Properties

Label 3447.2.a.j.1.14
Level $3447$
Weight $2$
Character 3447.1
Self dual yes
Analytic conductor $27.524$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3447,2,Mod(1,3447)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3447, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3447.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3447 = 3^{2} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3447.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.5244335767\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 383)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 3447.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0582123 q^{2} -1.99661 q^{4} +3.28367 q^{5} -2.97653 q^{7} -0.232652 q^{8} +0.191150 q^{10} +6.28742 q^{11} +3.41245 q^{13} -0.173271 q^{14} +3.97968 q^{16} +2.70055 q^{17} -4.13063 q^{19} -6.55621 q^{20} +0.366005 q^{22} -1.42511 q^{23} +5.78249 q^{25} +0.198647 q^{26} +5.94297 q^{28} +4.09836 q^{29} -3.15738 q^{31} +0.696971 q^{32} +0.157205 q^{34} -9.77393 q^{35} +5.90577 q^{37} -0.240453 q^{38} -0.763953 q^{40} +5.97026 q^{41} -9.37617 q^{43} -12.5535 q^{44} -0.0829590 q^{46} -8.20132 q^{47} +1.85971 q^{49} +0.336612 q^{50} -6.81333 q^{52} +3.16697 q^{53} +20.6458 q^{55} +0.692495 q^{56} +0.238575 q^{58} +0.178110 q^{59} -10.1998 q^{61} -0.183798 q^{62} -7.91879 q^{64} +11.2054 q^{65} +14.9534 q^{67} -5.39195 q^{68} -0.568963 q^{70} -4.17716 q^{71} -0.0585921 q^{73} +0.343789 q^{74} +8.24725 q^{76} -18.7147 q^{77} +7.85351 q^{79} +13.0680 q^{80} +0.347543 q^{82} +7.20095 q^{83} +8.86772 q^{85} -0.545809 q^{86} -1.46278 q^{88} +12.9047 q^{89} -10.1572 q^{91} +2.84539 q^{92} -0.477418 q^{94} -13.5636 q^{95} +11.4365 q^{97} +0.108258 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 5 q^{2} + 29 q^{4} - 3 q^{5} + 17 q^{7} - 15 q^{8} + q^{10} + 28 q^{13} + 8 q^{14} + 35 q^{16} - 16 q^{17} + 13 q^{19} + 4 q^{20} + 12 q^{22} - 7 q^{23} + 67 q^{25} + 14 q^{26} + 39 q^{28} + 2 q^{29}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0582123 0.0411623 0.0205812 0.999788i \(-0.493448\pi\)
0.0205812 + 0.999788i \(0.493448\pi\)
\(3\) 0 0
\(4\) −1.99661 −0.998306
\(5\) 3.28367 1.46850 0.734251 0.678878i \(-0.237534\pi\)
0.734251 + 0.678878i \(0.237534\pi\)
\(6\) 0 0
\(7\) −2.97653 −1.12502 −0.562511 0.826790i \(-0.690165\pi\)
−0.562511 + 0.826790i \(0.690165\pi\)
\(8\) −0.232652 −0.0822549
\(9\) 0 0
\(10\) 0.191150 0.0604470
\(11\) 6.28742 1.89573 0.947864 0.318674i \(-0.103237\pi\)
0.947864 + 0.318674i \(0.103237\pi\)
\(12\) 0 0
\(13\) 3.41245 0.946443 0.473222 0.880943i \(-0.343091\pi\)
0.473222 + 0.880943i \(0.343091\pi\)
\(14\) −0.173271 −0.0463085
\(15\) 0 0
\(16\) 3.97968 0.994920
\(17\) 2.70055 0.654980 0.327490 0.944855i \(-0.393797\pi\)
0.327490 + 0.944855i \(0.393797\pi\)
\(18\) 0 0
\(19\) −4.13063 −0.947630 −0.473815 0.880624i \(-0.657124\pi\)
−0.473815 + 0.880624i \(0.657124\pi\)
\(20\) −6.55621 −1.46601
\(21\) 0 0
\(22\) 0.366005 0.0780326
\(23\) −1.42511 −0.297156 −0.148578 0.988901i \(-0.547470\pi\)
−0.148578 + 0.988901i \(0.547470\pi\)
\(24\) 0 0
\(25\) 5.78249 1.15650
\(26\) 0.198647 0.0389578
\(27\) 0 0
\(28\) 5.94297 1.12312
\(29\) 4.09836 0.761047 0.380524 0.924771i \(-0.375744\pi\)
0.380524 + 0.924771i \(0.375744\pi\)
\(30\) 0 0
\(31\) −3.15738 −0.567082 −0.283541 0.958960i \(-0.591509\pi\)
−0.283541 + 0.958960i \(0.591509\pi\)
\(32\) 0.696971 0.123208
\(33\) 0 0
\(34\) 0.157205 0.0269605
\(35\) −9.77393 −1.65210
\(36\) 0 0
\(37\) 5.90577 0.970902 0.485451 0.874264i \(-0.338655\pi\)
0.485451 + 0.874264i \(0.338655\pi\)
\(38\) −0.240453 −0.0390067
\(39\) 0 0
\(40\) −0.763953 −0.120792
\(41\) 5.97026 0.932399 0.466199 0.884680i \(-0.345623\pi\)
0.466199 + 0.884680i \(0.345623\pi\)
\(42\) 0 0
\(43\) −9.37617 −1.42985 −0.714926 0.699200i \(-0.753540\pi\)
−0.714926 + 0.699200i \(0.753540\pi\)
\(44\) −12.5535 −1.89252
\(45\) 0 0
\(46\) −0.0829590 −0.0122316
\(47\) −8.20132 −1.19629 −0.598143 0.801390i \(-0.704094\pi\)
−0.598143 + 0.801390i \(0.704094\pi\)
\(48\) 0 0
\(49\) 1.85971 0.265673
\(50\) 0.336612 0.0476042
\(51\) 0 0
\(52\) −6.81333 −0.944839
\(53\) 3.16697 0.435017 0.217509 0.976058i \(-0.430207\pi\)
0.217509 + 0.976058i \(0.430207\pi\)
\(54\) 0 0
\(55\) 20.6458 2.78388
\(56\) 0.692495 0.0925386
\(57\) 0 0
\(58\) 0.238575 0.0313265
\(59\) 0.178110 0.0231880 0.0115940 0.999933i \(-0.496309\pi\)
0.0115940 + 0.999933i \(0.496309\pi\)
\(60\) 0 0
\(61\) −10.1998 −1.30595 −0.652975 0.757379i \(-0.726479\pi\)
−0.652975 + 0.757379i \(0.726479\pi\)
\(62\) −0.183798 −0.0233424
