Properties

Label 340.2.bd.a.73.7
Level $340$
Weight $2$
Character 340.73
Analytic conductor $2.715$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [340,2,Mod(57,340)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(340, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 4, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("340.57");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 340.bd (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.71491366872\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 73.7
Character \(\chi\) \(=\) 340.73
Dual form 340.2.bd.a.177.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.197416 - 0.992478i) q^{3} +(-2.21386 + 0.314337i) q^{5} +(4.11814 + 2.75165i) q^{7} +(1.82560 + 0.756188i) q^{9} +(-0.593268 - 0.396409i) q^{11} -1.17074i q^{13} +(-0.125080 + 2.25927i) q^{15} +(3.61941 - 1.97480i) q^{17} +(4.66359 - 1.93172i) q^{19} +(3.54394 - 3.54394i) q^{21} +(-4.32282 + 0.859863i) q^{23} +(4.80238 - 1.39180i) q^{25} +(2.79748 - 4.18673i) q^{27} +(-0.712581 + 3.58239i) q^{29} +(0.397294 - 0.265463i) q^{31} +(-0.510548 + 0.510548i) q^{33} +(-9.98194 - 4.79730i) q^{35} +(-2.40822 - 0.479025i) q^{37} +(-1.16193 - 0.231123i) q^{39} +(1.49379 + 7.50980i) q^{41} +(-6.94077 + 2.87496i) q^{43} +(-4.27932 - 1.10024i) q^{45} -8.12736 q^{47} +(6.70869 + 16.1962i) q^{49} +(-1.24542 - 3.98205i) q^{51} +(1.07361 - 2.59192i) q^{53} +(1.43802 + 0.691109i) q^{55} +(-0.996525 - 5.00987i) q^{57} +(0.998373 - 2.41029i) q^{59} +(8.85868 - 1.76210i) q^{61} +(5.43730 + 8.13750i) q^{63} +(0.368007 + 2.59186i) q^{65} +(-8.33008 - 8.33008i) q^{67} +4.46006i q^{69} +(-4.61796 - 6.91127i) q^{71} +(-2.99656 + 2.00224i) q^{73} +(-0.433260 - 5.04103i) q^{75} +(-1.35238 - 3.26493i) q^{77} +(-4.33662 + 6.49021i) q^{79} +(0.588787 + 0.588787i) q^{81} +(-1.29740 - 0.537401i) q^{83} +(-7.39214 + 5.50966i) q^{85} +(3.41477 + 1.41444i) q^{87} +(-2.78037 - 2.78037i) q^{89} +(3.22147 - 4.82127i) q^{91} +(-0.185034 - 0.446712i) q^{93} +(-9.71735 + 5.74251i) q^{95} +(-0.201537 + 0.134663i) q^{97} +(-0.783309 - 1.17230i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 24 q^{15} + 8 q^{25} - 48 q^{27} - 32 q^{31} + 16 q^{33} + 32 q^{37} - 32 q^{39} - 40 q^{41} + 80 q^{47} - 40 q^{53} + 16 q^{55} + 8 q^{57} + 112 q^{59} - 48 q^{63} - 32 q^{67} - 16 q^{71} + 8 q^{73}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/340\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(171\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.197416 0.992478i 0.113978 0.573008i −0.881017 0.473085i \(-0.843140\pi\)
0.994995 0.0999228i \(-0.0318596\pi\)
\(4\) 0 0
\(5\) −2.21386 + 0.314337i −0.990070 + 0.140576i
\(6\) 0 0
\(7\) 4.11814 + 2.75165i 1.55651 + 1.04003i 0.973817 + 0.227335i \(0.0730011\pi\)
0.582693 + 0.812692i \(0.301999\pi\)
\(8\) 0 0
\(9\) 1.82560 + 0.756188i 0.608533 + 0.252063i
\(10\) 0 0
\(11\) −0.593268 0.396409i −0.178877 0.119522i 0.462908 0.886406i \(-0.346806\pi\)
−0.641785 + 0.766884i \(0.721806\pi\)
\(12\) 0 0
\(13\) 1.17074i 0.324705i −0.986733 0.162353i \(-0.948092\pi\)
0.986733 0.162353i \(-0.0519082\pi\)
\(14\) 0 0
\(15\) −0.125080 + 2.25927i −0.0322956 + 0.583340i
\(16\) 0 0
\(17\) 3.61941 1.97480i 0.877837 0.478960i
\(18\) 0 0
\(19\) 4.66359 1.93172i 1.06990 0.443168i 0.222946 0.974831i \(-0.428433\pi\)
0.846956 + 0.531663i \(0.178433\pi\)
\(20\) 0 0
\(21\) 3.54394 3.54394i 0.773352 0.773352i
\(22\) 0 0
\(23\) −4.32282 + 0.859863i −0.901371 + 0.179294i −0.623959 0.781457i \(-0.714477\pi\)
−0.277412 + 0.960751i \(0.589477\pi\)
\(24\) 0 0
\(25\) 4.80238 1.39180i 0.960477 0.278359i
\(26\) 0 0
\(27\) 2.79748 4.18673i 0.538376 0.805737i
\(28\) 0 0
\(29\) −0.712581 + 3.58239i −0.132323 + 0.665233i 0.856501 + 0.516145i \(0.172634\pi\)
−0.988824 + 0.149087i \(0.952366\pi\)
\(30\) 0 0
\(31\) 0.397294 0.265463i 0.0713561 0.0476786i −0.519380 0.854543i \(-0.673837\pi\)
0.590737 + 0.806864i \(0.298837\pi\)
\(32\) 0 0
\(33\) −0.510548 + 0.510548i −0.0888750 + 0.0888750i
\(34\) 0 0
\(35\) −9.98194 4.79730i −1.68726 0.810892i
\(36\) 0 0
\(37\) −2.40822 0.479025i −0.395909 0.0787513i −0.00687929 0.999976i \(-0.502190\pi\)
−0.389030 + 0.921225i \(0.627190\pi\)
\(38\) 0 0
\(39\) −1.16193 0.231123i −0.186058 0.0370093i
\(40\) 0 0
\(41\) 1.49379 + 7.50980i 0.233291 + 1.17283i 0.902811 + 0.430039i \(0.141500\pi\)
−0.669520 + 0.742794i \(0.733500\pi\)
\(42\) 0 0
\(43\) −6.94077 + 2.87496i −1.05846 + 0.438428i −0.842904 0.538064i \(-0.819156\pi\)
−0.215554 + 0.976492i \(0.569156\pi\)
\(44\) 0 0
\(45\) −4.27932 1.10024i −0.637924 0.164015i
\(46\) 0 0
\(47\) −8.12736 −1.18550 −0.592749 0.805387i \(-0.701957\pi\)
−0.592749 + 0.805387i \(0.701957\pi\)
\(48\) 0 0
\(49\) 6.70869 + 16.1962i 0.958384 + 2.31374i
\(50\) 0 0
\(51\) −1.24542 3.98205i −0.174393 0.557598i
\(52\) 0 0
\(53\) 1.07361 2.59192i 0.147472 0.356028i −0.832831 0.553527i \(-0.813282\pi\)
0.980303 + 0.197498i \(0.0632817\pi\)
\(54\) 0 0
\(55\) 1.43802 + 0.691109i 0.193902 + 0.0931891i
\(56\) 0 0
\(57\) −0.996525 5.00987i −0.131993 0.663573i
\(58\) 0 0
\(59\) 0.998373 2.41029i 0.129977 0.313793i −0.845471 0.534021i \(-0.820680\pi\)
0.975448 + 0.220228i \(0.0706803\pi\)
\(60\) 0 0
\(61\) 8.85868 1.76210i 1.13424 0.225614i 0.407950 0.913004i \(-0.366244\pi\)
0.726288 + 0.687390i \(0.241244\pi\)
\(62\) 0 0
\(63\) 5.43730 + 8.13750i 0.685036 + 1.02523i
\(64\) 0 0
\(65\) 0.368007 + 2.59186i 0.0456456 + 0.321481i
\(66\) 0 0
\(67\) −8.33008 8.33008i −1.01768 1.01768i −0.999841 0.0178406i \(-0.994321\pi\)
