Properties

Label 340.2.r.a
Level $340$
Weight $2$
Character orbit 340.r
Analytic conductor $2.715$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [340,2,Mod(67,340)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(340, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("340.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 340.r (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.71491366872\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i + 1) q^{2} + 2 i q^{4} + (i - 2) q^{5} + (2 i - 2) q^{8} + 3 i q^{9} + ( - i - 3) q^{10} + ( - i + 1) q^{13} - 4 q^{16} + (4 i - 1) q^{17} + (3 i - 3) q^{18} + ( - 4 i - 2) q^{20} + ( - 4 i + 3) q^{25}+ \cdots + ( - 7 i + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{5} - 4 q^{8} - 6 q^{10} + 2 q^{13} - 8 q^{16} - 2 q^{17} - 6 q^{18} - 4 q^{20} + 6 q^{25} + 4 q^{26} + 20 q^{29} - 8 q^{32} - 10 q^{34} - 12 q^{36} + 10 q^{37} + 4 q^{40} - 6 q^{45}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/340\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(171\) \(241\)
\(\chi(n)\) \(i\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
1.00000i
1.00000i
1.00000 + 1.00000i 0 2.00000i −2.00000 + 1.00000i 0 0 −2.00000 + 2.00000i 3.00000i −3.00000 1.00000i
203.1 1.00000 1.00000i 0 2.00000i −2.00000 1.00000i 0 0 −2.00000 2.00000i 3.00000i −3.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
85.g odd 4 1 inner
340.r even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 340.2.r.a 2
4.b odd 2 1 CM 340.2.r.a 2
5.c odd 4 1 340.2.r.b yes 2
17.b even 2 1 340.2.r.b yes 2
20.e even 4 1 340.2.r.b yes 2
68.d odd 2 1 340.2.r.b yes 2
85.g odd 4 1 inner 340.2.r.a 2
340.r even 4 1 inner 340.2.r.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
340.2.r.a 2 1.a even 1 1 trivial
340.2.r.a 2 4.b odd 2 1 CM
340.2.r.a 2 85.g odd 4 1 inner
340.2.r.a 2 340.r even 4 1 inner
340.2.r.b yes 2 5.c odd 4 1
340.2.r.b yes 2 17.b even 2 1
340.2.r.b yes 2 20.e even 4 1
340.2.r.b yes 2 68.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(340, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{29} - 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 17 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 10)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
$41$ \( T^{2} + 100 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 18T + 162 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 50 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 256 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
show more
show less