\(63\) 0 0
\(64\) −7.91879 −0.989848
\(65\) 11.2054 1.38985
\(66\) 0 0
\(67\) 14.9534 1.82685 0.913424 0.407010i \(-0.133428\pi\)
0.913424 + 0.407010i \(0.133428\pi\)
\(68\) −5.39195 −0.653870
\(69\) 0 0
\(70\) −0.568963 −0.0680041
\(71\) −4.17716 −0.495737 −0.247869 0.968794i \(-0.579730\pi\)
−0.247869 + 0.968794i \(0.579730\pi\)
\(72\) 0 0
\(73\) −0.0585921 −0.00685769 −0.00342884 0.999994i \(-0.501091\pi\)
−0.00342884 + 0.999994i \(0.501091\pi\)
\(74\) 0.343789 0.0399646
\(75\) 0 0
\(76\) 8.24725 0.946025
\(77\) −18.7147 −2.13274
\(78\) 0 0
\(79\) 7.85351 0.883589 0.441795 0.897116i \(-0.354342\pi\)
0.441795 + 0.897116i \(0.354342\pi\)
\(80\) 13.0680 1.46104
\(81\) 0 0
\(82\) 0.347543 0.0383797
\(83\) 7.20095 0.790407 0.395203 0.918594i \(-0.370674\pi\)
0.395203 + 0.918594i \(0.370674\pi\)
\(84\) 0 0
\(85\) 8.86772 0.961839
\(86\) −0.545809 −0.0588561
\(87\) 0 0
\(88\) −1.46278 −0.155933
\(89\) 12.9047 1.36790 0.683948 0.729530i \(-0.260261\pi\)
0.683948 + 0.729530i \(0.260261\pi\)
\(90\) 0 0
\(91\) −10.1572 −1.06477
\(92\) 2.84539 0.296652
\(93\) 0 0
\(94\) −0.477418 −0.0492419
\(95\) −13.5636 −1.39160
\(96\) 0 0
\(97\) 11.4365 1.16120 0.580599 0.814190i \(-0.302818\pi\)
0.580599 + 0.814190i \(0.302818\pi\)
\(98\) 0.108258 0.0109357
\(99\) 0 0
\(100\) −11.5454 −1.15454
\(101\) −2.26914 −0.225788 −0.112894 0.993607i \(-0.536012\pi\)
−0.112894 + 0.993607i \(0.536012\pi\)
\(102\) 0 0
\(103\) −7.00931 −0.690648 −0.345324 0.938483i \(-0.612231\pi\)
−0.345324 + 0.938483i \(0.612231\pi\)
\(104\) −0.793913 −0.0778496
\(105\) 0 0
\(106\) 0.184357 0.0179063
\(107\) −1.37392 −0.132821 −0.0664107 0.997792i \(-0.521155\pi\)
−0.0664107 + 0.997792i \(0.521155\pi\)
\(108\) 0 0
\(109\) 4.66434 0.446763 0.223382 0.974731i \(-0.428290\pi\)
0.223382 + 0.974731i \(0.428290\pi\)
\(110\) 1.20184 0.114591
\(111\) 0 0
\(112\) −11.8456 −1.11931
\(113\) 5.46650 0.514245 0.257123 0.966379i \(-0.417226\pi\)
0.257123 + 0.966379i \(0.417226\pi\)
\(114\) 0 0
\(115\) −4.67959 −0.436374
\(116\) −8.18284 −0.759758
\(117\) 0 0
\(118\) 0.0103682 0.000954473 0
\(119\) −8.03826 −0.736866
\(120\) 0 0
\(121\) 28.5317 2.59379
\(122\) −0.593754 −0.0537560
\(123\) 0 0
\(124\) 6.30406 0.566121
\(125\) 2.56944 0.229818
\(126\) 0 0
\(127\) 12.2005 1.08262 0.541308 0.840825i \(-0.317929\pi\)
0.541308 + 0.840825i \(0.317929\pi\)
\(128\) −1.85491 −0.163953
\(129\) 0 0
\(130\) 0.652290 0.0572096
\(131\) 10.9581 0.957418 0.478709 0.877974i \(-0.341105\pi\)
0.478709 + 0.877974i \(0.341105\pi\)
\(132\) 0 0
\(133\) 12.2949 1.06610
\(134\) 0.870472 0.0751973
\(135\) 0 0
\(136\) −0.628289 −0.0538753
\(137\) 9.19250 0.785368 0.392684 0.919673i \(-0.371547\pi\)
0.392684 + 0.919673i \(0.371547\pi\)
\(138\) 0 0
\(139\) 0.449855 0.0381562 0.0190781 0.999818i \(-0.493927\pi\)
0.0190781 + 0.999818i \(0.493927\pi\)
\(140\) 19.5147 1.64930
\(141\) 0 0
\(142\) −0.243162 −0.0204057
\(143\) 21.4555 1.79420
\(144\) 0 0
\(145\) 13.4577 1.11760
\(146\) −0.00341078 −0.000282279 0
\(147\) 0 0
\(148\) −11.7915 −0.969257
\(149\) −12.2889 −1.00675 −0.503374 0.864069i \(-0.667908\pi\)
−0.503374 + 0.864069i \(0.667908\pi\)
\(150\) 0 0
\(151\) −5.30093 −0.431383 −0.215692 0.976462i \(-0.569201\pi\)
−0.215692 + 0.976462i \(0.569201\pi\)
\(152\) 0.960999 0.0779473
\(153\) 0 0
\(154\) −1.08943 −0.0877884
\(155\) −10.3678 −0.832761
\(156\) 0 0
\(157\) −1.62612 −0.129779 −0.0648894 0.997892i \(-0.520669\pi\)
−0.0648894 + 0.997892i \(0.520669\pi\)
\(158\) 0.457171 0.0363706
\(159\) 0 0
\(160\) 2.28862 0.180931
\(161\) 4.24188 0.334307
\(162\) 0 0
\(163\) −1.51551 −0.118704 −0.0593519 0.998237i \(-0.518903\pi\)
−0.0593519 + 0.998237i \(0.518903\pi\)
\(164\) −11.9203 −0.930819
\(165\) 0 0
\(166\) 0.419184 0.0325350
\(167\) −6.91719 −0.535268 −0.267634 0.963521i \(-0.586242\pi\)
−0.267634 + 0.963521i \(0.586242\pi\)
\(168\) 0 0
\(169\) −1.35519 −0.104245
\(170\) 0.516211 0.0395915
\(171\) 0 0
\(172\) 18.7206 1.42743
\(173\) 17.4784 1.32886 0.664428 0.747352i \(-0.268675\pi\)
0.664428 + 0.747352i \(0.268675\pi\)
\(174\) 0 0
\(175\) −17.2117 −1.30109
\(176\) 25.0219 1.88610
\(177\) 0 0
\(178\) 0.751213 0.0563058
\(179\) 5.74612 0.429485 0.214743 0.976671i \(-0.431109\pi\)
0.214743 + 0.976671i \(0.431109\pi\)
\(180\) 0 0
\(181\) 5.82687 0.433108 0.216554 0.976271i \(-0.430518\pi\)
0.216554 + 0.976271i \(0.430518\pi\)
\(182\) −0.591277 −0.0438284
\(183\) 0 0
\(184\) 0.331555 0.0244425
\(185\) 19.3926 1.42577
\(186\) 0 0
\(187\) 16.9795 1.24166
\(188\) 16.3748 1.19426
\(189\) 0 0
\(190\) −0.789570 −0.0572814