−0.0178406 0.999841i \(-0.505679\pi\)
\(68\) 0 0
\(69\) 4.46006i 0.536928i
\(70\) 0 0
\(71\) −4.61796 6.91127i −0.548051 0.820217i 0.449268 0.893397i \(-0.351685\pi\)
−0.997319 + 0.0731807i \(0.976685\pi\)
\(72\) 0 0
\(73\) −2.99656 + 2.00224i −0.350721 + 0.234344i −0.718434 0.695595i \(-0.755141\pi\)
0.367713 + 0.929939i \(0.380141\pi\)
\(74\) 0 0
\(75\) −0.433260 5.04103i −0.0500285 0.582088i
\(76\) 0 0
\(77\) −1.35238 3.26493i −0.154118 0.372074i
\(78\) 0 0
\(79\) −4.33662 + 6.49021i −0.487908 + 0.730205i −0.990976 0.134041i \(-0.957205\pi\)
0.503068 + 0.864247i \(0.332205\pi\)
\(80\) 0 0
\(81\) 0.588787 + 0.588787i 0.0654207 + 0.0654207i
\(82\) 0 0
\(83\) −1.29740 0.537401i −0.142408 0.0589875i 0.310341 0.950625i \(-0.399557\pi\)
−0.452749 + 0.891638i \(0.649557\pi\)
\(84\) 0 0
\(85\) −7.39214 + 5.50966i −0.801790 + 0.597606i
\(86\) 0 0
\(87\) 3.41477 + 1.41444i 0.366102 + 0.151644i
\(88\) 0 0
\(89\) −2.78037 2.78037i −0.294718 0.294718i 0.544223 0.838941i \(-0.316825\pi\)
−0.838941 + 0.544223i \(0.816825\pi\)
\(90\) 0 0
\(91\) 3.22147 4.82127i 0.337702 0.505407i
\(92\) 0 0
\(93\) −0.185034 0.446712i −0.0191872 0.0463219i
\(94\) 0 0
\(95\) −9.71735 + 5.74251i −0.996979 + 0.589169i
\(96\) 0 0
\(97\) −0.201537 + 0.134663i −0.0204630 + 0.0136729i −0.565760 0.824570i \(-0.691417\pi\)
0.545297 + 0.838243i \(0.316417\pi\)
\(98\) 0 0
\(99\) −0.783309 1.17230i −0.0787255 0.117821i
\(100\) 0 0
\(101\) 7.39481i 0.735812i 0.929863 + 0.367906i \(0.119925\pi\)
−0.929863 + 0.367906i \(0.880075\pi\)
\(102\) 0 0
\(103\) −12.9168 12.9168i −1.27273 1.27273i −0.944652 0.328073i \(-0.893601\pi\)
−0.328073 0.944652i \(-0.606399\pi\)
\(104\) 0 0
\(105\) −6.73181 + 8.95980i −0.656958 + 0.874387i
\(106\) 0 0
\(107\) 0.923889 + 1.38270i 0.0893157 + 0.133670i 0.873437 0.486937i \(-0.161886\pi\)
−0.784121 + 0.620608i \(0.786886\pi\)
\(108\) 0 0
\(109\) −18.4061 + 3.66119i −1.76298 + 0.350679i −0.967026 0.254678i \(-0.918030\pi\)
−0.795954 + 0.605357i \(0.793030\pi\)
\(110\) 0 0
\(111\) −0.950844 + 2.29554i −0.0902501 + 0.217883i
\(112\) 0 0
\(113\) −3.71387 18.6709i −0.349372 1.75641i −0.611372 0.791343i \(-0.709382\pi\)
0.262000 0.965068i \(-0.415618\pi\)
\(114\) 0 0
\(115\) 9.29985 3.26244i 0.867216 0.304224i
\(116\) 0 0
\(117\) 0.885300 2.13730i 0.0818460 0.197594i
\(118\) 0 0
\(119\) 20.3392 + 1.82686i 1.86449 + 0.167468i
\(120\) 0 0
\(121\) −4.01469 9.69232i −0.364972 0.881120i
\(122\) 0 0
\(123\) 7.74821 0.698632
\(124\) 0 0
\(125\) −10.1943 + 4.59081i −0.911809 + 0.410615i
\(126\) 0 0
\(127\) 2.46642 1.02162i 0.218859 0.0906545i −0.270560 0.962703i \(-0.587209\pi\)
0.489419 + 0.872049i \(0.337209\pi\)
\(128\) 0 0
\(129\) 1.48312 + 7.45613i 0.130581 + 0.656476i
\(130\) 0 0
\(131\) 7.56632 + 1.50503i 0.661072 + 0.131495i 0.514214 0.857662i \(-0.328084\pi\)
0.146858 + 0.989158i \(0.453084\pi\)
\(132\) 0 0
\(133\) 24.5208 + 4.87748i 2.12622 + 0.422931i
\(134\) 0 0
\(135\) −4.87721 + 10.1482i −0.419763 + 0.873418i
\(136\) 0 0
\(137\) 14.4500 14.4500i 1.23455 1.23455i 0.272350 0.962198i \(-0.412199\pi\)
0.962198 0.272350i \(-0.0878008\pi\)
\(138\) 0 0
\(139\) −11.5267 + 7.70189i −0.977681 + 0.653266i −0.938250 0.345957i \(-0.887554\pi\)
−0.0394305 + 0.999222i \(0.512554\pi\)
\(140\) 0 0
\(141\) −1.60447 + 8.06623i −0.135121 + 0.679299i
\(142\) 0 0
\(143\) −0.464092 + 0.694562i −0.0388093 + 0.0580822i
\(144\) 0 0
\(145\) 0.451482 8.15491i 0.0374936 0.677229i
\(146\) 0 0
\(147\) 17.3988 3.46084i 1.43503 0.285445i
\(148\) 0 0
\(149\) 13.5011 13.5011i 1.10605 1.10605i 0.112390 0.993664i \(-0.464149\pi\)
0.993664 0.112390i \(-0.0358507\pi\)
\(150\) 0 0
\(151\) 20.1166 8.33257i 1.63707 0.678095i 0.641070 0.767483i \(-0.278491\pi\)
0.995997 + 0.0893876i \(0.0284910\pi\)
\(152\) 0 0
\(153\) 8.10092 0.868240i 0.654920 0.0701931i
\(154\) 0 0
\(155\) −0.796110 + 0.712584i −0.0639451 + 0.0572361i
\(156\) 0 0
\(157\) 16.4334i 1.31153i 0.754964 + 0.655766i \(0.227654\pi\)
−0.754964 + 0.655766i \(0.772346\pi\)
\(158\) 0 0
\(159\) −2.36048 1.57722i −0.187198 0.125082i
\(160\) 0 0
\(161\) −20.1680 8.35387i −1.58946 0.658377i
\(162\) 0 0
\(163\) −8.94464 5.97662i −0.700598 0.468125i 0.153559 0.988139i \(-0.450927\pi\)
−0.854157 + 0.520015i \(0.825927\pi\)
\(164\) 0 0
\(165\) 0.969799 1.29077i 0.0754988 0.100486i
\(166\) 0 0
\(167\) −3.27605 + 16.4698i −0.253508 + 1.27447i 0.618812 + 0.785539i \(0.287614\pi\)
−0.872321 + 0.488934i \(0.837386\pi\)
\(168\) 0 0
\(169\) 11.6294 0.894567
\(170\) 0 0
\(171\) 9.97459 0.762776
\(172\) 0 0
\(173\) −3.88819 + 19.5472i −0.295614 + 1.48615i 0.492334 + 0.870407i \(0.336144\pi\)
−0.787947 + 0.615743i \(0.788856\pi\)
\(174\) 0 0
\(175\) 23.6066 + 7.48288i 1.78449 + 0.565653i
\(176\) 0 0
\(177\) −2.19506 1.46669i −0.164991 0.110243i
\(178\) 0 0
\(179\) −20.5760 8.52285i −1.53792 0.637028i −0.556839 0.830621i \(-0.687986\pi\)
−0.981082 + 0.193593i \(0.937986\pi\)
\(180\) 0 0
\(181\) 8.16840 + 5.45795i 0.607153 + 0.405686i 0.820793 0.571226i \(-0.193532\pi\)
−0.213640 + 0.976912i \(0.568532\pi\)
\(182\) 0 0
\(183\) 9.13992i 0.675642i
\(184\) 0 0
\(185\) 5.48205 + 0.303504i 0.403048 + 0.0223141i
\(186\) 0 0
\(187\) −2.93011 0.263181i −0.214271 0.0192457i
\(188\) 0 0
\(189\) 23.0409 9.54383i 1.67598 0.694212i
\(190\) 0 0
\(191\) −13.2391 + 13.2391i −0.957947 + 0.957947i −0.999151 0.0412036i \(-0.986881\pi\)
0.0412036 + 0.999151i \(0.486881\pi\)
\(192\) 0 0
\(193\) 1.60060 0.318379i 0.115214 0.0229174i −0.137147 0.990551i \(-0.543793\pi\)
0.252360 + 0.967633i \(0.418793\pi\)
\(194\) 0 0
