(0.279820\pi\)
\(828\) 0 0
\(829\) −9.07300 9.07300i −0.315118 0.315118i 0.531770 0.846889i \(-0.321527\pi\)
−0.846889 + 0.531770i \(0.821527\pi\)
\(830\) 0 0
\(831\) −22.2195 + 53.6425i −0.770785 + 1.86084i
\(832\) 0 0
\(833\) −27.4018 + 8.78049i −0.949418 + 0.304226i
\(834\) 0 0
\(835\) 21.6926 + 5.72394i 0.750702 + 0.198085i
\(836\) 0 0
\(837\) 13.1982i 0.456198i
\(838\) 0 0
\(839\) −2.22948 + 11.2084i −0.0769703 + 0.386956i 0.923027 + 0.384735i \(0.125707\pi\)
−0.999998 + 0.00222120i \(0.999293\pi\)
\(840\) 0 0
\(841\) −10.3348 24.9505i −0.356373 0.860362i
\(842\) 0 0
\(843\) −5.35655 + 26.9292i −0.184489 + 0.927490i
\(844\) 0 0
\(845\) −7.92451 23.0557i −0.272612 0.793139i
\(846\) 0 0
\(847\) −1.24913 + 1.86946i −0.0429206 + 0.0642353i
\(848\) 0 0
\(849\) 37.9660 1.30299
\(850\) 0 0
\(851\) 0.481901 0.0165194
\(852\) 0 0
\(853\) 26.6107 39.8257i 0.911132 1.36361i −0.0203405 0.999793i \(-0.506475\pi\)
0.931472 0.363812i \(-0.118525\pi\)
\(854\) 0 0
\(855\) −4.76652 13.8678i −0.163012 0.474268i
\(856\) 0 0
\(857\) −2.59513 + 13.0466i −0.0886480 + 0.445664i 0.910812 + 0.412820i \(0.135456\pi\)
−0.999461 + 0.0328435i \(0.989544\pi\)
\(858\) 0 0
\(859\) −15.9762 38.5700i −0.545102 1.31599i −0.921084 0.389365i \(-0.872695\pi\)
0.375982 0.926627i \(-0.377305\pi\)
\(860\) 0 0
\(861\) −0.357115 + 1.79534i −0.0121704 + 0.0611849i
\(862\) 0 0
\(863\) 50.6771i 1.72507i −0.505999 0.862534i \(-0.668876\pi\)
0.505999 0.862534i \(-0.331124\pi\)
\(864\) 0 0
\(865\) 9.77978 + 2.58056i 0.332522 + 0.0877416i
\(866\) 0 0
\(867\) 27.9990 + 26.3071i 0.950896 + 0.893436i
\(868\) 0 0
\(869\) 16.2041 39.1203i 0.549688 1.32706i
\(870\) 0 0
\(871\) −20.1907 20.1907i −0.684135 0.684135i
\(872\) 0 0
\(873\) −4.56425 + 3.04974i −0.154477 + 0.103218i
\(874\) 0 0
\(875\) −1.13829 + 1.16463i −0.0384811 + 0.0393717i
\(876\) 0 0
\(877\) 3.65086 + 0.726202i 0.123281 + 0.0245221i 0.256345 0.966585i \(-0.417482\pi\)
−0.133064 + 0.991107i \(0.542482\pi\)
\(878\) 0 0
\(879\) −13.2749 + 19.8672i −0.447750 + 0.670105i
\(880\) 0 0
\(881\) 5.26746 + 26.4813i 0.177465 + 0.892178i 0.962199 + 0.272346i \(0.0877994\pi\)
−0.784734 + 0.619832i \(0.787201\pi\)
\(882\) 0 0
\(883\) 8.42922 + 8.42922i 0.283666 + 0.283666i 0.834569 0.550903i \(-0.185717\pi\)
−0.550903 + 0.834569i \(0.685717\pi\)
\(884\) 0 0
\(885\) −34.9314 + 4.73437i −1.17421 + 0.159144i
\(886\) 0 0