\(191\) 24.0682 1.74151 0.870756 0.491715i \(-0.163630\pi\)
0.870756 + 0.491715i \(0.163630\pi\)
\(192\) 0 0
\(193\) 14.7149 1.05921 0.529603 0.848246i \(-0.322341\pi\)
0.529603 + 0.848246i \(0.322341\pi\)
\(194\) 0.665744 0.0477976
\(195\) 0 0
\(196\) −3.71312 −0.265223
\(197\) 7.91441 0.563878 0.281939 0.959432i \(-0.409022\pi\)
0.281939 + 0.959432i \(0.409022\pi\)
\(198\) 0 0
\(199\) −27.5644 −1.95399 −0.976994 0.213266i \(-0.931590\pi\)
−0.976994 + 0.213266i \(0.931590\pi\)
\(200\) −1.34531 −0.0951277
\(201\) 0 0
\(202\) −0.132092 −0.00929397
\(203\) −12.1989 −0.856194
\(204\) 0 0
\(205\) 19.6044 1.36923
\(206\) −0.408029 −0.0284287
\(207\) 0 0
\(208\) 13.5805 0.941635
\(209\) −25.9710 −1.79645
\(210\) 0 0
\(211\) 26.3182 1.81182 0.905910 0.423470i \(-0.139188\pi\)
0.905910 + 0.423470i \(0.139188\pi\)
\(212\) −6.32322 −0.434280
\(213\) 0 0
\(214\) −0.0799788 −0.00546724
\(215\) −30.7882 −2.09974
\(216\) 0 0
\(217\) 9.39803 0.637980
\(218\) 0.271522 0.0183898
\(219\) 0 0
\(220\) −41.2217 −2.77916
\(221\) 9.21549 0.619901
\(222\) 0 0
\(223\) 9.05110 0.606107 0.303053 0.952974i \(-0.401994\pi\)
0.303053 + 0.952974i \(0.401994\pi\)
\(224\) −2.07455 −0.138612
\(225\) 0 0
\(226\) 0.318218 0.0211675
\(227\) −22.0060 −1.46059 −0.730296 0.683131i \(-0.760618\pi\)
−0.730296 + 0.683131i \(0.760618\pi\)
\(228\) 0 0
\(229\) −21.7801 −1.43927 −0.719635 0.694352i \(-0.755691\pi\)
−0.719635 + 0.694352i \(0.755691\pi\)
\(230\) −0.272410 −0.0179622
\(231\) 0 0
\(232\) −0.953493 −0.0625999
\(233\) −24.6379 −1.61408 −0.807041 0.590496i \(-0.798932\pi\)
−0.807041 + 0.590496i \(0.798932\pi\)
\(234\) 0 0
\(235\) −26.9304 −1.75675
\(236\) −0.355617 −0.0231487
\(237\) 0 0
\(238\) −0.467926 −0.0303311
\(239\) −12.4250 −0.803706 −0.401853 0.915704i \(-0.631634\pi\)
−0.401853 + 0.915704i \(0.631634\pi\)
\(240\) 0 0
\(241\) 4.31887 0.278203 0.139102 0.990278i \(-0.455579\pi\)
0.139102 + 0.990278i \(0.455579\pi\)
\(242\) 1.66089 0.106766
\(243\) 0 0
\(244\) 20.3650 1.30374
\(245\) 6.10668 0.390142
\(246\) 0 0
\(247\) −14.0955 −0.896878
\(248\) 0.734571 0.0466453
\(249\) 0 0
\(250\) 0.149573 0.00945983
\(251\) 0.221976 0.0140110 0.00700550 0.999975i \(-0.497770\pi\)
0.00700550 + 0.999975i \(0.497770\pi\)
\(252\) 0 0
\(253\) −8.96026 −0.563327
\(254\) 0.710217 0.0445630
\(255\) 0 0
\(256\) 15.7296 0.983100
\(257\) −23.0976 −1.44079 −0.720394 0.693565i \(-0.756039\pi\)
−0.720394 + 0.693565i \(0.756039\pi\)
\(258\) 0 0
\(259\) −17.5787 −1.09229
\(260\) −22.3727 −1.38750
\(261\) 0 0
\(262\) 0.637899 0.0394095
\(263\) 22.5471 1.39031 0.695156 0.718859i \(-0.255335\pi\)
0.695156 + 0.718859i \(0.255335\pi\)
\(264\) 0 0
\(265\) 10.3993 0.638824
\(266\) 0.715716 0.0438834
\(267\) 0 0
\(268\) −29.8561 −1.82375
\(269\) −13.7684 −0.839476 −0.419738 0.907645i \(-0.637878\pi\)
−0.419738 + 0.907645i \(0.637878\pi\)
\(270\) 0 0
\(271\) 12.4875 0.758560 0.379280 0.925282i \(-0.376172\pi\)
0.379280 + 0.925282i \(0.376172\pi\)
\(272\) 10.7473 0.651652
\(273\) 0 0
\(274\) 0.535117 0.0323276
\(275\) 36.3570 2.19241
\(276\) 0 0
\(277\) −21.9774 −1.32050 −0.660248 0.751048i \(-0.729549\pi\)
−0.660248 + 0.751048i \(0.729549\pi\)
\(278\) 0.0261871 0.00157060
\(279\) 0 0
\(280\) 2.27393 0.135893
\(281\) 13.8550 0.826517 0.413259 0.910614i \(-0.364391\pi\)
0.413259 + 0.910614i \(0.364391\pi\)
\(282\) 0 0
\(283\) −4.04186 −0.240264 −0.120132 0.992758i \(-0.538332\pi\)
−0.120132 + 0.992758i \(0.538332\pi\)
\(284\) 8.34016 0.494897
\(285\) 0 0
\(286\) 1.24898 0.0738534
\(287\) −17.7707 −1.04897
\(288\) 0 0
\(289\) −9.70703 −0.571002
\(290\) 0.783403 0.0460030
\(291\) 0 0
\(292\) 0.116986 0.00684607
\(293\) 10.9274 0.638386 0.319193 0.947690i \(-0.396588\pi\)
0.319193 + 0.947690i \(0.396588\pi\)
\(294\) 0 0
\(295\) 0.584856 0.0340516
\(296\) −1.37399 −0.0798615
\(297\) 0 0
\(298\) −0.715366 −0.0414401
\(299\) −4.86311 −0.281241
\(300\) 0 0
\(301\) 27.9084 1.60861
\(302\) −0.308579 −0.0177568
\(303\) 0 0
\(304\) −16.4386 −0.942816
\(305\) −33.4928 −1.91779
\(306\) 0 0
\(307\) −7.28577 −0.415821 −0.207910 0.978148i \(-0.566666\pi\)
−0.207910 + 0.978148i \(0.566666\pi\)
\(308\) 37.3659 2.12912
\(309\) 0 0
\(310\) −0.603534 −0.0342784
\(311\) 20.9118 1.18580 0.592899 0.805277i \(-0.297983\pi\)
0.592899 + 0.805277i \(0.297983\pi\)
\(312\) 0 0
\(313\) −14.7678 −0.834728 −0.417364 0.908739i \(-0.637046\pi\)
−0.417364 + 0.908739i \(0.637046\pi\)
\(314\) −0.0946604 −0.00534200
\(315\) 0 0
\(316\) −15.6804 −0.882092
\(317\) 17.4469 0.979915 0.489958 0.871746i \(-0.337012\pi\)
0.489958 + 0.871746i \(0.337012\pi\)