\(195\) 2.64502 + 0.146437i 0.189414 + 0.0104865i
\(196\) 0 0
\(197\) 3.25493 4.87135i 0.231904 0.347069i −0.697207 0.716870i \(-0.745574\pi\)
0.929111 + 0.369801i \(0.120574\pi\)
\(198\) 0 0
\(199\) −1.88295 + 9.46622i −0.133479 + 0.671043i 0.854871 + 0.518841i \(0.173636\pi\)
−0.988349 + 0.152202i \(0.951364\pi\)
\(200\) 0 0
\(201\) −9.91192 + 6.62293i −0.699133 + 0.467146i
\(202\) 0 0
\(203\) −12.7920 + 12.7920i −0.897822 + 0.897822i
\(204\) 0 0
\(205\) −5.66765 16.1561i −0.395846 1.12839i
\(206\) 0 0
\(207\) −8.54196 1.69910i −0.593707 0.118096i
\(208\) 0 0
\(209\) −3.53251 0.702660i −0.244349 0.0486040i
\(210\) 0 0
\(211\) 0.128434 + 0.645683i 0.00884178 + 0.0444506i 0.984954 0.172815i \(-0.0552862\pi\)
−0.976113 + 0.217266i \(0.930286\pi\)
\(212\) 0 0
\(213\) −7.77094 + 3.21883i −0.532456 + 0.220551i
\(214\) 0 0
\(215\) 14.4622 8.54651i 0.986315 0.582867i
\(216\) 0 0
\(217\) 2.36657 0.160654
\(218\) 0 0
\(219\) 1.39561 + 3.36930i 0.0943066 + 0.227676i
\(220\) 0 0
\(221\) −2.31198 4.23739i −0.155521 0.285038i
\(222\) 0 0
\(223\) −3.65310 + 8.81937i −0.244630 + 0.590588i −0.997732 0.0673154i \(-0.978557\pi\)
0.753102 + 0.657904i \(0.228557\pi\)
\(224\) 0 0
\(225\) 9.81969 + 1.09064i 0.654646 + 0.0727095i
\(226\) 0 0
\(227\) −2.55641 12.8519i −0.169675 0.853013i −0.968032 0.250828i \(-0.919297\pi\)
0.798357 0.602185i \(-0.205703\pi\)
\(228\) 0 0
\(229\) 7.48367 18.0672i 0.494535 1.19391i −0.457854 0.889027i \(-0.651382\pi\)
0.952389 0.304886i \(-0.0986183\pi\)
\(230\) 0 0
\(231\) −3.50736 + 0.697656i −0.230767 + 0.0459024i
\(232\) 0 0
\(233\) −4.94064 7.39420i −0.323672 0.484410i 0.633575 0.773682i \(-0.281587\pi\)
−0.957247 + 0.289272i \(0.906587\pi\)
\(234\) 0 0
\(235\) 17.9929 2.55473i 1.17373 0.166652i
\(236\) 0 0
\(237\) 5.58527 + 5.58527i 0.362802 + 0.362802i
\(238\) 0 0
\(239\) 0.496238i 0.0320990i 0.999871 + 0.0160495i \(0.00510893\pi\)
−0.999871 + 0.0160495i \(0.994891\pi\)
\(240\) 0 0
\(241\) 10.0672 + 15.0666i 0.648484 + 0.970524i 0.999418 + 0.0341241i \(0.0108641\pi\)
−0.350934 + 0.936400i \(0.614136\pi\)
\(242\) 0 0
\(243\) 13.2608 8.86057i 0.850680 0.568406i
\(244\) 0 0
\(245\) −19.9432 33.7474i −1.27412 2.15604i
\(246\) 0 0
\(247\) −2.26155 5.45986i −0.143899 0.347402i
\(248\) 0 0
\(249\) −0.789487 + 1.18155i −0.0500317 + 0.0748778i
\(250\) 0 0
\(251\) 14.5660 + 14.5660i 0.919396 + 0.919396i 0.996985 0.0775894i \(-0.0247223\pi\)
−0.0775894 + 0.996985i \(0.524722\pi\)
\(252\) 0 0
\(253\) 2.90545 + 1.20348i 0.182664 + 0.0756619i
\(254\) 0 0
\(255\) 4.00889 + 8.42423i 0.251046 + 0.527546i
\(256\) 0 0
\(257\) −19.5886 8.11385i −1.22190 0.506128i −0.323888 0.946096i \(-0.604990\pi\)
−0.898014 + 0.439967i \(0.854990\pi\)
\(258\) 0 0
\(259\) −8.59928 8.59928i −0.534333 0.534333i
\(260\) 0 0
\(261\) −4.00985 + 6.00116i −0.248203 + 0.371462i
\(262\) 0 0
\(263\) 2.23000 + 5.38370i 0.137508 + 0.331973i 0.977600 0.210470i \(-0.0674995\pi\)
−0.840093 + 0.542443i \(0.817499\pi\)
\(264\) 0 0
\(265\) −1.56209 + 6.07564i −0.0959584 + 0.373224i
\(266\) 0 0
\(267\) −3.30834 + 2.21056i −0.202467 + 0.135284i
\(268\) 0 0
\(269\) −1.39714 2.09097i −0.0851853 0.127489i 0.786430 0.617680i \(-0.211927\pi\)
−0.871615 + 0.490191i \(0.836927\pi\)
\(270\) 0 0
\(271\) 29.5652i 1.79596i −0.440037 0.897980i \(-0.645035\pi\)
0.440037 0.897980i \(-0.354965\pi\)
\(272\) 0 0
\(273\) −4.14904 4.14904i −0.251111 0.251111i
\(274\) 0 0
\(275\) −3.40082 1.07800i −0.205077 0.0650058i
\(276\) 0 0
\(277\) 3.97773 + 5.95310i 0.238999 + 0.357687i 0.931507 0.363723i \(-0.118494\pi\)
−0.692508 + 0.721410i \(0.743494\pi\)
\(278\) 0 0
\(279\) 0.926039 0.184201i 0.0554405 0.0110278i
\(280\) 0 0
\(281\) −6.72223 + 16.2289i −0.401015 + 0.968135i 0.586406 + 0.810017i \(0.300542\pi\)
−0.987420 + 0.158117i \(0.949458\pi\)
\(282\) 0 0
\(283\) 1.97818 + 9.94499i 0.117591 + 0.591168i 0.993980 + 0.109564i \(0.0349456\pi\)
−0.876389 + 0.481604i \(0.840054\pi\)
\(284\) 0 0
\(285\) 3.78096 + 10.7779i 0.223964 + 0.638429i
\(286\) 0 0
\(287\) −14.5127 + 35.0368i −0.856658 + 2.06816i
\(288\) 0 0
\(289\) 9.20031 14.2953i 0.541195 0.840897i
\(290\) 0 0
\(291\) 0.0938630 + 0.226605i 0.00550235 + 0.0132838i
\(292\) 0 0
\(293\) 10.3939 0.607219 0.303610 0.952797i \(-0.401808\pi\)
0.303610 + 0.952797i \(0.401808\pi\)
\(294\) 0 0
\(295\) −1.45262 + 5.64987i −0.0845749 + 0.328948i
\(296\) 0 0
\(297\) −3.31931 + 1.37490i −0.192606 + 0.0797801i
\(298\) 0 0
\(299\) 1.00668 + 5.06090i 0.0582176 + 0.292680i
\(300\) 0 0
\(301\) −36.4940 7.25910i −2.10348 0.418407i
\(302\) 0 0
\(303\) 7.33919 + 1.45986i 0.421626 + 0.0838666i
\(304\) 0 0
\(305\) −19.0580 + 6.68566i −1.09126 + 0.382820i
\(306\) 0 0
\(307\) −2.82347 + 2.82347i −0.161144 + 0.161144i −0.783073 0.621929i \(-0.786349\pi\)
0.621929 + 0.783073i \(0.286349\pi\)
\(308\) 0 0
\(309\) −15.3696 + 10.2696i −0.874344 + 0.584218i
\(310\) 0 0
\(311\) 4.60636 23.1577i 0.261203 1.31316i −0.597990 0.801503i \(-0.704034\pi\)
0.859193 0.511652i \(-0.170966\pi\)
\(312\) 0 0
\(313\) −8.54776 + 12.7926i −0.483148 + 0.723082i −0.990326 0.138759i \(-0.955689\pi\)
0.507178 + 0.861841i \(0.330689\pi\)
\(314\) 0 0
\(315\) −14.5954 16.3062i −0.822355 0.918748i
\(316\) 0 0
\(317\) −25.3578 + 5.04398i −1.42424 + 0.283298i −0.846266 0.532760i \(-0.821155\pi\)
−0.577970 + 0.816058i \(0.696155\pi\)
\(318\) 0 0
\(319\) 1.84284 1.84284i 0.103179 0.103179i
\(320\) 0 0
\(321\) 1.55469 0.643973i 0.0867742 0.0359430i
\(322\) 0 0
\(323\) 13.0647 16.2014i 0.726939 0.901469i
\(324\) 0 0
\(325\) −1.62943 5.62235i −0.0903847 0.311872i
