Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3447,2,Mod(1,3447)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3447, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3447.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3447 = 3^{2} \cdot 383 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3447.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(27.5244335767\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 383) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.75590 | 0 | 5.59496 | 1.94817 | 0 | 4.21457 | −9.90734 | 0 | −5.36895 | ||||||||||||||||||
1.2 | −2.58110 | 0 | 4.66207 | 4.25360 | 0 | −1.55327 | −6.87105 | 0 | −10.9790 | ||||||||||||||||||
1.3 | −2.56319 | 0 | 4.56992 | −0.275873 | 0 | −0.724431 | −6.58718 | 0 | 0.707113 | ||||||||||||||||||
1.4 | −2.44206 | 0 | 3.96367 | −4.41754 | 0 | −1.22662 | −4.79540 | 0 | 10.7879 | ||||||||||||||||||
1.5 | −2.31031 | 0 | 3.33755 | 0.0217650 | 0 | 2.45434 | −3.09016 | 0 | −0.0502841 | ||||||||||||||||||
1.6 | −1.99461 | 0 | 1.97847 | −1.38116 | 0 | −4.89803 | 0.0429378 | 0 | 2.75487 | ||||||||||||||||||
1.7 | −1.81699 | 0 | 1.30147 | 0.569837 | 0 | 3.69709 | 1.26923 | 0 | −1.03539 | ||||||||||||||||||
1.8 | −1.55772 | 0 | 0.426486 | −2.21966 | 0 | −0.910561 | 2.45109 | 0 | 3.45761 | ||||||||||||||||||
1.9 | −1.30644 | 0 | −0.293212 | 0.910566 | 0 | 2.08417 | 2.99595 | 0 | −1.18960 | ||||||||||||||||||
1.10 | −1.07548 | 0 | −0.843347 | −4.23654 | 0 | 2.82145 | 3.05796 | 0 | 4.55631 | ||||||||||||||||||
1.11 | −0.539970 | 0 | −1.70843 | −2.73147 | 0 | 1.35462 | 2.00244 | 0 | 1.47491 | ||||||||||||||||||
1.12 | −0.378030 | 0 | −1.85709 | 3.79049 | 0 | 4.13017 | 1.45810 | 0 | −1.43292 | ||||||||||||||||||
1.13 | −0.119680 | 0 | −1.98568 | −0.761787 | 0 | 1.36599 | 0.477005 | 0 | 0.0911706 | ||||||||||||||||||
1.14 | 0.0582123 | 0 | −1.99661 | 3.28367 | 0 | −2.97653 | −0.232652 | 0 | 0.191150 | ||||||||||||||||||
1.15 | 0.473286 | 0 | −1.77600 | −0.826944 | 0 | −1.86880 | −1.78713 | 0 | −0.391381 | ||||||||||||||||||
1.16 | 0.806619 | 0 | −1.34937 | 3.72243 | 0 | 4.29879 | −2.70166 | 0 | 3.00258 | ||||||||||||||||||
1.17 | 1.04512 | 0 | −0.907726 | −3.33279 | 0 | −3.42998 | −3.03892 | 0 | −3.48316 | ||||||||||||||||||
1.18 | 1.33913 | 0 | −0.206737 | 3.01439 | 0 | −4.58337 | −2.95510 | 0 | 4.03666 | ||||||||||||||||||
1.19 | 1.50563 | 0 | 0.266907 | −1.94089 | 0 | 4.87997 | −2.60939 | 0 | −2.92225 | ||||||||||||||||||
1.20 | 1.56131 | 0 | 0.437676 | −3.86534 | 0 | −1.33224 | −2.43927 | 0 | −6.03498 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \( -1 \) |
\(383\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3447.2.a.j | 24 | |
3.b | odd | 2 | 1 | 383.2.a.c | ✓ | 24 | |
12.b | even | 2 | 1 | 6128.2.a.p | 24 | ||
15.d | odd | 2 | 1 | 9575.2.a.e | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
383.2.a.c | ✓ | 24 | 3.b | odd | 2 | 1 | |
3447.2.a.j | 24 | 1.a | even | 1 | 1 | trivial | |
6128.2.a.p | 24 | 12.b | even | 2 | 1 | ||
9575.2.a.e | 24 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3447))\):
\( T_{2}^{24} + 5 T_{2}^{23} - 26 T_{2}^{22} - 160 T_{2}^{21} + 244 T_{2}^{20} + 2173 T_{2}^{19} + \cdots - 49 \)
|
\( T_{5}^{24} + 3 T_{5}^{23} - 89 T_{5}^{22} - 259 T_{5}^{21} + 3375 T_{5}^{20} + 9557 T_{5}^{19} + \cdots - 65536 \)
|