\(318\) 0 0
\(319\) 25.7681 1.44274
\(320\) −26.0027 −1.45359
\(321\) 0 0
\(322\) 0.246930 0.0137608
\(323\) −11.1550 −0.620679
\(324\) 0 0
\(325\) 19.7325 1.09456
\(326\) −0.0882212 −0.00488612
\(327\) 0 0
\(328\) −1.38899 −0.0766944
\(329\) 24.4114 1.34585
\(330\) 0 0
\(331\) 2.79611 0.153688 0.0768441 0.997043i \(-0.475516\pi\)
0.0768441 + 0.997043i \(0.475516\pi\)
\(332\) −14.3775 −0.789067
\(333\) 0 0
\(334\) −0.402666 −0.0220329
\(335\) 49.1020 2.68273
\(336\) 0 0
\(337\) 19.3576 1.05447 0.527237 0.849718i \(-0.323228\pi\)
0.527237 + 0.849718i \(0.323228\pi\)
\(338\) −0.0788889 −0.00429099
\(339\) 0 0
\(340\) −17.7054 −0.960209
\(341\) −19.8518 −1.07503
\(342\) 0 0
\(343\) 15.3002 0.826133
\(344\) 2.18139 0.117612
\(345\) 0 0
\(346\) 1.01746 0.0546988
\(347\) 20.7170 1.11215 0.556073 0.831133i \(-0.312308\pi\)
0.556073 + 0.831133i \(0.312308\pi\)
\(348\) 0 0
\(349\) −8.46945 −0.453359 −0.226680 0.973969i \(-0.572787\pi\)
−0.226680 + 0.973969i \(0.572787\pi\)
\(350\) −1.00194 −0.0535557
\(351\) 0 0
\(352\) 4.38215 0.233569
\(353\) 20.4242 1.08707 0.543534 0.839387i \(-0.317086\pi\)
0.543534 + 0.839387i \(0.317086\pi\)
\(354\) 0 0
\(355\) −13.7164 −0.727991
\(356\) −25.7657 −1.36558
\(357\) 0 0
\(358\) 0.334495 0.0176786
\(359\) 3.63775 0.191993 0.0959965 0.995382i \(-0.469396\pi\)
0.0959965 + 0.995382i \(0.469396\pi\)
\(360\) 0 0
\(361\) −1.93793 −0.101997
\(362\) 0.339196 0.0178277
\(363\) 0 0
\(364\) 20.2801 1.06296
\(365\) −0.192397 −0.0100705
\(366\) 0 0
\(367\) −16.8886 −0.881575 −0.440788 0.897611i \(-0.645301\pi\)
−0.440788 + 0.897611i \(0.645301\pi\)
\(368\) −5.67148 −0.295646
\(369\) 0 0
\(370\) 1.12889 0.0586881
\(371\) −9.42658 −0.489404
\(372\) 0 0
\(373\) 21.2782 1.10174 0.550872 0.834590i \(-0.314295\pi\)
0.550872 + 0.834590i \(0.314295\pi\)
\(374\) 0.988416 0.0511098
\(375\) 0 0
\(376\) 1.90805 0.0984003
\(377\) 13.9855 0.720288
\(378\) 0 0
\(379\) 9.33457 0.479484 0.239742 0.970837i \(-0.422937\pi\)
0.239742 + 0.970837i \(0.422937\pi\)
\(380\) 27.0813 1.38924
\(381\) 0 0
\(382\) 1.40106 0.0716847
\(383\) −1.00000 −0.0510976
\(384\) 0 0
\(385\) −61.4528 −3.13193
\(386\) 0.856591 0.0435994
\(387\) 0 0
\(388\) −22.8342 −1.15923
\(389\) 17.3135 0.877832 0.438916 0.898528i \(-0.355363\pi\)
0.438916 + 0.898528i \(0.355363\pi\)
\(390\) 0 0
\(391\) −3.84858 −0.194631
\(392\) −0.432666 −0.0218529
\(393\) 0 0
\(394\) 0.460716 0.0232106
\(395\) 25.7883 1.29755
\(396\) 0 0
\(397\) 2.78038 0.139543 0.0697715 0.997563i \(-0.477773\pi\)
0.0697715 + 0.997563i \(0.477773\pi\)
\(398\) −1.60459 −0.0804307
\(399\) 0 0
\(400\) 23.0125 1.15062
\(401\) −10.7944 −0.539047 −0.269524 0.962994i \(-0.586866\pi\)
−0.269524 + 0.962994i \(0.586866\pi\)
\(402\) 0 0
\(403\) −10.7744 −0.536711
\(404\) 4.53060 0.225406
\(405\) 0 0
\(406\) −0.710126 −0.0352430
\(407\) 37.1321 1.84057
\(408\) 0 0
\(409\) −9.90742 −0.489890 −0.244945 0.969537i \(-0.578770\pi\)
−0.244945 + 0.969537i \(0.578770\pi\)
\(410\) 1.14122 0.0563607
\(411\) 0 0
\(412\) 13.9949 0.689478
\(413\) −0.530151 −0.0260870
\(414\) 0 0
\(415\) 23.6455 1.16071
\(416\) 2.37838 0.116610
\(417\) 0 0
\(418\) −1.51183 −0.0739461
\(419\) −28.7045 −1.40231 −0.701154 0.713010i \(-0.747331\pi\)
−0.701154 + 0.713010i \(0.747331\pi\)
\(420\) 0 0
\(421\) 11.8811 0.579049 0.289525 0.957171i \(-0.406503\pi\)
0.289525 + 0.957171i \(0.406503\pi\)
\(422\) 1.53204 0.0745788
\(423\) 0 0
\(424\) −0.736803 −0.0357823
\(425\) 15.6159 0.757483
\(426\) 0 0
\(427\) 30.3600 1.46922
\(428\) 2.74317 0.132596
\(429\) 0 0
\(430\) −1.79226 −0.0864303
\(431\) −26.8892 −1.29521 −0.647604 0.761977i \(-0.724229\pi\)
−0.647604 + 0.761977i \(0.724229\pi\)
\(432\) 0 0
\(433\) −19.5958 −0.941712 −0.470856 0.882210i \(-0.656055\pi\)
−0.470856 + 0.882210i \(0.656055\pi\)
\(434\) 0.547081 0.0262607
\(435\) 0 0
\(436\) −9.31288 −0.446006
\(437\) 5.88659 0.281594
\(438\) 0 0
\(439\) −7.05497 −0.336715 −0.168358 0.985726i \(-0.553846\pi\)
−0.168358 + 0.985726i \(0.553846\pi\)
\(440\) −4.80329 −0.228988
\(441\) 0 0
\(442\) 0.536455 0.0255166
\(443\) 21.7406 1.03293 0.516463 0.856309i \(-0.327248\pi\)
0.516463 + 0.856309i \(0.327248\pi\)
\(444\) 0 0
\(445\) 42.3748 2.00876
\(446\) 0.526886 0.0249488
\(447\) 0 0
\(448\) 23.5705 1.11360
\(449\) −21.2294 −1.00188 −0.500938 0.865483i \(-0.667012\pi\)
−0.500938 + 0.865483i \(0.667012\pi\)
\(450\) 0 0
\(451\) 37.5376 1.76758
\(452\) −10.9145 −0.513374
\(453\) 0 0
\(454\) −1.28102 −0.0601214
\(455\) −33.3530 −1.56362
\(456\) 0 0
\(457\) 28.7223 1.34357 0.671787 0.740744i \(-0.265527\pi\)