\(326\) 0 0
\(327\) 18.9904i 1.05017i
\(328\) 0 0
\(329\) −33.4696 22.3637i −1.84524 1.23295i
\(330\) 0 0
\(331\) −15.2803 6.32931i −0.839881 0.347890i −0.0790744 0.996869i \(-0.525196\pi\)
−0.760807 + 0.648979i \(0.775196\pi\)
\(332\) 0 0
\(333\) −4.03421 2.69558i −0.221074 0.147717i
\(334\) 0 0
\(335\) 21.0601 + 15.8232i 1.15064 + 0.864515i
\(336\) 0 0
\(337\) −2.30348 + 11.5804i −0.125478 + 0.630822i 0.865946 + 0.500138i \(0.166717\pi\)
−0.991424 + 0.130684i \(0.958283\pi\)
\(338\) 0 0
\(339\) −19.2637 −1.04626
\(340\) 0 0
\(341\) −0.340934 −0.0184626
\(342\) 0 0
\(343\) −10.1753 + 51.1545i −0.549412 + 2.76208i
\(344\) 0 0
\(345\) −1.40196 9.87396i −0.0754790 0.531596i
\(346\) 0 0
\(347\) 26.5873 + 17.7650i 1.42728 + 0.953677i 0.998742 + 0.0501533i \(0.0159710\pi\)
0.428537 + 0.903524i \(0.359029\pi\)
\(348\) 0 0
\(349\) 0.0914566 + 0.0378826i 0.00489556 + 0.00202781i 0.385130 0.922862i \(-0.374157\pi\)
−0.380234 + 0.924890i \(0.624157\pi\)
\(350\) 0 0
\(351\) −4.90158 3.27513i −0.261627 0.174813i
\(352\) 0 0
\(353\) 22.4389i 1.19430i −0.802128 0.597152i \(-0.796299\pi\)
0.802128 0.597152i \(-0.203701\pi\)
\(354\) 0 0
\(355\) 12.3960 + 13.8490i 0.657911 + 0.735029i
\(356\) 0 0
\(357\) 5.82841 19.8256i 0.308472 1.04928i
\(358\) 0 0
\(359\) 11.3018 4.68137i 0.596488 0.247073i −0.0639512 0.997953i \(-0.520370\pi\)
0.660439 + 0.750880i \(0.270370\pi\)
\(360\) 0 0
\(361\) 4.58251 4.58251i 0.241185 0.241185i
\(362\) 0 0
\(363\) −10.4120 + 2.07107i −0.546487 + 0.108703i
\(364\) 0 0
\(365\) 6.00461 5.37462i 0.314296 0.281320i
\(366\) 0 0
\(367\) 9.37791 14.0350i 0.489523 0.732623i −0.501668 0.865060i \(-0.667280\pi\)
0.991191 + 0.132437i \(0.0422802\pi\)
\(368\) 0 0
\(369\) −2.95175 + 14.8395i −0.153662 + 0.772511i
\(370\) 0 0
\(371\) 11.5534 7.71970i 0.599820 0.400787i
\(372\) 0 0
\(373\) 17.6152 17.6152i 0.912081 0.912081i −0.0843544 0.996436i \(-0.526883\pi\)
0.996436 + 0.0843544i \(0.0268828\pi\)
\(374\) 0 0
\(375\) 2.54376 + 11.0240i 0.131359 + 0.569275i
\(376\) 0 0
\(377\) 4.19405 + 0.834248i 0.216004 + 0.0429660i
\(378\) 0 0
\(379\) −32.3091 6.42668i −1.65961 0.330116i −0.725804 0.687902i \(-0.758532\pi\)
−0.933804 + 0.357785i \(0.883532\pi\)
\(380\) 0 0
\(381\) −0.527029 2.64955i −0.0270005 0.135741i
\(382\) 0 0
\(383\) 12.0036 4.97207i 0.613357 0.254061i −0.0543060 0.998524i \(-0.517295\pi\)
0.667663 + 0.744463i \(0.267295\pi\)
\(384\) 0 0
\(385\) 4.02027 + 6.80301i 0.204892 + 0.346714i
\(386\) 0 0
\(387\) −14.8451 −0.754617
\(388\) 0 0
\(389\) 12.3063 + 29.7100i 0.623954 + 1.50636i 0.847023 + 0.531556i \(0.178392\pi\)
−0.223069 + 0.974803i \(0.571608\pi\)
\(390\) 0 0
\(391\) −13.9480 + 11.6489i −0.705382 + 0.589111i
\(392\) 0 0
\(393\) 2.98743 7.21229i 0.150696 0.363812i
\(394\) 0 0
\(395\) 7.56057 15.7316i 0.380414 0.791542i
\(396\) 0 0
\(397\) −0.318575 1.60158i −0.0159888 0.0803812i 0.971967 0.235117i \(-0.0755473\pi\)
−0.987956 + 0.154736i \(0.950547\pi\)
\(398\) 0 0
\(399\) 9.68159 23.3734i 0.484686 1.17013i
\(400\) 0 0
\(401\) −8.12128 + 1.61542i −0.405557 + 0.0806704i −0.393654 0.919259i \(-0.628789\pi\)
−0.0119036 + 0.999929i \(0.503789\pi\)
\(402\) 0 0
\(403\) −0.310789 0.465128i −0.0154815 0.0231697i
\(404\) 0 0
\(405\) −1.48857 1.11842i −0.0739676 0.0555745i
\(406\) 0 0
\(407\) 1.23883 + 1.23883i 0.0614065 + 0.0614065i
\(408\) 0 0
\(409\) 0.226801i 0.0112146i −0.999984 0.00560729i \(-0.998215\pi\)
0.999984 0.00560729i \(-0.00178487\pi\)
\(410\) 0 0
\(411\) −11.4887 17.1940i −0.566694 0.848117i
\(412\) 0 0
\(413\) 10.7437 7.17872i 0.528663 0.353242i
\(414\) 0 0
\(415\) 3.04120 + 0.781912i 0.149286 + 0.0383826i
\(416\) 0 0
\(417\) 5.36840 + 12.9605i 0.262892 + 0.634677i
\(418\) 0 0
\(419\) −4.44464 + 6.65188i −0.217135 + 0.324965i −0.924007 0.382376i \(-0.875106\pi\)
0.706872 + 0.707342i \(0.250106\pi\)
\(420\) 0 0
\(421\) −11.9202 11.9202i −0.580957 0.580957i 0.354210 0.935166i \(-0.384750\pi\)
−0.935166 + 0.354210i \(0.884750\pi\)
\(422\) 0 0
\(423\) −14.8373 6.14581i −0.721414 0.298820i
\(424\) 0 0
\(425\) 14.6333 14.5212i 0.709819 0.704384i
\(426\) 0 0
\(427\) 41.3300 + 17.1194i 2.00010 + 0.828468i
\(428\) 0 0
\(429\) 0.597719 + 0.597719i 0.0288581 + 0.0288581i
\(430\) 0 0
\(431\) −11.1212 + 16.6440i −0.535688 + 0.801714i −0.996305 0.0858853i \(-0.972628\pi\)
0.460617 + 0.887599i \(0.347628\pi\)
\(432\) 0 0
\(433\) 10.8418 + 26.1745i 0.521025 + 1.25787i 0.937267 + 0.348612i \(0.113347\pi\)
−0.416242 + 0.909254i \(0.636653\pi\)
\(434\) 0 0
\(435\) −8.00444 2.05800i −0.383784 0.0986735i
\(436\) 0 0
\(437\) −18.4989 + 12.3605i −0.884921 + 0.591285i
\(438\) 0 0
\(439\) −11.0659 16.5613i −0.528148 0.790429i 0.467464 0.884012i \(-0.345168\pi\)
−0.995611 + 0.0935831i \(0.970168\pi\)
\(440\) 0 0
\(441\) 34.6408i 1.64956i
\(442\) 0 0
\(443\) 3.28244 + 3.28244i 0.155953 + 0.155953i 0.780771 0.624817i \(-0.214827\pi\)
−0.624817 + 0.780771i \(0.714827\pi\)
\(444\) 0 0
\(445\) 7.02932 + 5.28138i 0.333222 + 0.250361i
\(446\) 0 0
\(447\) −10.7342 16.0649i −0.507711 0.759844i
\(448\) 0 0
\(449\) 35.0628 6.97442i 1.65471 0.329143i 0.722589 0.691278i \(-0.242952\pi\)
0.932126 + 0.362134i \(0.117952\pi\)
\(450\) 0 0
\(451\) 2.09073 5.04747i 0.0984487 0.237676i
\(452\) 0 0
\(453\) −4.29855 21.6103i −0.201964 1.01534i
\(454\) 0 0
\(455\) −5.61640 + 11.6863i −0.263301 + 0.547861i
\(456\) 0 0
\(457\) −11.1833 + 26.9988i −0.523132 + 1.26295i 0.412816 + 0.910815i \(0.364545\pi\)
−0.935948 + 0.352138i \(0.885455\pi\)
\(458\) 0 0
\(459\) 1.85729 20.6780i 0.0866907 0.965166i