\(887\) 20.6756 + 13.8150i 0.694220 + 0.463863i 0.851953 0.523619i \(-0.175418\pi\)
−0.157732 + 0.987482i \(0.550418\pi\)
\(888\) 0 0
\(889\) 1.47347 + 0.984539i 0.0494185 + 0.0330204i
\(890\) 0 0
\(891\) 31.0823 + 46.5179i 1.04130 + 1.55841i
\(892\) 0 0
\(893\) 2.70862 6.53918i 0.0906404 0.218825i
\(894\) 0 0
\(895\) 33.3128 29.4400i 1.11352 0.984071i
\(896\) 0 0
\(897\) −70.6654 −2.35945
\(898\) 0 0
\(899\) 45.2320 + 18.7357i 1.50857 + 0.624871i
\(900\) 0 0
\(901\) −14.9197 + 28.9899i −0.497048 + 0.965793i
\(902\) 0 0
\(903\) −1.45597 + 0.603083i −0.0484517 + 0.0200693i
\(904\) 0 0
\(905\) 1.07300 0.145427i 0.0356676 0.00483415i
\(906\) 0 0
\(907\) −9.18892 13.7522i −0.305113 0.456634i 0.646951 0.762531i \(-0.276044\pi\)
−0.952065 + 0.305897i \(0.901044\pi\)
\(908\) 0 0
\(909\) 30.1958 12.5075i 1.00153 0.414847i
\(910\) 0 0
\(911\) 4.01237 2.68098i 0.132936 0.0888248i −0.487324 0.873221i \(-0.662027\pi\)
0.620260 + 0.784396i \(0.287027\pi\)
\(912\) 0 0
\(913\) −59.0456 + 11.7449i −1.95413 + 0.388700i
\(914\) 0 0
\(915\) −31.7924 + 10.9274i −1.05102 + 0.361250i
\(916\) 0 0
\(917\) 1.33918 1.33918i 0.0442236 0.0442236i
\(918\) 0 0
\(919\) 28.3398i 0.934844i 0.884034 + 0.467422i \(0.154817\pi\)
−0.884034 + 0.467422i \(0.845183\pi\)
\(920\) 0 0
\(921\) −13.8198 + 2.74893i −0.455378 + 0.0905803i
\(922\) 0 0
\(923\) 0.375552 + 1.88803i 0.0123614 + 0.0621451i
\(924\) 0 0
\(925\) 0.375734 0.0275061i 0.0123541 0.000904394i
\(926\) 0 0
\(927\) −33.6447 13.9361i −1.10504 0.457722i
\(928\) 0 0
\(929\) −35.3435 7.03026i −1.15958 0.230655i −0.422439 0.906391i \(-0.638826\pi\)
−0.737144 + 0.675736i \(0.763826\pi\)
\(930\) 0 0
\(931\) 15.3571 15.3571i 0.503309 0.503309i
\(932\) 0 0
\(933\) 27.0577 + 65.3232i 0.885831 + 2.13858i
\(934\) 0 0
\(935\) 31.7276 35.2194i 1.03760 1.15180i
\(936\) 0 0
\(937\) 15.4226 + 37.2335i 0.503835 + 1.21637i 0.947379 + 0.320113i \(0.103721\pi\)
−0.443544 + 0.896252i \(0.646279\pi\)
\(938\) 0 0
\(939\) −21.5309 + 21.5309i −0.702635 + 0.702635i
\(940\) 0 0
\(941\) −12.7939 2.54486i −0.417069 0.0829602i −0.0179049 0.999840i \(-0.505700\pi\)
−0.399164 + 0.916880i \(0.630700\pi\)
\(942\) 0 0
\(943\) −32.8581 13.6103i −1.07001 0.443211i
\(944\) 0 0
\(945\) −0.655843 0.0404754i −0.0213346 0.00131666i
\(946\) 0 0
\(947\) 7.64955 + 38.4569i 0.248577 + 1.24968i 0.880274 + 0.474466i \(0.157359\pi\)
−0.631697 + 0.775215i \(0.717641\pi\)
\(948\) 0 0