0.671787 + 0.740744i \(0.265527\pi\)
\(458\) −1.26787 −0.0592437
\(459\) 0 0
\(460\) 9.34332 0.435635
\(461\) −20.2796 −0.944515 −0.472257 0.881461i \(-0.656561\pi\)
−0.472257 + 0.881461i \(0.656561\pi\)
\(462\) 0 0
\(463\) 9.55791 0.444194 0.222097 0.975025i \(-0.428710\pi\)
0.222097 + 0.975025i \(0.428710\pi\)
\(464\) 16.3102 0.757181
\(465\) 0 0
\(466\) −1.43423 −0.0664393
\(467\) 11.2395 0.520103 0.260051 0.965595i \(-0.416261\pi\)
0.260051 + 0.965595i \(0.416261\pi\)
\(468\) 0 0
\(469\) −44.5092 −2.05524
\(470\) −1.56768 −0.0723118
\(471\) 0 0
\(472\) −0.0414378 −0.00190733
\(473\) −58.9519 −2.71061
\(474\) 0 0
\(475\) −23.8853 −1.09593
\(476\) 16.0493 0.735618
\(477\) 0 0
\(478\) −0.723288 −0.0330824
\(479\) −2.22275 −0.101560 −0.0507801 0.998710i \(-0.516171\pi\)
−0.0507801 + 0.998710i \(0.516171\pi\)
\(480\) 0 0
\(481\) 20.1531 0.918904
\(482\) 0.251412 0.0114515
\(483\) 0 0
\(484\) −56.9666 −2.58939
\(485\) 37.5536 1.70522
\(486\) 0 0
\(487\) −4.06739 −0.184311 −0.0921554 0.995745i \(-0.529376\pi\)
−0.0921554 + 0.995745i \(0.529376\pi\)
\(488\) 2.37300 0.107421
\(489\) 0 0
\(490\) 0.355484 0.0160591
\(491\) −9.69539 −0.437547 −0.218773 0.975776i \(-0.570206\pi\)
−0.218773 + 0.975776i \(0.570206\pi\)
\(492\) 0 0
\(493\) 11.0678 0.498470
\(494\) −0.820535 −0.0369176
\(495\) 0 0
\(496\) −12.5654 −0.564201
\(497\) 12.4334 0.557715
\(498\) 0 0
\(499\) −28.6798 −1.28388 −0.641942 0.766753i \(-0.721871\pi\)
−0.641942 + 0.766753i \(0.721871\pi\)
\(500\) −5.13017 −0.229428
\(501\) 0 0
\(502\) 0.0129217 0.000576725 0
\(503\) 0.700587 0.0312376 0.0156188 0.999878i \(-0.495028\pi\)
0.0156188 + 0.999878i \(0.495028\pi\)
\(504\) 0 0
\(505\) −7.45112 −0.331571
\(506\) −0.521598 −0.0231879
\(507\) 0 0
\(508\) −24.3596 −1.08078
\(509\) −21.4938 −0.952695 −0.476348 0.879257i \(-0.658040\pi\)
−0.476348 + 0.879257i \(0.658040\pi\)
\(510\) 0 0
\(511\) 0.174401 0.00771505
\(512\) 4.62548 0.204419
\(513\) 0 0
\(514\) −1.34456 −0.0593062
\(515\) −23.0163 −1.01422
\(516\) 0 0
\(517\) −51.5651 −2.26783
\(518\) −1.02330 −0.0449610
\(519\) 0 0
\(520\) −2.60695 −0.114322
\(521\) −15.5853 −0.682805 −0.341403 0.939917i \(-0.610902\pi\)
−0.341403 + 0.939917i \(0.610902\pi\)
\(522\) 0 0
\(523\) 40.1479 1.75555 0.877773 0.479077i \(-0.159029\pi\)
0.877773 + 0.479077i \(0.159029\pi\)
\(524\) −21.8792 −0.955795
\(525\) 0 0
\(526\) 1.31252 0.0572285
\(527\) −8.52667 −0.371427
\(528\) 0 0
\(529\) −20.9691 −0.911698
\(530\) 0.605367 0.0262955
\(531\) 0 0
\(532\) −24.5482 −1.06430
\(533\) 20.3732 0.882462
\(534\) 0 0
\(535\) −4.51148 −0.195048
\(536\) −3.47894 −0.150267
\(537\) 0 0
\(538\) −0.801493 −0.0345548
\(539\) 11.6928 0.503645
\(540\) 0 0
\(541\) 13.4726 0.579231 0.289615 0.957143i \(-0.406473\pi\)
0.289615 + 0.957143i \(0.406473\pi\)
\(542\) 0.726925 0.0312241
\(543\) 0 0
\(544\) 1.88220 0.0806988
\(545\) 15.3162 0.656073
\(546\) 0 0
\(547\) 37.1134 1.58686 0.793428 0.608664i \(-0.208294\pi\)
0.793428 + 0.608664i \(0.208294\pi\)
\(548\) −18.3538 −0.784037
\(549\) 0 0
\(550\) 2.11642 0.0902446
\(551\) −16.9288 −0.721191
\(552\) 0 0
\(553\) −23.3762 −0.994057
\(554\) −1.27936 −0.0543547
\(555\) 0 0
\(556\) −0.898186 −0.0380916
\(557\) −33.9301 −1.43766 −0.718832 0.695184i \(-0.755323\pi\)
−0.718832 + 0.695184i \(0.755323\pi\)
\(558\) 0 0
\(559\) −31.9957 −1.35327
\(560\) −38.8971 −1.64370
\(561\) 0 0
\(562\) 0.806529 0.0340214
\(563\) 8.93503 0.376567 0.188283 0.982115i \(-0.439708\pi\)
0.188283 + 0.982115i \(0.439708\pi\)
\(564\) 0 0
\(565\) 17.9502 0.755170
\(566\) −0.235286 −0.00988981
\(567\) 0 0
\(568\) 0.971824 0.0407768
\(569\) 0.332203 0.0139267 0.00696334 0.999976i \(-0.497783\pi\)
0.00696334 + 0.999976i \(0.497783\pi\)
\(570\) 0 0
\(571\) 23.9910 1.00399 0.501997 0.864869i \(-0.332599\pi\)
0.501997 + 0.864869i \(0.332599\pi\)
\(572\) −42.8383 −1.79116
\(573\) 0 0
\(574\) −1.03447 −0.0431780
\(575\) −8.24068 −0.343660
\(576\) 0 0
\(577\) −3.29929 −0.137351 −0.0686756 0.997639i \(-0.521877\pi\)
−0.0686756 + 0.997639i \(0.521877\pi\)
\(578\) −0.565069 −0.0235038
\(579\) 0 0
\(580\) −26.8697 −1.11571
\(581\) −21.4338 −0.889225
\(582\) 0 0
\(583\) 19.9121 0.824675
\(584\) 0.0136316 0.000564079 0
\(585\) 0 0
\(586\) 0.636110 0.0262775
\(587\) −38.2342 −1.57809 −0.789047 0.614333i \(-0.789425\pi\)
−0.789047 + 0.614333i \(0.789425\pi\)
\(588\) 0 0
\(589\) 13.0420 0.537384
\(590\) 0.0340458 0.00140164
\(591\) 0 0
\(592\) 23.5031 0.965970
\(593\) −14.6870 −0.603121 −0.301561 0.953447i \(-0.597508\pi\)
−0.301561 + 0.953447i \(0.597508\pi\)