\(460\) 0 0
\(461\) 9.32073 + 22.5022i 0.434110 + 1.04803i 0.977949 + 0.208844i \(0.0669701\pi\)
−0.543839 + 0.839189i \(0.683030\pi\)
\(462\) 0 0
\(463\) 4.78508 0.222381 0.111191 0.993799i \(-0.464534\pi\)
0.111191 + 0.993799i \(0.464534\pi\)
\(464\) 0 0
\(465\) 0.550059 + 0.930797i 0.0255084 + 0.0431647i
\(466\) 0 0
\(467\) 12.0107 4.97502i 0.555791 0.230216i −0.0870657 0.996203i \(-0.527749\pi\)
0.642857 + 0.765986i \(0.277749\pi\)
\(468\) 0 0
\(469\) −11.3829 57.2259i −0.525615 2.64245i
\(470\) 0 0
\(471\) 16.3098 + 3.24423i 0.751518 + 0.149486i
\(472\) 0 0
\(473\) 5.25739 + 1.04576i 0.241735 + 0.0480841i
\(474\) 0 0
\(475\) 19.7078 15.7677i 0.904256 0.723470i
\(476\) 0 0
\(477\) 3.91996 3.91996i 0.179483 0.179483i
\(478\) 0 0
\(479\) 8.92887 5.96608i 0.407971 0.272597i −0.334606 0.942358i \(-0.608603\pi\)
0.742577 + 0.669761i \(0.233603\pi\)
\(480\) 0 0
\(481\) −0.560814 + 2.81940i −0.0255709 + 0.128554i
\(482\) 0 0
\(483\) −12.2725 + 18.3671i −0.558419 + 0.835734i
\(484\) 0 0
\(485\) 0.403845 0.361475i 0.0183377 0.0164137i
\(486\) 0 0
\(487\) −14.5275 + 2.88970i −0.658304 + 0.130945i −0.512928 0.858432i \(-0.671439\pi\)
−0.145376 + 0.989377i \(0.546439\pi\)
\(488\) 0 0
\(489\) −7.69748 + 7.69748i −0.348092 + 0.348092i
\(490\) 0 0
\(491\) 5.45568 2.25982i 0.246211 0.101984i −0.256165 0.966633i \(-0.582459\pi\)
0.502377 + 0.864649i \(0.332459\pi\)
\(492\) 0 0
\(493\) 4.49538 + 14.3734i 0.202462 + 0.647343i
\(494\) 0 0
\(495\) 2.10264 + 2.34910i 0.0945065 + 0.105584i
\(496\) 0 0
\(497\) 41.1686i 1.84666i
\(498\) 0 0
\(499\) −10.8335 7.23871i −0.484974 0.324049i 0.288932 0.957350i \(-0.406700\pi\)
−0.773906 + 0.633300i \(0.781700\pi\)
\(500\) 0 0
\(501\) 15.6992 + 6.50282i 0.701388 + 0.290525i
\(502\) 0 0
\(503\) 20.8463 + 13.9291i 0.929492 + 0.621067i 0.925427 0.378925i \(-0.123706\pi\)
0.00406480 + 0.999992i \(0.498706\pi\)
\(504\) 0 0
\(505\) −2.32446 16.3711i −0.103437 0.728505i
\(506\) 0 0
\(507\) 2.29583 11.5419i 0.101961 0.512594i
\(508\) 0 0
\(509\) −0.650865 −0.0288491 −0.0144245 0.999896i \(-0.504592\pi\)
−0.0144245 + 0.999896i \(0.504592\pi\)
\(510\) 0 0
\(511\) −17.8497 −0.789626
\(512\) 0 0
\(513\) 4.95872 24.9292i 0.218933 1.10065i
\(514\) 0 0
\(515\) 32.6561 + 24.5357i 1.43900 + 1.08117i
\(516\) 0 0
\(517\) 4.82170 + 3.22176i 0.212058 + 0.141693i
\(518\) 0 0
\(519\) 18.6326 + 7.71789i 0.817882 + 0.338778i
\(520\) 0 0
\(521\) 30.4630 + 20.3547i 1.33461 + 0.891757i 0.998742 0.0501523i \(-0.0159707\pi\)
0.335867 + 0.941909i \(0.390971\pi\)
\(522\) 0 0
\(523\) 24.3530i 1.06488i −0.846467 0.532442i \(-0.821275\pi\)
0.846467 0.532442i \(-0.178725\pi\)
\(524\) 0 0
\(525\) 12.0869 21.9518i 0.527517 0.958056i
\(526\) 0 0
\(527\) 0.913734 1.74540i 0.0398029 0.0760308i
\(528\) 0 0
\(529\) −3.30180 + 1.36765i −0.143556 + 0.0594630i
\(530\) 0 0
\(531\) 3.64526 3.64526i 0.158191 0.158191i
\(532\) 0 0
\(533\) 8.79202 1.74884i 0.380825 0.0757508i
\(534\) 0 0
\(535\) −2.48000 2.77069i −0.107220 0.119787i
\(536\) 0 0
\(537\) −12.5208 + 18.7387i −0.540311 + 0.808633i
\(538\) 0 0
\(539\) 2.44027 12.2681i 0.105110 0.528423i
\(540\) 0 0
\(541\) −26.5789 + 17.7595i −1.14272 + 0.763539i −0.974980 0.222293i \(-0.928646\pi\)
−0.167737 + 0.985832i \(0.553646\pi\)
\(542\) 0 0
\(543\) 7.02947 7.02947i 0.301664 0.301664i
\(544\) 0 0
\(545\) 39.5976 13.8911i 1.69618 0.595028i
\(546\) 0 0
\(547\) 0.967848 + 0.192517i 0.0413822 + 0.00823143i 0.215738 0.976451i \(-0.430784\pi\)
−0.174356 + 0.984683i \(0.555784\pi\)
\(548\) 0 0
\(549\) 17.5049 + 3.48194i 0.747090 + 0.148605i
\(550\) 0 0
\(551\) 3.59699 + 18.0833i 0.153237 + 0.770375i
\(552\) 0 0
\(553\) −35.7176 + 14.7947i −1.51887 + 0.629135i
\(554\) 0 0
\(555\) 1.38347 5.38090i 0.0587249 0.228407i
\(556\) 0 0
\(557\) −11.1394 −0.471991 −0.235996 0.971754i \(-0.575835\pi\)
−0.235996 + 0.971754i \(0.575835\pi\)
\(558\) 0 0
\(559\) 3.36583 + 8.12584i 0.142360 + 0.343687i
\(560\) 0 0
\(561\) −0.839653 + 2.85611i −0.0354502 + 0.120585i
\(562\) 0 0
\(563\) −1.85000 + 4.46629i −0.0779682 + 0.188232i −0.958057 0.286577i \(-0.907483\pi\)
0.880089 + 0.474809i \(0.157483\pi\)
\(564\) 0 0
\(565\) 14.0910 + 40.1674i 0.592811 + 1.68986i
\(566\) 0 0
\(567\) 0.804569 + 4.04484i 0.0337887 + 0.169867i
\(568\) 0 0
\(569\) −12.2377 + 29.5443i −0.513029 + 1.23856i 0.429083 + 0.903265i \(0.358837\pi\)
−0.942112 + 0.335297i \(0.891163\pi\)
\(570\) 0 0
\(571\) 13.4709 2.67954i 0.563741 0.112135i 0.0950107 0.995476i \(-0.469711\pi\)
0.468731 + 0.883341i \(0.344711\pi\)
\(572\) 0 0
\(573\) 10.5259 + 15.7531i 0.439726 + 0.658096i
\(574\) 0 0
\(575\) −19.5631 + 10.1459i −0.815838 + 0.423113i
\(576\) 0 0
\(577\) −20.2394 20.2394i −0.842579 0.842579i 0.146615 0.989194i \(-0.453162\pi\)
−0.989194 + 0.146615i \(0.953162\pi\)
\(578\) 0 0
\(579\) 1.65142i 0.0686305i
\(580\) 0 0
\(581\) −3.86414 5.78309i −0.160311 0.239923i
\(582\) 0 0
\(583\) −1.66440 + 1.11212i −0.0689324 + 0.0460592i
\(584\) 0 0
\(585\) −1.28810 + 5.00998i −0.0532564 + 0.207137i
\(586\) 0 0
\(587\) 1.11400 + 2.68943i 0.0459796 + 0.111004i 0.945201 0.326490i \(-0.105866\pi\)
−0.899221 + 0.437494i \(0.855866\pi\)
\(588\) 0 0
\(589\) 1.34002 2.00548i 0.0552144 0.0826342i
\(590\) 0 0
\(591\) −4.19213 4.19213i −0.172441 0.172441i
\(592\) 0 0
\(593\) −0.856283 0.354684i −0.0351633 0.0145651i 0.365032 0.930995i \(-0.381058\pi\)
−0.400196 + 0.916430i \(0.631058\pi\)
\(594\) 0 0
\(595\) −45.6025 + 2.34895i −1.86952 + 0.0962974i
\(596\) 0 0
\(597\) 9.02330 + 3.73757i 0.369299 + 0.152969i
\(598\) 0 0
