Properties

Label 342.6.a.k
Level $342$
Weight $6$
Character orbit 342.a
Self dual yes
Analytic conductor $54.851$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,6,Mod(1,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.8512663760\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 469x - 3180 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + (\beta_1 - 45) q^{5} + (\beta_{2} + 42) q^{7} - 64 q^{8} + ( - 4 \beta_1 + 180) q^{10} + (2 \beta_{2} - 3 \beta_1 - 73) q^{11} + ( - 7 \beta_{2} + 7 \beta_1 + 79) q^{13} + ( - 4 \beta_{2} - 168) q^{14}+ \cdots + ( - 108 \beta_{2} + 680 \beta_1 - 5940) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} + 48 q^{4} - 135 q^{5} + 125 q^{7} - 192 q^{8} + 540 q^{10} - 221 q^{11} + 244 q^{13} - 500 q^{14} + 768 q^{16} + 445 q^{17} + 1083 q^{19} - 2160 q^{20} + 884 q^{22} + 1096 q^{23} + 5142 q^{25}+ \cdots - 17712 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 469x - 3180 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 10\nu - 313 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + 10\beta _1 + 939 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−16.6859
−7.78728
24.4732
−4.00000 0 16.0000 −95.0578 0 174.280 −64.0000 0 380.231
1.2 −4.00000 0 16.0000 −68.3618 0 −132.485 −64.0000 0 273.447
1.3 −4.00000 0 16.0000 28.4196 0 83.2059 −64.0000 0 −113.679
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.6.a.k 3
3.b odd 2 1 114.6.a.i 3
12.b even 2 1 912.6.a.l 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.i 3 3.b odd 2 1
342.6.a.k 3 1.a even 1 1 trivial
912.6.a.l 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + 135T_{5}^{2} + 1854T_{5} - 184680 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(342))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 135 T^{2} + \cdots - 184680 \) Copy content Toggle raw display
$7$ \( T^{3} - 125 T^{2} + \cdots + 1921184 \) Copy content Toggle raw display
$11$ \( T^{3} + 221 T^{2} + \cdots - 25354512 \) Copy content Toggle raw display
$13$ \( T^{3} - 244 T^{2} + \cdots + 414492000 \) Copy content Toggle raw display
$17$ \( T^{3} - 445 T^{2} + \cdots + 316934316 \) Copy content Toggle raw display
$19$ \( (T - 361)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 6679070064 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 38726892720 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 74981122560 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 5055349760 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 1613836800 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 2255465600544 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 2285815727340 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 9670314783600 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 1707080878080 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 21159090875540 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 9772333248000 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 7472920674816 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 645951685732 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 4110338771200 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 38538989668512 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 4105491505056 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 890468330878040 \) Copy content Toggle raw display
show more
show less