\(949\) 46.2735 9.20438i 1.50210 0.298787i
\(950\) 0 0
\(951\) 69.8595i 2.26535i
\(952\) 0 0
\(953\) −35.9304 + 35.9304i −1.16390 + 1.16390i −0.180284 + 0.983615i \(0.557702\pi\)
−0.983615 + 0.180284i \(0.942298\pi\)
\(954\) 0 0
\(955\) 5.98029 12.2443i 0.193518 0.396217i
\(956\) 0 0
\(957\) −85.2874 + 16.9647i −2.75695 + 0.548391i
\(958\) 0 0
\(959\) −2.08361 + 1.39222i −0.0672833 + 0.0449573i
\(960\) 0 0
\(961\) −10.9000 + 4.51493i −0.351613 + 0.145643i
\(962\) 0 0
\(963\) −7.87972 11.7928i −0.253920 0.380019i
\(964\) 0 0
\(965\) −11.3849 8.66719i −0.366494 0.279007i
\(966\) 0 0
\(967\) −6.01615 + 2.49197i −0.193466 + 0.0801364i −0.477313 0.878733i \(-0.658389\pi\)
0.283847 + 0.958870i \(0.408389\pi\)
\(968\) 0 0
\(969\) −27.8768 7.98448i −0.895533 0.256498i
\(970\) 0 0
\(971\) 1.58783 + 0.657700i 0.0509558 + 0.0211066i 0.408016 0.912975i \(-0.366221\pi\)
−0.357060 + 0.934081i \(0.616221\pi\)
\(972\) 0 0
\(973\) −0.695358 −0.0222921
\(974\) 0 0
\(975\) −55.0972 + 4.03346i −1.76452 + 0.129174i
\(976\) 0 0
\(977\) 10.8790 26.2642i 0.348050 0.840266i −0.648801 0.760958i \(-0.724729\pi\)
0.996850 0.0793075i \(-0.0252709\pi\)
\(978\) 0 0
\(979\) −38.0584 56.9584i −1.21635 1.82040i
\(980\) 0 0
\(981\) −3.01802 2.01657i −0.0963579 0.0643843i
\(982\) 0 0
\(983\) −17.9220 11.9751i −0.571623 0.381946i 0.235904 0.971776i \(-0.424195\pi\)
−0.807528 + 0.589830i \(0.799195\pi\)
\(984\) 0 0
\(985\) 0.0261607 + 0.193020i 0.000833548 + 0.00615012i
\(986\) 0 0
\(987\) 0.529395 + 0.529395i 0.0168508 + 0.0168508i
\(988\) 0 0
\(989\) −5.97349 30.0308i −0.189946 0.954922i
\(990\) 0 0
\(991\) 30.4046 45.5038i 0.965835 1.44547i 0.0718306 0.997417i \(-0.477116\pi\)
0.894005 0.448058i \(-0.147884\pi\)
\(992\) 0 0
\(993\) 71.5801 + 14.2382i 2.27153 + 0.451835i
\(994\) 0 0
\(995\) 3.61648 + 0.954268i 0.114650 + 0.0302523i
\(996\) 0 0
\(997\) −28.5735 + 19.0922i −0.904933 + 0.604657i −0.918573 0.395250i \(-0.870658\pi\)
0.0136408 + 0.999907i \(0.495658\pi\)
\(998\) 0 0
\(999\) 0.107488 + 0.107488i 0.00340077 + 0.00340077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 340.2.bd.a.57.3 72
5.3 odd 4 340.2.bi.a.193.3 yes 72
17.3 odd 16 340.2.bi.a.37.3 yes 72
85.3 even 16 inner 340.2.bd.a.173.3 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.bd.a.57.3 72 1.1 even 1 trivial
340.2.bd.a.173.3 yes 72 85.3 even 16 inner
340.2.bi.a.37.3 yes 72 17.3 odd 16
340.2.bi.a.193.3 yes 72 5.3 odd 4