\(599\) 11.7270 + 11.7270i 0.479151 + 0.479151i 0.904860 0.425709i \(-0.139975\pi\)
−0.425709 + 0.904860i \(0.639975\pi\)
\(600\) 0 0
\(601\) 14.6783 21.9677i 0.598741 0.896079i −0.401059 0.916052i \(-0.631358\pi\)
0.999801 + 0.0199727i \(0.00635792\pi\)
\(602\) 0 0
\(603\) −8.90828 21.5065i −0.362773 0.875812i
\(604\) 0 0
\(605\) 11.9346 + 20.1955i 0.485212 + 0.821064i
\(606\) 0 0
\(607\) 15.5866 10.4146i 0.632639 0.422716i −0.197476 0.980308i \(-0.563275\pi\)
0.830115 + 0.557592i \(0.188275\pi\)
\(608\) 0 0
\(609\) 10.1704 + 15.2211i 0.412127 + 0.616791i
\(610\) 0 0
\(611\) 9.51503i 0.384937i
\(612\) 0 0
\(613\) −5.09727 5.09727i −0.205877 0.205877i 0.596635 0.802512i \(-0.296504\pi\)
−0.802512 + 0.596635i \(0.796504\pi\)
\(614\) 0 0
\(615\) −17.1535 + 2.43555i −0.691695 + 0.0982107i
\(616\) 0 0
\(617\) −0.811360 1.21429i −0.0326641 0.0488853i 0.814778 0.579773i \(-0.196859\pi\)
−0.847442 + 0.530887i \(0.821859\pi\)
\(618\) 0 0
\(619\) 6.64720 1.32221i 0.267174 0.0531441i −0.0596854 0.998217i \(-0.519010\pi\)
0.326859 + 0.945073i \(0.394010\pi\)
\(620\) 0 0
\(621\) −8.49301 + 20.5039i −0.340813 + 0.822795i
\(622\) 0 0
\(623\) −3.79933 19.1005i −0.152217 0.765247i
\(624\) 0 0
\(625\) 21.1258 13.3679i 0.845032 0.534716i
\(626\) 0 0
\(627\) −1.39475 + 3.36722i −0.0557009 + 0.134474i
\(628\) 0 0
\(629\) −9.66233 + 3.02197i −0.385262 + 0.120494i
\(630\) 0 0
\(631\) −8.45217 20.4054i −0.336476 0.812324i −0.998049 0.0624433i \(-0.980111\pi\)
0.661573 0.749881i \(-0.269889\pi\)
\(632\) 0 0
\(633\) 0.666181 0.0264783
\(634\) 0 0
\(635\) −5.13918 + 3.03702i −0.203942 + 0.120521i
\(636\) 0 0
\(637\) 18.9616 7.85414i 0.751284 0.311192i
\(638\) 0 0
\(639\) −3.20433 16.1092i −0.126761 0.637272i
\(640\) 0 0
\(641\) 25.1874 + 5.01009i 0.994844 + 0.197887i 0.665560 0.746344i \(-0.268193\pi\)
0.329284 + 0.944231i \(0.393193\pi\)
\(642\) 0 0
\(643\) 17.9944 + 3.57931i 0.709631 + 0.141154i 0.536692 0.843778i \(-0.319674\pi\)
0.172939 + 0.984933i \(0.444674\pi\)
\(644\) 0 0
\(645\) −5.62715 16.0407i −0.221569 0.631600i
\(646\) 0 0
\(647\) −4.92694 + 4.92694i −0.193698 + 0.193698i −0.797292 0.603594i \(-0.793735\pi\)
0.603594 + 0.797292i \(0.293735\pi\)
\(648\) 0 0
\(649\) −1.54776 + 1.03418i −0.0607549 + 0.0405952i
\(650\) 0 0
\(651\) 0.467200 2.34877i 0.0183110 0.0920557i
\(652\) 0 0
\(653\) −7.21656 + 10.8003i −0.282406 + 0.422650i −0.945369 0.326002i \(-0.894298\pi\)
0.662963 + 0.748652i \(0.269298\pi\)
\(654\) 0 0
\(655\) −17.2239 0.953570i −0.672993 0.0372590i
\(656\) 0 0
\(657\) −6.98459 + 1.38932i −0.272495 + 0.0542026i
\(658\) 0 0
\(659\) −12.2064 + 12.2064i −0.475495 + 0.475495i −0.903687 0.428193i \(-0.859150\pi\)
0.428193 + 0.903687i \(0.359150\pi\)
\(660\) 0 0
\(661\) 27.0936 11.2225i 1.05382 0.436506i 0.212565 0.977147i \(-0.431818\pi\)
0.841253 + 0.540641i \(0.181818\pi\)
\(662\) 0 0
\(663\) −4.66195 + 1.45806i −0.181055 + 0.0566264i
\(664\) 0 0
\(665\) −55.8188 3.09031i −2.16456 0.119837i
\(666\) 0 0
\(667\) 16.0988i 0.623346i
\(668\) 0 0
\(669\) 8.03185 + 5.36671i 0.310529 + 0.207489i
\(670\) 0 0
\(671\) −5.95408 2.46626i −0.229855 0.0952090i
\(672\) 0 0
\(673\) 16.1038 + 10.7602i 0.620754 + 0.414775i 0.825788 0.563980i \(-0.190731\pi\)
−0.205034 + 0.978755i \(0.565731\pi\)
\(674\) 0 0
\(675\) 7.60752 23.9998i 0.292813 0.923754i
\(676\) 0 0
\(677\) 8.50414 42.7532i 0.326841 1.64314i −0.372269 0.928125i \(-0.621420\pi\)
0.699110 0.715015i \(-0.253580\pi\)
\(678\) 0 0
\(679\) −1.20050 −0.0460710
\(680\) 0 0
\(681\) −13.2599 −0.508122
\(682\) 0 0
\(683\) −0.116936 + 0.587877i −0.00447443 + 0.0224945i −0.982958 0.183830i \(-0.941150\pi\)
0.978484 + 0.206325i \(0.0661503\pi\)
\(684\) 0 0
\(685\) −27.4482 + 36.5325i −1.04874 + 1.39584i
\(686\) 0 0
\(687\) −16.4539 10.9941i −0.627755 0.419453i
\(688\) 0 0
\(689\) −3.03447 1.25692i −0.115604 0.0478848i
\(690\) 0 0
\(691\) −28.2519 18.8773i −1.07475 0.718126i −0.113428 0.993546i \(-0.536183\pi\)
−0.961324 + 0.275420i \(0.911183\pi\)
\(692\) 0 0
\(693\) 6.98311i 0.265266i
\(694\) 0 0
\(695\) 23.0975 20.6742i 0.876139 0.784217i
\(696\) 0 0
\(697\) 20.2370 + 24.2311i 0.766531 + 0.917819i
\(698\) 0 0
\(699\) −8.31394 + 3.44375i −0.314462 + 0.130255i
\(700\) 0 0
\(701\) 22.2334 22.2334i 0.839745 0.839745i −0.149080 0.988825i \(-0.547631\pi\)
0.988825 + 0.149080i \(0.0476313\pi\)
\(702\) 0 0
\(703\) −12.1563 + 2.41804i −0.458484 + 0.0911981i
\(704\) 0 0
\(705\) 1.01657 18.3619i 0.0382864 0.691549i
\(706\) 0 0
\(707\) −20.3480 + 30.4529i −0.765264 + 1.14530i
\(708\) 0 0
\(709\) −4.75971 + 23.9287i −0.178755 + 0.898660i 0.782427 + 0.622743i \(0.213982\pi\)
−0.961181 + 0.275917i \(0.911018\pi\)
\(710\) 0 0
\(711\) −12.8247 + 8.56922i −0.480965 + 0.321371i
\(712\) 0 0
\(713\) −1.48917 + 1.48917i −0.0557698 + 0.0557698i
\(714\) 0 0
\(715\) 0.809110 1.68355i 0.0302590 0.0629611i
\(716\) 0 0
\(717\) 0.492506 + 0.0979655i 0.0183930 + 0.00365859i
\(718\) 0 0
\(719\) −26.1227 5.19612i −0.974212 0.193783i −0.317777 0.948166i \(-0.602936\pi\)
−0.656435 + 0.754383i \(0.727936\pi\)
\(720\) 0 0
\(721\) −17.6506 88.7354i −0.657341 3.30468i
\(722\) 0 0
\(723\) 16.9407 7.01706i 0.630031 0.260967i
\(724\) 0 0
\(725\) 1.56387 + 18.1958i 0.0580806 + 0.675774i
\(726\) 0 0
\(727\) 18.8277 0.698280 0.349140 0.937070i \(-0.386474\pi\)
0.349140 + 0.937070i \(0.386474\pi\)
\(728\) 0 0
\(729\) −5.22009 12.6024i −0.193337 0.466756i
\(730\) 0 0
\(731\) −19.4440 + 24.1123i −0.719164 + 0.891827i
\(732\) 0 0
\(733\) −5.03431 + 12.1539i −0.185947 + 0.448915i −0.989172 0.146760i \(-0.953115\pi\)