\(594\) 0 0
\(595\) −26.3950 −1.08209
\(596\) 24.5362 1.00504
\(597\) 0 0
\(598\) −0.283093 −0.0115765
\(599\) −35.9103 −1.46725 −0.733627 0.679552i \(-0.762174\pi\)
−0.733627 + 0.679552i \(0.762174\pi\)
\(600\) 0 0
\(601\) −22.5470 −0.919713 −0.459857 0.887993i \(-0.652099\pi\)
−0.459857 + 0.887993i \(0.652099\pi\)
\(602\) 1.62461 0.0662143
\(603\) 0 0
\(604\) 10.5839 0.430653
\(605\) 93.6886 3.80898
\(606\) 0 0
\(607\) 10.5257 0.427225 0.213612 0.976919i \(-0.431477\pi\)
0.213612 + 0.976919i \(0.431477\pi\)
\(608\) −2.87892 −0.116756
\(609\) 0 0
\(610\) −1.94969 −0.0789407
\(611\) −27.9866 −1.13222
\(612\) 0 0
\(613\) −22.4808 −0.907989 −0.453995 0.891004i \(-0.650001\pi\)
−0.453995 + 0.891004i \(0.650001\pi\)
\(614\) −0.424121 −0.0171161
\(615\) 0 0
\(616\) 4.35401 0.175428
\(617\) −48.7813 −1.96386 −0.981931 0.189240i \(-0.939398\pi\)
−0.981931 + 0.189240i \(0.939398\pi\)
\(618\) 0 0
\(619\) 46.5798 1.87220 0.936101 0.351732i \(-0.114407\pi\)
0.936101 + 0.351732i \(0.114407\pi\)
\(620\) 20.7005 0.831350
\(621\) 0 0
\(622\) 1.21732 0.0488102
\(623\) −38.4112 −1.53891
\(624\) 0 0
\(625\) −20.4753 −0.819010
\(626\) −0.859671 −0.0343593
\(627\) 0 0
\(628\) 3.24674 0.129559
\(629\) 15.9488 0.635921
\(630\) 0 0
\(631\) −28.6283 −1.13967 −0.569837 0.821758i \(-0.692994\pi\)
−0.569837 + 0.821758i \(0.692994\pi\)
\(632\) −1.82714 −0.0726796
\(633\) 0 0
\(634\) 1.01562 0.0403356
\(635\) 40.0623 1.58982
\(636\) 0 0
\(637\) 6.34618 0.251445
\(638\) 1.50002 0.0593865
\(639\) 0 0
\(640\) −6.09092 −0.240765
\(641\) 23.5231 0.929108 0.464554 0.885545i \(-0.346215\pi\)
0.464554 + 0.885545i \(0.346215\pi\)
\(642\) 0 0
\(643\) 2.86793 0.113100 0.0565501 0.998400i \(-0.481990\pi\)
0.0565501 + 0.998400i \(0.481990\pi\)
\(644\) −8.46938 −0.333740
\(645\) 0 0
\(646\) −0.649356 −0.0255486
\(647\) −37.8982 −1.48993 −0.744966 0.667102i \(-0.767535\pi\)
−0.744966 + 0.667102i \(0.767535\pi\)
\(648\) 0 0
\(649\) 1.11986 0.0439582
\(650\) 1.14867 0.0450546
\(651\) 0 0
\(652\) 3.02588 0.118503
\(653\) 16.2458 0.635748 0.317874 0.948133i \(-0.397031\pi\)
0.317874 + 0.948133i \(0.397031\pi\)
\(654\) 0 0
\(655\) 35.9829 1.40597
\(656\) 23.7597 0.927662
\(657\) 0 0
\(658\) 1.42105 0.0553982
\(659\) −24.4071 −0.950767 −0.475384 0.879779i \(-0.657691\pi\)
−0.475384 + 0.879779i \(0.657691\pi\)
\(660\) 0 0
\(661\) 9.10610 0.354186 0.177093 0.984194i \(-0.443331\pi\)
0.177093 + 0.984194i \(0.443331\pi\)
\(662\) 0.162768 0.00632617
\(663\) 0 0
\(664\) −1.67532 −0.0650148
\(665\) 40.3725 1.56558
\(666\) 0 0
\(667\) −5.84062 −0.226150
\(668\) 13.8109 0.534361
\(669\) 0 0
\(670\) 2.85834 0.110427
\(671\) −64.1304 −2.47573
\(672\) 0 0
\(673\) −0.633421 −0.0244166 −0.0122083 0.999925i \(-0.503886\pi\)
−0.0122083 + 0.999925i \(0.503886\pi\)
\(674\) 1.12685 0.0434046
\(675\) 0 0
\(676\) 2.70579 0.104069
\(677\) 10.9591 0.421193 0.210596 0.977573i \(-0.432459\pi\)
0.210596 + 0.977573i \(0.432459\pi\)
\(678\) 0 0
\(679\) −34.0410 −1.30637
\(680\) −2.06309 −0.0791160
\(681\) 0 0
\(682\) −1.15562 −0.0442509
\(683\) −23.3336 −0.892836 −0.446418 0.894825i \(-0.647301\pi\)
−0.446418 + 0.894825i \(0.647301\pi\)
\(684\) 0 0
\(685\) 30.1851 1.15331
\(686\) 0.890661 0.0340056
\(687\) 0 0
\(688\) −37.3141 −1.42259
\(689\) 10.8071 0.411719
\(690\) 0 0
\(691\) 2.24682 0.0854732 0.0427366 0.999086i \(-0.486392\pi\)
0.0427366 + 0.999086i \(0.486392\pi\)
\(692\) −34.8975 −1.32660
\(693\) 0 0
\(694\) 1.20598 0.0457785
\(695\) 1.47718 0.0560325
\(696\) 0 0
\(697\) 16.1230 0.610702
\(698\) −0.493026 −0.0186613
\(699\) 0 0
\(700\) 34.3652 1.29888
\(701\) 8.34327 0.315121 0.157560 0.987509i \(-0.449637\pi\)
0.157560 + 0.987509i \(0.449637\pi\)
\(702\) 0 0
\(703\) −24.3945 −0.920057
\(704\) −49.7887 −1.87648
\(705\) 0 0
\(706\) 1.18894 0.0447463
\(707\) 6.75417 0.254017
\(708\) 0 0
\(709\) −6.23940 −0.234326 −0.117163 0.993113i \(-0.537380\pi\)
−0.117163 + 0.993113i \(0.537380\pi\)
\(710\) −0.798464 −0.0299658
\(711\) 0 0
\(712\) −3.00231 −0.112516
\(713\) 4.49961 0.168512
\(714\) 0 0
\(715\) 70.4528 2.63479
\(716\) −11.4728 −0.428758
\(717\) 0 0
\(718\) 0.211762 0.00790288
\(719\) 1.00232 0.0373801 0.0186901 0.999825i \(-0.494050\pi\)
0.0186901 + 0.999825i \(0.494050\pi\)
\(720\) 0 0
\(721\) 20.8634 0.776994
\(722\) −0.112812 −0.00419842
\(723\) 0 0
\(724\) −11.6340 −0.432374
\(725\) 23.6987 0.880149
\(726\) 0 0
\(727\) −10.3508 −0.383889 −0.191944 0.981406i \(-0.561479\pi\)
−0.191944 + 0.981406i \(0.561479\pi\)
\(728\) 2.36310 0.0875825
\(729\) 0 0
\(730\) −0.0111999 −0.000414527 0