0.803225 + 0.595675i \(0.203115\pi\)
\(734\) 0 0
\(735\) −37.4307 + 13.1309i −1.38065 + 0.484340i
\(736\) 0 0
\(737\) 1.63985 + 8.24408i 0.0604047 + 0.303675i
\(738\) 0 0
\(739\) −17.7843 + 42.9351i −0.654206 + 1.57939i 0.152411 + 0.988317i \(0.451296\pi\)
−0.806617 + 0.591075i \(0.798704\pi\)
\(740\) 0 0
\(741\) −5.86526 + 1.16667i −0.215466 + 0.0428588i
\(742\) 0 0
\(743\) −14.8812 22.2713i −0.545939 0.817055i 0.451218 0.892414i \(-0.350990\pi\)
−0.997156 + 0.0753590i \(0.975990\pi\)
\(744\) 0 0
\(745\) −25.6457 + 34.1335i −0.939587 + 1.25056i
\(746\) 0 0
\(747\) −1.96216 1.96216i −0.0717916 0.0717916i
\(748\) 0 0
\(749\) 8.23636i 0.300950i
\(750\) 0 0
\(751\) −2.72657 4.08059i −0.0994938 0.148903i 0.778383 0.627790i \(-0.216040\pi\)
−0.877877 + 0.478887i \(0.841040\pi\)
\(752\) 0 0
\(753\) 17.3320 11.5809i 0.631612 0.422030i
\(754\) 0 0
\(755\) −41.9162 + 24.7706i −1.52549 + 0.901493i
\(756\) 0 0
\(757\) 2.57921 + 6.22675i 0.0937428 + 0.226315i 0.963795 0.266645i \(-0.0859150\pi\)
−0.870052 + 0.492960i \(0.835915\pi\)
\(758\) 0 0
\(759\) 1.76801 2.64601i 0.0641746 0.0960440i
\(760\) 0 0
\(761\) 10.5965 + 10.5965i 0.384124 + 0.384124i 0.872586 0.488461i \(-0.162442\pi\)
−0.488461 + 0.872586i \(0.662442\pi\)
\(762\) 0 0
\(763\) −85.8730 35.5698i −3.10881 1.28771i
\(764\) 0 0
\(765\) −17.6614 + 4.46858i −0.638550 + 0.161562i
\(766\) 0 0
\(767\) −2.82182 1.16884i −0.101890 0.0422042i
\(768\) 0 0
\(769\) 0.755624 + 0.755624i 0.0272485 + 0.0272485i 0.720600 0.693351i \(-0.243867\pi\)
−0.693351 + 0.720600i \(0.743867\pi\)
\(770\) 0 0
\(771\) −11.9199 + 17.8394i −0.429286 + 0.642471i
\(772\) 0 0
\(773\) 13.4094 + 32.3732i 0.482303 + 1.16438i 0.958512 + 0.285051i \(0.0920105\pi\)
−0.476209 + 0.879332i \(0.657989\pi\)
\(774\) 0 0
\(775\) 1.53849 1.82781i 0.0552641 0.0656569i
\(776\) 0 0
\(777\) −10.2322 + 6.83696i −0.367080 + 0.245275i
\(778\) 0 0
\(779\) 21.4733 + 32.1370i 0.769360 + 1.15143i
\(780\) 0 0
\(781\) 5.93083i 0.212222i
\(782\) 0 0
\(783\) 13.0051 + 13.0051i 0.464763 + 0.464763i
\(784\) 0 0
\(785\) −5.16563 36.3814i −0.184369 1.29851i
\(786\) 0 0
\(787\) 12.7141 + 19.0280i 0.453208 + 0.678274i 0.985767 0.168119i \(-0.0537693\pi\)
−0.532558 + 0.846393i \(0.678769\pi\)
\(788\) 0 0
\(789\) 5.78344 1.15040i 0.205896 0.0409552i
\(790\) 0 0
\(791\) 36.0816 87.1087i 1.28291 3.09723i
\(792\) 0 0
\(793\) −2.06296 10.3712i −0.0732580 0.368293i
\(794\) 0 0
\(795\) 5.72156 + 2.74977i 0.202923 + 0.0975243i
\(796\) 0 0
\(797\) 17.5253 42.3098i 0.620778 1.49869i −0.230013 0.973188i \(-0.573877\pi\)
0.850791 0.525504i \(-0.176123\pi\)
\(798\) 0 0
\(799\) −29.4163 + 16.0499i −1.04067 + 0.567806i
\(800\) 0 0
\(801\) −2.97335 7.17831i −0.105058 0.253633i
\(802\) 0 0
\(803\) 2.57147 0.0907452
\(804\) 0 0
\(805\) 47.2752 + 12.1548i 1.66623 + 0.428400i
\(806\) 0 0
\(807\) −2.35106 + 0.973842i −0.0827613 + 0.0342809i
\(808\) 0 0
\(809\) 3.50158 + 17.6036i 0.123109 + 0.618911i 0.992241 + 0.124330i \(0.0396783\pi\)
−0.869132 + 0.494580i \(0.835322\pi\)
\(810\) 0 0
\(811\) 19.9278 + 3.96388i 0.699758 + 0.139191i 0.532134 0.846660i \(-0.321390\pi\)
0.167625 + 0.985851i \(0.446390\pi\)
\(812\) 0 0
\(813\) −29.3428 5.83666i −1.02910 0.204700i
\(814\) 0 0
\(815\) 21.6809 + 10.4198i 0.759448 + 0.364989i
\(816\) 0 0
\(817\) −26.8153 + 26.8153i −0.938149 + 0.938149i
\(818\) 0 0
\(819\) 9.52690 6.36567i 0.332897 0.222435i
\(820\) 0 0
\(821\) −1.97525 + 9.93026i −0.0689367 + 0.346568i −0.999824 0.0187371i \(-0.994035\pi\)
0.930888 + 0.365305i \(0.119035\pi\)
\(822\) 0 0
\(823\) −24.3402 + 36.4276i −0.848445 + 1.26979i 0.112668 + 0.993633i \(0.464060\pi\)
−0.961113 + 0.276155i \(0.910940\pi\)
\(824\) 0 0
\(825\) −1.74127 + 3.16243i −0.0606232 + 0.110102i
\(826\) 0 0
\(827\) 3.23703 0.643886i 0.112563 0.0223901i −0.138487 0.990364i \(-0.544224\pi\)
0.251050 + 0.967974i \(0.419224\pi\)
\(828\) 0 0
\(829\) −28.0827 + 28.0827i −0.975354 + 0.975354i −0.999704 0.0243494i \(-0.992249\pi\)
0.0243494 + 0.999704i \(0.492249\pi\)
\(830\) 0 0
\(831\) 6.69359 2.77258i 0.232198 0.0961796i
\(832\) 0 0
\(833\) 56.2658 + 45.3725i 1.94950 + 1.57206i
\(834\) 0 0
\(835\) 2.07566 37.4917i 0.0718313 1.29745i
\(836\) 0 0
\(837\) 2.40599i 0.0831633i
\(838\) 0 0
\(839\) 38.5086 + 25.7306i 1.32946 + 0.888319i 0.998469 0.0553139i \(-0.0176160\pi\)
0.330994 + 0.943633i \(0.392616\pi\)
\(840\) 0 0
\(841\) 14.4668 + 5.99233i 0.498854 + 0.206632i
\(842\) 0 0
\(843\) 14.7798 + 9.87551i 0.509042 + 0.340131i
\(844\) 0 0
\(845\) −25.7458 + 3.65554i −0.885684 + 0.125754i
\(846\) 0 0
\(847\) 10.1368 50.9614i 0.348306 1.75105i
\(848\) 0 0
\(849\) 10.2607 0.352147
\(850\) 0 0
\(851\) 10.8222 0.370981
\(852\) 0 0
\(853\) 3.15858 15.8793i 0.108148 0.543695i −0.888284 0.459294i \(-0.848102\pi\)
0.996432 0.0844010i \(-0.0268977\pi\)
\(854\) 0 0
\(855\) −22.0824 + 3.13538i −0.755202 + 0.107228i
\(856\) 0 0
\(857\) −7.54491 5.04135i −0.257729 0.172209i 0.419993 0.907528i \(-0.362033\pi\)
−0.677722 + 0.735318i \(0.737033\pi\)
\(858\) 0 0
\(859\) 50.3770 + 20.8668i 1.71884 + 0.711967i 0.999857 + 0.0169402i \(0.00539249\pi\)
0.718984 + 0.695027i \(0.244608\pi\)
\(860\) 0 0
\(861\) 31.9082 + 21.3204i 1.08743 + 0.726596i
\(862\) 0 0
\(863\) 45.4598i 1.54747i −0.633510 0.773735i \(-0.718386\pi\)
0.633510 0.773735i \(-0.281614\pi\)
\(864\) 0 0
\(865\) 2.46351 44.4971i 0.0837617 1.51295i
\(866\) 0 0
\(867\) −12.3714 11.9532i −0.420156 0.405953i
\(868\) 0 0
\(869\) 5.14555 2.13136i 0.174551 0.0723013i
\(870\) 0 0
\(871\) −9.75236 + 9.75236i −0.330446 + 0.330446i
\(872\) 0 0
\(873\) −0.469755 + 0.0934401i −0.0158988 + 0.00316247i
\(874\) 0 0
\(875\) −54.6140 9.14565i −1.84629 0.309179i
\(876\) 0 0
\(877\) 24.4613 36.6090i 0.826000 1.23620i −0.143144 0.989702i \(-0.545721\pi\)
0.969144 0.246495i \(-0.0792789\pi\)
\(878\) 0 0
\(879\) 2.05193 10.3157i 0.0692098 0.347941i
\(880\) 0 0
\(881\) 15.9234 10.6396i 0.536472 0.358459i −0.257630 0.966244i \(-0.582942\pi\)
0.794102 + 0.607785i \(0.207942\pi\)
\(882\) 0 0
\(883\) 9.86860 9.86860i 0.332105 0.332105i −0.521281 0.853385i \(-0.674545\pi\)
0.853385 + 0.521281i \(0.174545\pi\)
\(884\) 0 0
\(885\) 5.32060 + 2.55707i 0.178850 + 0.0859550i
\(886\) 0 0
\(887\) −8.35939 1.66279i −0.280681 0.0558309i 0.0527424 0.998608i \(-0.483204\pi\)
−0.333423 + 0.942777i \(0.608204\pi\)
\(888\) 0 0
\(889\) 12.9682 + 2.57954i 0.434940 + 0.0865149i
\(890\) 0 0
\(891\) −0.115908 0.582708i −0.00388306 0.0195215i
\(892\) 0 0
\(893\) −37.9027 + 15.6998i −1.26837 + 0.525374i
\(894\) 0 0
\(895\) 48.2315 + 12.4006i 1.61220 + 0.414508i
\(896\) 0 0
\(897\) 5.22157 0.174343
\(898\) 0 0
\(899\) 0.667889 + 1.61243i 0.0222753 + 0.0537774i
\(900\) 0 0
\(901\) −1.23270 11.5014i −0.0410672 0.383168i
\(902\) 0 0
\(903\) −14.4090 + 34.7864i −0.479501 + 1.15762i
\(904\) 0 0
\(905\) −19.7994 9.51553i −0.658153 0.316307i
\(906\) 0 0
\(907\) −1.04663 5.26175i −0.0347527 0.174714i 0.959511 0.281672i \(-0.0908889\pi\)
−0.994264 + 0.106958i \(0.965889\pi\)
\(908\) 0 0
\(909\) −5.59187 + 13.5000i −0.185471 + 0.447765i
\(910\) 0 0
\(911\) −23.9474 + 4.76343i −0.793412 + 0.157819i −0.575125 0.818065i \(-0.695047\pi\)
−0.218286 + 0.975885i \(0.570047\pi\)
\(912\) 0 0
\(913\) 0.556676 + 0.833124i 0.0184233 + 0.0275724i
\(914\) 0 0
\(915\) 2.87301 + 20.2345i 0.0949788 + 0.668933i
\(916\) 0 0
\(917\) 27.0178 + 27.0178i 0.892207 + 0.892207i
\(918\) 0 0
\(919\) 25.2143i 0.831744i −0.909423 0.415872i \(-0.863476\pi\)
0.909423 0.415872i \(-0.136524\pi\)
\(920\) 0 0
\(921\) 2.24483 + 3.35963i 0.0739698 + 0.110704i
\(922\) 0 0
\(923\) −8.09130 + 5.40643i −0.266328 + 0.177955i
\(924\) 0 0
\(925\) −12.2319 + 1.05129i −0.402183 + 0.0345663i
\(926\) 0 0
\(927\) −13.8133 33.3483i −0.453689 1.09530i
\(928\) 0 0
\(929\) 19.2338 28.7855i 0.631042 0.944420i −0.368847 0.929490i \(-0.620247\pi\)
0.999889 0.0149303i \(-0.00475264\pi\)
\(930\) 0 0
\(931\) 62.5732 + 62.5732i 2.05075 + 2.05075i
\(932\) 0 0
\(933\) −22.0742 9.14343i −0.722677 0.299342i
\(934\) 0 0
\(935\) 6.56959 0.338394i 0.214849 0.0110667i
\(936\) 0 0
\(937\) −21.6351 8.96154i −0.706787 0.292761i 0.000187415 1.00000i \(-0.499940\pi\)
−0.706974 + 0.707239i \(0.749940\pi\)
\(938\) 0 0
\(939\) 11.0089 + 11.0089i 0.359263 + 0.359263i
\(940\) 0 0
\(941\) −1.98336 + 2.96831i −0.0646558 + 0.0967643i −0.862389 0.506247i \(-0.831033\pi\)
0.797733 + 0.603011i \(0.206033\pi\)
\(942\) 0 0
\(943\) −12.9148 31.1791i −0.420563 1.01533i
\(944\) 0 0
\(945\) −48.0093 + 28.3713i −1.56174 + 0.922919i
\(946\) 0 0
\(947\) 22.9094 15.3076i 0.744455 0.497429i −0.124562 0.992212i \(-0.539752\pi\)
0.869017 + 0.494783i \(0.164752\pi\)
\(948\) 0 0
\(949\) 2.34410 + 3.50820i 0.0760928 + 0.113881i
\(950\) 0 0
\(951\) 26.1628i 0.848388i
\(952\) 0 0
\(953\) 0.563630 + 0.563630i 0.0182578 + 0.0182578i 0.716177 0.697919i \(-0.245890\pi\)
−0.697919 + 0.716177i \(0.745890\pi\)
\(954\) 0 0
\(955\) 25.1480 33.4711i 0.813771 1.08310i
\(956\) 0 0
\(957\) −1.46517 2.19279i −0.0473623 0.0708827i
\(958\) 0 0
\(959\) 99.2686 19.7457i 3.20555 0.637623i
\(960\) 0 0
\(961\) −11.7758 + 28.4293i −0.379865 + 0.917075i
\(962\) 0 0
\(963\) 0.641071 + 3.22288i 0.0206582 + 0.103856i
\(964\) 0 0
\(965\) −3.44343 + 1.20798i −0.110848 + 0.0388861i
\(966\) 0 0
\(967\) −12.5402 + 30.2748i −0.403266 + 0.973571i 0.583602 + 0.812040i \(0.301643\pi\)
−0.986868 + 0.161531i \(0.948357\pi\)
\(968\) 0 0
\(969\) −13.5003 16.1648i −0.433693 0.519290i
\(970\) 0 0
\(971\) 10.7205 + 25.8815i 0.344037 + 0.830578i 0.997299 + 0.0734464i \(0.0233998\pi\)
−0.653263 + 0.757131i \(0.726600\pi\)
\(972\) 0 0
\(973\) −68.6614 −2.20118
\(974\) 0 0
\(975\) −5.90173 + 0.507235i −0.189007 + 0.0162445i
\(976\) 0 0
\(977\) 23.6357 9.79022i 0.756172 0.313217i 0.0289152 0.999582i \(-0.490795\pi\)
0.727257 + 0.686365i \(0.240795\pi\)
\(978\) 0 0
\(979\) 0.547340 + 2.75166i 0.0174931 + 0.0879435i
\(980\) 0 0
\(981\) −36.3706 7.23456i −1.16122 0.230982i
\(982\) 0 0
\(983\) −15.4267 3.06857i −0.492037 0.0978722i −0.0571652 0.998365i \(-0.518206\pi\)
−0.434871 + 0.900493i \(0.643206\pi\)
\(984\) 0 0
\(985\) −5.67473 + 11.8076i −0.180812 + 0.376223i
\(986\) 0 0
\(987\) −28.8029 + 28.8029i −0.916807 + 0.916807i
\(988\) 0 0
\(989\) 27.5317 18.3961i 0.875456 0.584961i
\(990\) 0 0
\(991\) 4.52428 22.7451i 0.143718 0.722521i −0.839969 0.542634i \(-0.817427\pi\)
0.983687 0.179887i \(-0.0575731\pi\)
\(992\) 0 0
\(993\) −9.29828 + 13.9159i −0.295072 + 0.441606i
\(994\) 0 0
\(995\) 1.19301 21.5488i 0.0378210 0.683143i
\(996\) 0 0
\(997\) −35.7376 + 7.10866i −1.13182 + 0.225133i −0.725250 0.688485i \(-0.758276\pi\)
−0.406572 + 0.913619i \(0.633276\pi\)
\(998\) 0 0
\(999\) −8.74251 + 8.74251i −0.276601 + 0.276601i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 340.2.bd.a.73.7 72
5.2 odd 4 340.2.bi.a.277.3 yes 72
17.7 odd 16 340.2.bi.a.313.3 yes 72
85.7 even 16 inner 340.2.bd.a.177.7 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.bd.a.73.7 72 1.1 even 1 trivial
340.2.bd.a.177.7 yes 72 85.7 even 16 inner
340.2.bi.a.277.3 yes 72 5.2 odd 4
340.2.bi.a.313.3 yes 72 17.7 odd 16