\(731\) −25.3208 −0.936524
\(732\) 0 0
\(733\) −24.2474 −0.895599 −0.447800 0.894134i \(-0.647792\pi\)
−0.447800 + 0.894134i \(0.647792\pi\)
\(734\) −0.983122 −0.0362877
\(735\) 0 0
\(736\) −0.993260 −0.0366120
\(737\) 94.0183 3.46321
\(738\) 0 0
\(739\) −35.0291 −1.28856 −0.644282 0.764788i \(-0.722844\pi\)
−0.644282 + 0.764788i \(0.722844\pi\)
\(740\) −38.7195 −1.42336
\(741\) 0 0
\(742\) −0.548743 −0.0201450
\(743\) 28.7141 1.05342 0.526710 0.850045i \(-0.323426\pi\)
0.526710 + 0.850045i \(0.323426\pi\)
\(744\) 0 0
\(745\) −40.3527 −1.47841
\(746\) 1.23865 0.0453504
\(747\) 0 0
\(748\) −33.9015 −1.23956
\(749\) 4.08950 0.149427
\(750\) 0 0
\(751\) −38.3453 −1.39924 −0.699620 0.714516i \(-0.746647\pi\)
−0.699620 + 0.714516i \(0.746647\pi\)
\(752\) −32.6386 −1.19021
\(753\) 0 0
\(754\) 0.814126 0.0296487
\(755\) −17.4065 −0.633487
\(756\) 0 0
\(757\) −4.95780 −0.180194 −0.0900972 0.995933i \(-0.528718\pi\)
−0.0900972 + 0.995933i \(0.528718\pi\)
\(758\) 0.543387 0.0197367
\(759\) 0 0
\(760\) 3.15560 0.114466
\(761\) −0.398692 −0.0144526 −0.00722629 0.999974i \(-0.502300\pi\)
−0.00722629 + 0.999974i \(0.502300\pi\)
\(762\) 0 0
\(763\) −13.8835 −0.502618
\(764\) −48.0548 −1.73856
\(765\) 0 0
\(766\) −0.0582123 −0.00210330
\(767\) 0.607793 0.0219461
\(768\) 0 0
\(769\) 20.5817 0.742196 0.371098 0.928594i \(-0.378981\pi\)
0.371098 + 0.928594i \(0.378981\pi\)
\(770\) −3.57731 −0.128917
\(771\) 0 0
\(772\) −29.3800 −1.05741
\(773\) −16.0700 −0.577998 −0.288999 0.957329i \(-0.593322\pi\)
−0.288999 + 0.957329i \(0.593322\pi\)
\(774\) 0 0
\(775\) −18.2575 −0.655829
\(776\) −2.66072 −0.0955142
\(777\) 0 0
\(778\) 1.00786 0.0361336
\(779\) −24.6609 −0.883569
\(780\) 0 0
\(781\) −26.2635 −0.939783
\(782\) −0.224035 −0.00801147
\(783\) 0 0
\(784\) 7.40106 0.264324
\(785\) −5.33965 −0.190580
\(786\) 0 0
\(787\) −10.6688 −0.380301 −0.190151 0.981755i \(-0.560898\pi\)
−0.190151 + 0.981755i \(0.560898\pi\)
\(788\) −15.8020 −0.562923
\(789\) 0 0
\(790\) 1.50120 0.0534103
\(791\) −16.2712 −0.578537
\(792\) 0 0
\(793\) −34.8063 −1.23601
\(794\) 0.161852 0.00574392
\(795\) 0 0
\(796\) 55.0354 1.95068
\(797\) −7.43926 −0.263512 −0.131756 0.991282i \(-0.542062\pi\)
−0.131756 + 0.991282i \(0.542062\pi\)
\(798\) 0 0
\(799\) −22.1481 −0.783543
\(800\) 4.03023 0.142490
\(801\) 0 0
\(802\) −0.628368 −0.0221884
\(803\) −0.368393 −0.0130003
\(804\) 0 0
\(805\) 13.9289 0.490930
\(806\) −0.627203 −0.0220923
\(807\) 0 0
\(808\) 0.527921 0.0185722
\(809\) −32.1034 −1.12870 −0.564348 0.825537i \(-0.690872\pi\)
−0.564348 + 0.825537i \(0.690872\pi\)
\(810\) 0 0
\(811\) −42.2868 −1.48489 −0.742445 0.669907i \(-0.766334\pi\)
−0.742445 + 0.669907i \(0.766334\pi\)
\(812\) 24.3564 0.854744
\(813\) 0 0
\(814\) 2.16154 0.0757621
\(815\) −4.97643 −0.174317
\(816\) 0 0
\(817\) 38.7294 1.35497
\(818\) −0.576734 −0.0201650
\(819\) 0 0
\(820\) −39.1423 −1.36691
\(821\) 6.87318 0.239876 0.119938 0.992781i \(-0.461730\pi\)
0.119938 + 0.992781i \(0.461730\pi\)
\(822\) 0 0
\(823\) −31.2390 −1.08892 −0.544461 0.838786i \(-0.683266\pi\)
−0.544461 + 0.838786i \(0.683266\pi\)
\(824\) 1.63073 0.0568092
\(825\) 0 0
\(826\) −0.0308613 −0.00107380
\(827\) −26.0816 −0.906947 −0.453474 0.891270i \(-0.649815\pi\)
−0.453474 + 0.891270i \(0.649815\pi\)
\(828\) 0 0
\(829\) 53.0257 1.84166 0.920829 0.389967i \(-0.127514\pi\)
0.920829 + 0.389967i \(0.127514\pi\)
\(830\) 1.37646 0.0477777
\(831\) 0 0
\(832\) −27.0225 −0.936835
\(833\) 5.02225 0.174011
\(834\) 0 0
\(835\) −22.7138 −0.786043
\(836\) 51.8540 1.79341
\(837\) 0 0
\(838\) −1.67096 −0.0577223
\(839\) 8.35260 0.288364 0.144182 0.989551i \(-0.453945\pi\)
0.144182 + 0.989551i \(0.453945\pi\)
\(840\) 0 0
\(841\) −12.2034 −0.420807
\(842\) 0.691626 0.0238350
\(843\) 0 0
\(844\) −52.5472 −1.80875
\(845\) −4.45000 −0.153085
\(846\) 0 0
\(847\) −84.9253 −2.91807
\(848\) 12.6035 0.432807
\(849\) 0 0
\(850\) 0.909038 0.0311798
\(851\) −8.41637 −0.288509
\(852\) 0 0
\(853\) 54.2075 1.85603 0.928014 0.372544i \(-0.121514\pi\)
0.928014 + 0.372544i \(0.121514\pi\)
\(854\) 1.76732 0.0604766
\(855\) 0 0
\(856\) 0.319644 0.0109252
\(857\) 34.9843 1.19504 0.597521 0.801854i \(-0.296153\pi\)
0.597521 + 0.801854i \(0.296153\pi\)
\(858\) 0 0
\(859\) −18.1201 −0.618250 −0.309125 0.951021i \(-0.600036\pi\)
−0.309125 + 0.951021i \(0.600036\pi\)
\(860\) 61.4722 2.09618
\(861\) 0 0
\(862\) −1.56528 −0.0533138
\(863\) −8.08060 −0.275067 −0.137533 0.990497i \(-0.543917\pi\)
−0.137533 + 0.990497i \(0.543917\pi\)
\(864\) 0 0
\(865\) 57.3932 1.95143
\(866\) −1.14072 −0.0387631
\(867\) 0 0
\(868\) −18.7642 −0.636899
\(869\) 49.3783 1.67505
\(870\) 0 0
\(871\) 51.0277 1.72901
\(872\) −1.08517 −0.0367485
\(873\) 0 0
\(874\) 0.342672 0.0115911
\(875\) −7.64801 −0.258550
\(876\) 0 0
\(877\) 0.893449 0.0301696 0.0150848 0.999886i \(-0.495198\pi\)
0.0150848 + 0.999886i \(0.495198\pi\)
\(878\) −0.410686 −0.0138600
\(879\) 0 0
\(880\) 82.1637 2.76974
\(881\) 3.00730 0.101318 0.0506592 0.998716i \(-0.483868\pi\)
0.0506592 + 0.998716i \(0.483868\pi\)
\(882\) 0 0
\(883\) −1.84700 −0.0621565 −0.0310782 0.999517i \(-0.509894\pi\)
−0.0310782 + 0.999517i \(0.509894\pi\)
\(884\) −18.3998 −0.618851
\(885\) 0 0
\(886\) 1.26557 0.0425177
\(887\) −39.0563 −1.31138 −0.655690 0.755030i \(-0.727622\pi\)
−0.655690 + 0.755030i \(0.727622\pi\)
\(888\) 0 0
\(889\) −36.3150 −1.21797
\(890\) 2.46674 0.0826852
\(891\) 0 0
\(892\) −18.0715 −0.605080
\(893\) 33.8766 1.13364
\(894\) 0 0
\(895\) 18.8684 0.630700
\(896\) 5.52120 0.184450
\(897\) 0 0
\(898\) −1.23581 −0.0412396
\(899\) −12.9401 −0.431576
\(900\) 0 0
\(901\) 8.55257 0.284928
\(902\) 2.18515 0.0727575
\(903\) 0 0
\(904\) −1.27179 −0.0422992
\(905\) 19.1335 0.636020
\(906\) 0 0
\(907\) −25.7704 −0.855691 −0.427845 0.903852i \(-0.640727\pi\)
−0.427845 + 0.903852i \(0.640727\pi\)
\(908\) 43.9375 1.45812
\(909\) 0 0
\(910\) −1.94156 −0.0643621
\(911\) 48.8267 1.61770 0.808850 0.588015i \(-0.200091\pi\)
0.808850 + 0.588015i \(0.200091\pi\)
\(912\) 0 0
\(913\) 45.2754 1.49840
\(914\) 1.67199 0.0553046
\(915\) 0 0
\(916\) 43.4864 1.43683
\(917\) −32.6172 −1.07712
\(918\) 0 0
\(919\) −26.7476 −0.882321 −0.441160 0.897428i \(-0.645433\pi\)
−0.441160 + 0.897428i \(0.645433\pi\)
\(920\) 1.08872 0.0358939
\(921\) 0 0
\(922\) −1.18052 −0.0388784
\(923\) −14.2543 −0.469187
\(924\) 0 0
\(925\) 34.1500 1.12285
\(926\) 0.556388 0.0182841
\(927\) 0 0
\(928\) 2.85644 0.0937672
\(929\) −24.4021 −0.800609 −0.400304 0.916382i \(-0.631096\pi\)
−0.400304 + 0.916382i \(0.631096\pi\)
\(930\) 0 0
\(931\) −7.68178 −0.251760
\(932\) 49.1923 1.61135
\(933\) 0 0
\(934\) 0.654278 0.0214086
\(935\) 55.7551 1.82339
\(936\) 0 0
\(937\) −4.63607 −0.151454 −0.0757270 0.997129i \(-0.524128\pi\)
−0.0757270 + 0.997129i \(0.524128\pi\)
\(938\) −2.59098 −0.0845986
\(939\) 0 0
\(940\) 53.7696 1.75377
\(941\) 3.44151 0.112190 0.0560950 0.998425i \(-0.482135\pi\)
0.0560950 + 0.998425i \(0.482135\pi\)
\(942\) 0 0
\(943\) −8.50828 −0.277068
\(944\) 0.708823 0.0230702
\(945\) 0 0
\(946\) −3.43173 −0.111575
\(947\) 53.5501 1.74015 0.870073 0.492923i \(-0.164072\pi\)
0.870073 + 0.492923i \(0.164072\pi\)
\(948\) 0 0
\(949\) −0.199943 −0.00649041
\(950\) −1.39042 −0.0451112
\(951\) 0 0
\(952\) 1.87012 0.0606109
\(953\) 12.5380 0.406146 0.203073 0.979164i \(-0.434907\pi\)
0.203073 + 0.979164i \(0.434907\pi\)
\(954\) 0 0
\(955\) 79.0319 2.55741
\(956\) 24.8079 0.802345
\(957\) 0 0
\(958\) −0.129392 −0.00418045
\(959\) −27.3617 −0.883556
\(960\) 0 0
\(961\) −21.0310 −0.678418
\(962\) 1.17316 0.0378242
\(963\) 0 0
\(964\) −8.62311 −0.277732
\(965\) 48.3190 1.55544
\(966\) 0 0
\(967\) −13.9055 −0.447171 −0.223585 0.974684i \(-0.571776\pi\)
−0.223585 + 0.974684i \(0.571776\pi\)
\(968\) −6.63795 −0.213352
\(969\) 0 0
\(970\) 2.18608 0.0701909
\(971\) 32.9568 1.05763 0.528817 0.848736i \(-0.322636\pi\)
0.528817 + 0.848736i \(0.322636\pi\)
\(972\) 0 0
\(973\) −1.33901 −0.0429266
\(974\) −0.236772 −0.00758666
\(975\) 0 0
\(976\) −40.5919 −1.29932
\(977\) 54.6024 1.74689 0.873443 0.486926i \(-0.161882\pi\)
0.873443 + 0.486926i \(0.161882\pi\)
\(978\) 0 0
\(979\) 81.1374 2.59316
\(980\) −12.1927 −0.389481
\(981\) 0 0
\(982\) −0.564391 −0.0180104
\(983\) −21.2851 −0.678890 −0.339445 0.940626i \(-0.610239\pi\)
−0.339445 + 0.940626i \(0.610239\pi\)
\(984\) 0 0
\(985\) 25.9883 0.828057
\(986\) 0.644285 0.0205182
\(987\) 0 0
\(988\) 28.1433 0.895359
\(989\) 13.3621 0.424889
\(990\) 0 0
\(991\) −5.08207 −0.161437 −0.0807187 0.996737i \(-0.525722\pi\)
−0.0807187 + 0.996737i \(0.525722\pi\)
\(992\) −2.20060 −0.0698692
\(993\) 0 0
\(994\) 0.723778 0.0229569
\(995\) −90.5124 −2.86944
\(996\) 0 0
\(997\) −42.2654 −1.33856 −0.669279 0.743011i \(-0.733397\pi\)
−0.669279 + 0.743011i \(0.733397\pi\)
\(998\) −1.66952 −0.0528477
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3447.2.a.j.1.14 24
3.2 odd 2 383.2.a.c.1.11 24
12.11 even 2 6128.2.a.p.1.24 24
15.14 odd 2 9575.2.a.e.1.14 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.11 24 3.2 odd 2
3447.2.a.j.1.14 24 1.1 even 1 trivial
6128.2.a.p.1.24 24 12.11 even 2
9575.2.a.e.1.14 24 15.14 odd 2